Skip to main content

Advertisement

Log in

NADPH Oxidase: a Possible Therapeutic Target for Cognitive Impairment in Experimental Cerebral Malaria

  • Original Article
  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Long-term cognitive impairment associated with seizure-induced hippocampal damage is the key feature of cerebral malaria (CM) pathogenesis. One-fourth of child survivors of CM suffer from long-lasting neurological deficits and behavioral anomalies. However, mechanisms on hippocampal dysfunction are unclear. In this study, we elucidated whether gp91phox isoform of nicotinamide adenine dinucleotide phosphate oxidase 2 (NOX2) (a potent marker of oxidative stress) mediates hippocampal neuronal abnormalities and cognitive dysfunction in experimental CM (ECM). Mice symptomatic to CM were rescue treated with artemether monotherapy (ARM) and in combination with apocynin (ARM + APO) adjunctive based on scores of Rapid Murine Come behavior Scale (RMCBS). After a 30-day survivability period, we performed Barnes maze, T-maze, and novel object recognition cognitive tests to evaluate working and reference memory in all the experimental groups except CM. Sensorimotor tests were conducted in all the cohorts to assess motor coordination. We performed Golgi-Cox staining to illustrate cornu ammonis-1 (CA1) pyramidal neuronal morphology and study overall hippocampal neuronal density changes. Further, expression of NOX2, NeuN (neuronal marker) in hippocampal CA1 and dentate gyrus was determined using double immunofluorescence experiments in all the experimental groups. Mice administered with ARM monotherapy and APO adjunctive treatment exhibited similar survivability. The latter showed better locomotor and cognitive functions, reduced ROS levels, and hippocampal NOX2 immunoreactivity in ECM. Our results show a substantial increase in hippocampal NeuN immunoreactivity and dendritic arborization in ARM + APO cohorts compared to ARM-treated brain samples. Overall, our study suggests that overexpression of NOX2 could result in loss of hippocampal neuronal density and dendritic spines of CA1 neurons affecting the spatial working and reference memory during ECM. Notably, ARM + APO adjunctive therapy reversed the altered neuronal morphology and oxidative damage in hippocampal neurons restoring long-term cognitive functions after CM.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data Availability

All data generated or analyzed during this study are included in this published article (and its supplementary information files).

References

  1. Reis PA, Estato V, da Silva TI, d’Avila JC, Siqueira LD, Assis EF, Bozza PT, Bozza FA, Tibirica EV, Zimmerman GA, Castro-Faria-Neto HC (2012) Statins decrease neuroinflammation and prevent cognitive impairment after cerebral malaria. PLoS Pathog 8(12):e1003099. https://doi.org/10.1371/journal.ppat.1003099

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Idro R, Marsh K, John CC, Newton CR (2010) Cerebral malaria: mechanisms of brain injury and strategies for improved neurocognitive outcome. Pediatric research 68 (4):267–274. https://doi.org/10.1203/PDR.0b013e3181eee738

  3. Idro R, Carter JA, Fegan G, Neville BG, Newton CR (2006) Risk factors for persisting neurological and cognitive impairments following cerebral malaria. Arch Dis Child 91(2):142–148. https://doi.org/10.1136/adc.2005.077784

    Article  CAS  PubMed  Google Scholar 

  4. John CC, Bangirana P, Byarugaba J, Opoka RO, Idro R, Jurek AM, Wu B, Boivin MJ (2008) Cerebral malaria in children is associated with long-term cognitive impairment. Pediatrics 122(1):e92-99. https://doi.org/10.1542/peds.2007-3709

    Article  PubMed  Google Scholar 

  5. Anand KS, Dhikav V (2012) Hippocampus in health and disease: an overview. Ann Indian Acad Neurol 15(4):239–246. https://doi.org/10.4103/0972-2327.104323

    Article  PubMed  PubMed Central  Google Scholar 

  6. Bartsch T, Dohring J, Rohr A, Jansen O, Deuschl G (2011) CA1 neurons in the human hippocampus are critical for autobiographical memory, mental time travel, and autonoetic consciousness. Proc Natl Acad Sci USA 108(42):17562–17567. https://doi.org/10.1073/pnas.1110266108

    Article  PubMed  PubMed Central  Google Scholar 

  7. Nenov MN, Tempia F, Denner L, Dineley KT, Laezza F (2015) Impaired firing properties of dentate granule neurons in an Alzheimer’s disease animal model are rescued by PPARgamma agonism. J Neurophysiol 113(6):1712–1726. https://doi.org/10.1152/jn.00419.2014

    Article  CAS  PubMed  Google Scholar 

  8. Amaral DG, Scharfman HE, Lavenex P (2007) The dentate gyrus: fundamental neuroanatomical organization (dentate gyrus for dummies). Prog Brain Res 163:3–22. https://doi.org/10.1016/S0079-6123(07)63001-5

    Article  PubMed  PubMed Central  Google Scholar 

  9. Reza-Zaldivar EE, Hernandez-Sapiens MA, Minjarez B, Gomez-Pinedo U, Sanchez-Gonzalez VJ, Marquez-Aguirre AL, Canales-Aguirre AA (2020) Dendritic spine and synaptic plasticity in Alzheimer’s disease: a focus on microRNA. Front Cell Dev Biol 8:255. https://doi.org/10.3389/fcell.2020.00255

    Article  PubMed  PubMed Central  Google Scholar 

  10. Chidambaram SB, Rathipriya AG, Bolla SR, Bhat A, Ray B, Mahalakshmi AM, Manivasagam T, Thenmozhi AJ, Essa MM, Guillemin GJ, Chandra R, Sakharkar MK (2019) Dendritic spines: revisiting the physiological role. Prog Neuropsychopharmacol Biol Psychiatry 92:161–193. https://doi.org/10.1016/j.pnpbp.2019.01.005

    Article  CAS  PubMed  Google Scholar 

  11. Chen Y, Rex CS, Rice CJ, Dube CM, Gall CM, Lynch G, Baram TZ (2010) Correlated memory defects and hippocampal dendritic spine loss after acute stress involve corticotropin-releasing hormone signaling. Proc Natl Acad Sci USA 107(29):13123–13128. https://doi.org/10.1073/pnas.1003825107

    Article  PubMed  PubMed Central  Google Scholar 

  12. Davolio C, Greenamyre JT (1995) Selective vulnerability of the CA1 region of hippocampus to the indirect excitotoxic effects of malonic acid. Neurosci Lett 192(1):29–32. https://doi.org/10.1016/0304-3940(95)11600-2

    Article  CAS  PubMed  Google Scholar 

  13. Planche V, Koubiyr I, Romero JE, Manjon JV, Coupe P, Deloire M, Dousset V, Brochet B, Ruet A, Tourdias T (2018) Regional hippocampal vulnerability in early multiple sclerosis: dynamic pathological spreading from dentate gyrus to CA1. Hum Brain Mapp 39(4):1814–1824. https://doi.org/10.1002/hbm.23970

    Article  PubMed  PubMed Central  Google Scholar 

  14. Hatanpaa KJ, Raisanen JM, Herndon E, Burns DK, Foong C, Habib AA, White CL 3rd (2014) Hippocampal sclerosis in dementia, epilepsy, and ischemic injury: differential vulnerability of hippocampal subfields. J Neuropathol Exp Neurol 73(2):136–142. https://doi.org/10.1097/OPX.0000000000000170

    Article  CAS  PubMed  Google Scholar 

  15. Oswald MCW, Garnham N, Sweeney ST, Landgraf M (2018) Regulation of neuronal development and function by ROS. FEBS Lett 592(5):679–691. https://doi.org/10.1002/1873-3468.12972

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Oswald MC, Brooks PS, Zwart MF, Mukherjee A, West RJ, Giachello CN, Morarach K, Baines RA, Sweeney ST, Landgraf M (2018) Reactive oxygen species regulate activity-dependent neuronal plasticity in Drosophila. eLife 7. https://doi.org/10.7554/eLife.39393

  17. Hidalgo C, Arias-Cavieres A (2016) Calcium, reactive oxygen species, and synaptic plasticity. Physiology (Bethesda) 31(3):201–215. https://doi.org/10.1152/physiol.00038.2015

    Article  CAS  Google Scholar 

  18. Beckhauser TF, Francis-Oliveira J, De Pasquale R (2016) Reactive oxygen species: physiological and physiopathological effects on synaptic plasticity. J Exp Neurosci 10(Suppl 1):23–48. https://doi.org/10.4137/JEN.S39887

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Lambeth JD, Neish AS (2014) Nox enzymes and new thinking on reactive oxygen: a double-edged sword revisited. Annu Rev Pathol 9:119–145. https://doi.org/10.1146/annurev-pathol-012513-104651

    Article  CAS  PubMed  Google Scholar 

  20. Lassegue B, Griendling KK (2010) NADPH oxidases: functions and pathologies in the vasculature. Arterioscler Thromb Vasc Biol 30(4):653–661. https://doi.org/10.1161/ATVBAHA.108.181610

    Article  CAS  PubMed  Google Scholar 

  21. Nayernia Z, Jaquet V, Krause KH (2014) New insights on NOX enzymes in the central nervous system. Antioxid Redox Signal 20(17):2815–2837. https://doi.org/10.1089/ars.2013.5703

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Shahraz A, Wissfeld J, Ginolhac A, Mathews M, Sinkkonen L, Neumann H (2021) Phagocytosis-related NADPH oxidase 2 subunit gp91phox contributes to neurodegeneration after repeated systemic challenge with lipopolysaccharides. Glia 69(1):137–150. https://doi.org/10.1002/glia.23890

    Article  CAS  PubMed  Google Scholar 

  23. Dohi K, Ohtaki H, Nakamachi T, Yofu S, Satoh K, Miyamoto K, Song D, Tsunawaki S, Shioda S, Aruga T (2010) Gp91phox (NOX2) in classically activated microglia exacerbates traumatic brain injury. J Neuroinflammation 7:41. https://doi.org/10.1186/1742-2094-7-41

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Kumar A, Barrett JP, Alvarez-Croda DM, Stoica BA, Faden AI, Loane DJ (2016) NOX2 drives M1-like microglial/macrophage activation and neurodegeneration following experimental traumatic brain injury. Brain Behav Immun 58:291–309. https://doi.org/10.1016/j.bbi.2016.07.158

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Geng L, Fan LM, Liu F, Smith C, Li J (2020) Nox2 dependent redox-regulation of microglial response to amyloid-beta stimulation and microgliosis in aging. Sci Rep 10(1):1582. https://doi.org/10.1038/s41598-020-58422-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Percario S, Moreira DR, Gomes BA, Ferreira ME, Goncalves AC, Laurindo PS, Vilhena TC, Dolabela MF, Green MD (2012) Oxidative stress in malaria. Int J Mol Sci 13(12):16346–16372. https://doi.org/10.3390/ijms131216346

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Imai T, Iwawaki T, Akai R, Suzue K, Hirai M, Taniguchi T, Okada H, Hisaeda H (2014) Evaluating experimental cerebral malaria using oxidative stress indicator OKD48 mice. Int J Parasitol 44(10):681–685. https://doi.org/10.1016/j.ijpara.2014.06.002

    Article  CAS  PubMed  Google Scholar 

  28. Reis PA, Comim CM, Hermani F, Silva B, Barichello T, Portella AC, Gomes FC, Sab IM, Frutuoso VS, Oliveira MF, Bozza PT, Bozza FA, Dal-Pizzol F, Zimmerman GA, Quevedo J, Castro-Faria-Neto HC (2010) Cognitive dysfunction is sustained after rescue therapy in experimental cerebral malaria, and is reduced by additive antioxidant therapy. PLoS Pathog 6(6):e1000963. https://doi.org/10.1371/journal.ppat.1000963

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Laverse E, Nashef L, Brown S (2013) Neurocognitive sequelae following hippocampal and callosal lesions associated with cerebral malaria in an immune-naive adult. Postgrad Med J 89(1057):671–672. https://doi.org/10.1136/postgradmedj-2013-131758

    Article  PubMed  Google Scholar 

  30. Barua S, Kim JY, Yenari MA, Lee JE (2019) The role of NOX inhibitors in neurodegenerative diseases. IBRO reports 7:59–69. https://doi.org/10.1016/j.ibror.2019.07.1721

    Article  PubMed  PubMed Central  Google Scholar 

  31. Kim JY, Park J, Lee JE, Yenari MA (2017) NOX inhibitors—a promising avenue for ischemic stroke. Exp Neurobiol 26(4):195–205. https://doi.org/10.5607/en.2017.26.4.195

    Article  PubMed  PubMed Central  Google Scholar 

  32. Maraldi T (2013) Natural compounds as modulators of NADPH oxidases. Oxidative medicine and cellular longevity 2013:271602. https://doi.org/10.1155/2013/271602

  33. Yang T, Zang DW, Shan W, Guo AC, Wu JP, Wang YJ, Wang Q (2019) Synthesis and evaluations of novel apocynin derivatives as anti-glioma agents. Front Pharmacol 10:951. https://doi.org/10.3389/fphar.2019.00951

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Aldieri E, Riganti C, Polimeni M, Gazzano E, Lussiana C, Campia I, Ghigo D (2008) Classical inhibitors of NOX NAD(P)H oxidases are not specific. Curr Drug Metab 9(8):686–696. https://doi.org/10.2174/138920008786049285

    Article  CAS  PubMed  Google Scholar 

  35. Hougee S, Hartog A, Sanders A, Graus YM, Hoijer MA, Garssen J, van den Berg WB, van Beuningen HM, Smit HF (2006) Oral administration of the NADPH-oxidase inhibitor apocynin partially restores diminished cartilage proteoglycan synthesis and reduces inflammation in mice. Eur J Pharmacol 531(1–3):264–269. https://doi.org/10.1016/j.ejphar.2005.11.061

    Article  CAS  PubMed  Google Scholar 

  36. Barbieri SS, Cavalca V, Eligini S, Brambilla M, Caiani A, Tremoli E, Colli S (2004) Apocynin prevents cyclooxygenase 2 expression in human monocytes through NADPH oxidase and glutathione redox-dependent mechanisms. Free Radical Biol Med 37(2):156–165. https://doi.org/10.1016/j.freeradbiomed.2004.04.020

    Article  CAS  Google Scholar 

  37. Barnes PJ, Karin M (1997) Nuclear factor-kappaB: a pivotal transcription factor in chronic inflammatory diseases. N Engl J Med 336(15):1066–1071. https://doi.org/10.1056/NEJM199704103361506

    Article  CAS  PubMed  Google Scholar 

  38. Stefanska J, Pawliczak R (2008) Apocynin: molecular aptitudes. Mediators of inflammation 2008:106507. https://doi.org/10.1155/2008/106507

  39. McIntosh HM, Olliaro P (2000) Artemisinin derivatives for treating severe malaria. The Cochrane database of systematic reviews (2):CD000527. https://doi.org/10.1002/14651858.CD000527

  40. Li Q, Weina P (2010) Artesunate: the best drug in the treatment of severe and complicated malaria. Pharmaceuticals (Basel) 3(7):2322–2332. https://doi.org/10.3390/ph3072322

    Article  CAS  Google Scholar 

  41. Rudrapal M, Chetia D (2016) Endoperoxide antimalarials: development, structural diversity and pharmacodynamic aspects with reference to 1,2,4-trioxane-based structural scaffold. Drug Des Dev Ther 10:3575–3590. https://doi.org/10.2147/DDDT.S118116

    Article  CAS  Google Scholar 

  42. Efferth T, Kaina B (2010) Toxicity of the antimalarial artemisinin and its dervatives. Crit Rev Toxicol 40(5):405–421. https://doi.org/10.3109/10408441003610571

    Article  CAS  PubMed  Google Scholar 

  43. Receno CN, Glausen TG, DeRuisseau LR (2018) Saline as a vehicle control does not alter ventilation in male CD-1 mice. Physiol Rep 6(10):e13702. https://doi.org/10.14814/phy2.13702

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Bouet V, Boulouard M, Toutain J, Divoux D, Bernaudin M, Schumann-Bard P, Freret T (2009) The adhesive removal test: a sensitive method to assess sensorimotor deficits in mice. Nat Protoc 4(10):1560–1564. https://doi.org/10.1038/nprot.2009.125

    Article  CAS  PubMed  Google Scholar 

  45. Freret T, Bouet V, Leconte C, Roussel S, Chazalviel L, Divoux D, Schumann-Bard P, Boulouard M (2009) Behavioral deficits after distal focal cerebral ischemia in mice: usefulness of adhesive removal test. Behav Neurosci 123(1):224–230. https://doi.org/10.1037/a0014157

    Article  PubMed  Google Scholar 

  46. Balkaya M, Krober JM, Rex A, Endres M (2013) Assessing post-stroke behavior in mouse models of focal ischemia. Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism 33(3):330-338. https://doi.org/10.1038/jcbfm.2012.185

  47. Fleming SM, Ekhator OR, Ghisays V (2013) Assessment of sensorimotor function in mouse models of Parkinson’s disease. Journal of visualized experiments : JoVE (76). https://doi.org/10.3791/50303

  48. Luong TN, Carlisle HJ, Southwell A, Patterson PH (2011) Assessment of motor balance and coordination in mice using the balance beam. Journal of visualized experiments : JoVE (49). https://doi.org/10.3791/2376

  49. Wahl D, Coogan SC, Solon-Biet SM, de Cabo R, Haran JB, Raubenheimer D, Cogger VC, Mattson MP, Simpson SJ, Le Couteur DG (2017) Cognitive and behavioral evaluation of nutritional interventions in rodent models of brain aging and dementia. Clin Interv Aging 12:1419–1428. https://doi.org/10.2147/CIA.S145247

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Gawel K, Gibula E, Marszalek-Grabska M, Filarowska J, Kotlinska JH (2019) Assessment of spatial learning and memory in the Barnes maze task in rodents-methodological consideration. Naunyn Schmiedebergs Arch Pharmacol 392(1):1–18. https://doi.org/10.1007/s00210-018-1589-y

    Article  CAS  PubMed  Google Scholar 

  51. Deacon RM, Rawlins JN (2006) T-maze alternation in the rodent. Nat Protoc 1(1):7–12. https://doi.org/10.1038/nprot.2006.2

    Article  PubMed  Google Scholar 

  52. Davis KE, Burnett K, Gigg J (2017) Water and T-maze protocols are equally efficient methods to assess spatial memory in 3xTg Alzheimer’s disease mice. Behav Brain Res 331:54–66. https://doi.org/10.1016/j.bbr.2017.05.005

    Article  CAS  PubMed  Google Scholar 

  53. Medawar E, Benway TA, Liu W, Hanan TA, Haslehurst P, James OT, Yap K, Muessig L, Moroni F, Nahaboo Solim MA, Baidildinova G, Wang R, Richardson JC, Cacucci F, Salih DA, Cummings DM, Edwards FA (2019) Effects of rising amyloidbeta levels on hippocampal synaptic transmission, microglial response and cognition in APPSwe/PSEN1M146V transgenic mice. EBioMedicine 39:422–435. https://doi.org/10.1016/j.ebiom.2018.12.006

    Article  PubMed  Google Scholar 

  54. Lueptow LM (2017) Novel object recognition test for the investigation of learning and memory in mice. Journal of visualized experiments : JoVE (126). https://doi.org/10.3791/55718

  55. Denninger JK, Smith BM, Kirby ED (2018) Novel object recognition and object location behavioral testing in mice on a budget. Journal of visualized experiments : JoVE (141). https://doi.org/10.3791/58593

  56. Bian GL, Wei LC, Shi M, Wang YQ, Cao R, Chen LW (2007) Fluoro-Jade C can specifically stain the degenerative neurons in the substantia nigra of the 1-methyl-4-phenyl-1,2,3,6-tetrahydro pyridine-treated C57BL/6 mice. Brain Res 1150:55–61. https://doi.org/10.1016/j.brainres.2007.02.078

    Article  CAS  PubMed  Google Scholar 

  57. Feldman AT, Wolfe D (2014) Tissue processing and hematoxylin and eosin staining. Methods Mol Biol 1180:31–43. https://doi.org/10.1007/978-1-4939-1050-2_3

    Article  CAS  PubMed  Google Scholar 

  58. Alturkistani HA, Tashkandi FM, Mohammedsaleh ZM (2015) Histological stains: a literature review and case study. Global J Health Sci 8(3):72–79. https://doi.org/10.5539/gjhs.v8n3p72

    Article  Google Scholar 

  59. Cardiff RD, Miller CH (2014) Munn RJ (2014) Manual hematoxylin and eosin staining of mouse tissue sections. Cold Spring Harb Protoc 6:655–658. https://doi.org/10.1101/pdb.prot073411

    Article  Google Scholar 

  60. Martins YC, Freeman BD, Akide Ndunge OB, Weiss LM, Tanowitz HB, Desruisseaux MS (2016) Endothelin-1 treatment induces an experimental cerebral malaria-like syndrome in C57BL/6 mice infected with Plasmodium berghei NK65. Am J Pathol 186(11):2957–2969. https://doi.org/10.1016/j.ajpath.2016.07.020

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Zaqout S, Kaindl AM (2016) Golgi-Cox staining step by step. Front Neuroanat 10:38. https://doi.org/10.3389/fnana.2016.00038

    Article  PubMed  PubMed Central  Google Scholar 

  62. Wilson MD, Sethi S, Lein PJ, Keil KP (2017) Valid statistical approaches for analyzing sholl data: mixed effects versus simple linear models. J Neurosci Methods 279:33–43. https://doi.org/10.1016/j.jneumeth.2017.01.003

    Article  PubMed  PubMed Central  Google Scholar 

  63. Kumar SP, Babu PP (2020) Aberrant dopamine receptor signaling plays critical role in the impairment of striatal neurons in experimental cerebral malaria. Mol Neurobiol 57(12):5069–5083. https://doi.org/10.1007/s12035-020-02076-0

    Article  CAS  PubMed  Google Scholar 

  64. Duan W, Zhang YP, Hou Z, Huang C, Zhu H, Zhang CQ, Yin Q (2016) Novel insights into NeuN: from neuronal marker to splicing regulator. Mol Neurobiol 53(3):1637–1647. https://doi.org/10.1007/s12035-015-9122-5

    Article  CAS  PubMed  Google Scholar 

  65. Lin YS, Wang HY, Huang DF, Hsieh PF, Lin MY, Chou CH, Wu IJ, Huang GJ, Gau SS, Huang HS (2016) Neuronal splicing regulator RBFOX3 (NeuN) regulates adult hippocampal neurogenesis and synaptogenesis. PLoS ONE 11(10):e0164164. https://doi.org/10.1371/journal.pone.0164164

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Sugawara T, Lewen A, Noshita N, Gasche Y, Chan PH (2002) Effects of global ischemia duration on neuronal, astroglial, oligodendroglial, and microglial reactions in the vulnerable hippocampal CA1 subregion in rats. J Neurotrauma 19(1):85–98. https://doi.org/10.1089/089771502753460268

    Article  PubMed  Google Scholar 

  67. Davoli MA, Fourtounis J, Tam J, Xanthoudakis S, Nicholson D, Robertson GS, Ng GY, Xu D (2002) Immunohistochemical and biochemical assessment of caspase-3 activation and DNA fragmentation following transient focal ischemia in the rat. Neuroscience 115(1):125–136. https://doi.org/10.1016/s0306-4522(02)00376-7

    Article  CAS  PubMed  Google Scholar 

  68. McPhail LT, McBride CB, McGraw J, Steeves JD, Tetzlaff W (2004) Axotomy abolishes NeuN expression in facial but not rubrospinal neurons. Exp Neurol 185(1):182–190. https://doi.org/10.1016/j.expneurol.2003.10.001

    Article  CAS  PubMed  Google Scholar 

  69. Wang HY, Hsieh PF, Huang DF, Chin PS, Chou CH, Tung CC, Chen SY, Lee LJ, Gau SS, Huang HS (2015) RBFOX3/NeuN is required for hippocampal circuit balance and function. Sci Rep 5:17383. https://doi.org/10.1038/srep17383

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Nishanth G, Schluter D (2019) Blood-brain barrier in cerebral malaria: pathogenesis and therapeutic intervention. Trends Parasitol 35(7):516–528. https://doi.org/10.1016/j.pt.2019.04.010

    Article  CAS  PubMed  Google Scholar 

  71. Shikani HJ, Freeman BD, Lisanti MP, Weiss LM, Tanowitz HB, Desruisseaux MS (2012) Cerebral malaria: we have come a long way. Am J Pathol 181(5):1484–1492. https://doi.org/10.1016/j.ajpath.2012.08.010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Nag S (2003) Blood-brain barrier permeability using tracers and immunohistochemistry. Methods Mol Med 89:133–144. https://doi.org/10.1385/1-59259-419-0:133

    Article  CAS  PubMed  Google Scholar 

  73. Yuan F, Salehi HA, Boucher Y, Vasthare US, Tuma RF, Jain RK (1994) Vascular permeability and microcirculation of gliomas and mammary carcinomas transplanted in rat and mouse cranial windows. Can Res 54(17):4564–4568

    CAS  Google Scholar 

  74. Sorce S, Stocker R, Seredenina T, Holmdahl R, Aguzzi A, Chio A, Depaulis A, Heitz F, Olofsson P, Olsson T, Duveau V, Sanoudou D, Skosgater S, Vlahou A, Wasquel D, Krause KH, Jaquet V (2017) NADPH oxidases as drug targets and biomarkers in neurodegenerative diseases: what is the evidence? Free Radical Biol Med 112:387–396. https://doi.org/10.1016/j.freeradbiomed.2017.08.006

    Article  CAS  Google Scholar 

  75. Postma NS, Zuidema J, Mommérs EC, Eling WMC (1996) Oxidative stress in malaria; implications for prevention and therapy. Pharm World Sci 18(4):121–129. https://doi.org/10.1007/bf00717727

    Article  CAS  PubMed  Google Scholar 

  76. DellaValle B, Hempel C, Staalsoe T, Johansen FF, Kurtzhals JAL (2016) Erratum to: Glucagon-like peptide-1 analogue, liraglutide, in experimental cerebral malaria: implications for the role of oxidative stress in cerebral malaria. Malar J 15:495. https://doi.org/10.1186/s12936-016-1544-7

    Article  PubMed  PubMed Central  Google Scholar 

  77. Clark IA, Ilschner S, MacMicking JD, Cowden WB (1990) TNF and Plasmodium berghei ANKA-induced cerebral malaria. Immunol Lett 25(1–3):195–198. https://doi.org/10.1016/0165-2478(90)90114-6

    Article  CAS  PubMed  Google Scholar 

  78. Wilson C, Nunez MT, Gonzalez-Billault C (2015) Contribution of NADPH oxidase to the establishment of hippocampal neuronal polarity in culture. J Cell Sci 128(16):2989–2995. https://doi.org/10.1242/jcs.168567

    Article  CAS  PubMed  Google Scholar 

  79. Tejada-Simon MV, Serrano F, Villasana LE, Kanterewicz BI, Wu GY, Quinn MT, Klann E (2005) Synaptic localization of a functional NADPH oxidase in the mouse hippocampus. Mol Cell Neurosci 29(1):97–106. https://doi.org/10.1016/j.mcn.2005.01.007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Fischer R, Maier O (2015) Interrelation of oxidative stress and inflammation in neurodegenerative disease: role of TNF. Oxid Med Cell Longev 2015:610813. https://doi.org/10.1155/2015/610813

  81. Head E (2009) Oxidative damage and cognitive dysfunction: antioxidant treatments to promote healthy brain aging. Neurochem Res 34(4):670–678. https://doi.org/10.1007/s11064-008-9808-4

    Article  CAS  PubMed  Google Scholar 

  82. Pratico D, Clark CM, Liun F, Rokach J, Lee VY, Trojanowski JQ (2002) Increase of brain oxidative stress in mild cognitive impairment: a possible predictor of Alzheimer disease. Arch Neurol 59(6):972–976. https://doi.org/10.1001/archneur.59.6.972

    Article  PubMed  Google Scholar 

  83. Agostinho P, Cunha RA, Oliveira C (2010) Neuroinflammation, oxidative stress and the pathogenesis of Alzheimer’s disease. Curr Pharm Des 16(25):2766–2778. https://doi.org/10.2174/138161210793176572

    Article  CAS  PubMed  Google Scholar 

  84. Solleiro-Villavicencio H, Rivas-Arancibia S (2018) Effect of chronic oxidative stress on neuroinflammatory response mediated by CD4(+)T cells in neurodegenerative diseases. Front Cell Neurosci 12:114. https://doi.org/10.3389/fncel.2018.00114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Medana IM, Turner GD (2006) Human cerebral malaria and the blood-brain barrier. Int J Parasitol 36(5):555–568. https://doi.org/10.1016/j.ijpara.2006.02.004

    Article  CAS  PubMed  Google Scholar 

  86. Gay F, Zougbede S, N’Dilimabaka N, Rebollo A, Mazier D, Moreno A (2012) Cerebral malaria: what is known and what is on research. Rev Neurol 168(3):239–256. https://doi.org/10.1016/j.neurol.2012.01.582

    Article  CAS  PubMed  Google Scholar 

  87. Cabrales P, Martins YC, Ong PK, Zanini GM, Frangos JA, Carvalho LJ (2013) Cerebral tissue oxygenation impairment during experimental cerebral malaria. Virulence 4(8):686–697. https://doi.org/10.4161/viru.26348

    Article  PubMed  PubMed Central  Google Scholar 

  88. Lou J, Lucas R, Grau GE (2001) Pathogenesis of cerebral malaria: recent experimental data and possible applications for humans. Clin Microbiol Rev 14 (4):810–820, table of contents. https://doi.org/10.1128/CMR.14.4.810-820.2001

  89. Ghazanfari N, Mueller SN, Heath WR (2018) Cerebral malaria in mouse and man. Front Immunol 9:2016. https://doi.org/10.3389/fimmu.2018.02016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Schiess N, Villabona-Rueda A, Cottier KE, Huether K, Chipeta J, Stins MF (2020) Pathophysiology and neurologic sequelae of cerebral malaria. Malar J 19(1):266. https://doi.org/10.1186/s12936-020-03336-z

    Article  PubMed  PubMed Central  Google Scholar 

  91. Yuan G, Khan SA, Luo W, Nanduri J, Semenza GL, Prabhakar NR (2011) Hypoxia-inducible factor 1 mediates increased expression of NADPH oxidase-2 in response to intermittent hypoxia. J Cell Physiol 226(11):2925–2933. https://doi.org/10.1002/jcp.22640

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Nanduri J, Vaddi DR, Khan SA, Wang N, Makarenko V, Semenza GL, Prabhakar NR (2015) HIF-1alpha activation by intermittent hypoxia requires NADPH oxidase stimulation by xanthine oxidase. PLoS ONE 10(3):e0119762. https://doi.org/10.1371/journal.pone.0119762

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Di Filippo M, de Iure A, Giampa C, Chiasserini D, Tozzi A, Orvietani PL, Ghiglieri V, Tantucci M, Durante V, Quiroga-Varela A, Mancini A, Costa C, Sarchielli P, Fusco FR, Calabresi P (2016) Persistent activation of microglia and NADPH oxidase [corrected] drive hippocampal dysfunction in experimental multiple sclerosis. Sci Rep 6:20926. https://doi.org/10.1038/srep20926

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Ma MW, Wang J, Zhang Q, Wang R, Dhandapani KM, Vadlamudi RK, Brann DW (2017) NADPH oxidase in brain injury and neurodegenerative disorders. Mol Neurodegener 12(1):7. https://doi.org/10.1186/s13024-017-0150-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Ansari MA, Scheff SW (2011) NADPH-oxidase activation and cognition in Alzheimer disease progression. Free Radical Biol Med 51(1):171–178. https://doi.org/10.1016/j.freeradbiomed.2011.03.025

    Article  CAS  Google Scholar 

  96. Valencia A, Sapp E, Kimm JS, McClory H, Reeves PB, Alexander J, Ansong KA, Masso N, Frosch MP, Kegel KB, Li X, DiFiglia M (2013) Elevated NADPH oxidase activity contributes to oxidative stress and cell death in Huntington’s disease. Hum Mol Genet 22(6):1112–1131. https://doi.org/10.1093/hmg/dds516

    Article  CAS  PubMed  Google Scholar 

  97. Wu DC, Re DB, Nagai M, Ischiropoulos H, Przedborski S (2006) The inflammatory NADPH oxidase enzyme modulates motor neuron degeneration in amyotrophic lateral sclerosis mice. Proc Natl Acad Sci USA 103(32):12132–12137. https://doi.org/10.1073/pnas.0603670103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Belarbi K, Cuvelier E, Destee A, Gressier B, Chartier-Harlin MC (2017) NADPH oxidases in Parkinson’s disease: a systematic review. Mol Neurodegener 12(1):84. https://doi.org/10.1186/s13024-017-0225-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Ebmeier KP, Calder SA, Crawford JR, Stewart L, Besson JA, Mutch WJ (1990) Parkinson’s disease in Aberdeen: survival after 3.5 years. Acta Neurol Scand 81(4):294–299. https://doi.org/10.1111/j.1600-0404.1990.tb01558.x

    Article  CAS  PubMed  Google Scholar 

  100. Steenland K, MacNeil J, Seals R, Levey A (2010) Factors affecting survival of patients with neurodegenerative disease. Neuroepidemiology 35(1):28–35. https://doi.org/10.1159/000306055

    Article  PubMed  PubMed Central  Google Scholar 

  101. Chen X, Chen D, Li Q, Wu S, Pan J, Liao Y, Zheng X, Zeng W (2021) Dexmedetomidine alleviates hypoxia-induced synaptic loss and cognitive impairment via inhibition of microglial NOX2 activation in the hippocampus of neonatal rats. Oxid Med Cell Longev 2021:6643171. https://doi.org/10.1155/2021/6643171

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Hernandes MS, D’Avila JC, Trevelin SC, Reis PA, Kinjo ER, Lopes LR, Castro-Faria-Neto HC, Cunha FQ, Britto LR, Bozza FA (2014) The role of Nox2-derived ROS in the development of cognitive impairment after sepsis. J Neuroinflammation 11:36. https://doi.org/10.1186/1742-2094-11-36

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Francischetti IM, Gordon E, Bizzarro B, Gera N, Andrade BB, Oliveira F, Ma D, Assumpcao TC, Ribeiro JM, Pena M, Qi CF, Diouf A, Moretz SE, Long CA, Ackerman HC, Pierce SK, Sa-Nunes A, Waisberg M (2014) Tempol, an intracellular antioxidant, inhibits tissue factor expression, attenuates dendritic cell function, and is partially protective in a murine model of cerebral malaria. PLoS ONE 9(2):e87140. https://doi.org/10.1371/journal.pone.0087140

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Sanni LA, Fu S, Dean RT, Bloomfield G, Stocker R, Chaudhri G, Dinauer MC, Hunt NH (1999) Are reactive oxygen species involved in the pathogenesis of murine cerebral malaria? J Infect Dis 179(1):217–222. https://doi.org/10.1086/314552

    Article  CAS  PubMed  Google Scholar 

  105. Potter SM, Mitchell AJ, Cowden WB, Sanni LA, Dinauer M, de Haan JB, Hunt NH (2005) Phagocyte-derived reactive oxygen species do not influence the progression of murine blood-stage malaria infections. Infect Immun 73(8):4941–4947. https://doi.org/10.1128/IAI.73.8.4941-4947.2005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Das D, Phillips C, Lin B, Mojabi F, Akif Baktir M, Dang V, Ponnusamy R, Salehi A (2015) Assessment of dendritic arborization in the dentate gyrus of the hippocampal region in mice. Journal of visualized experiments : JoVE (97).https://doi.org/10.3791/52371

  107. Wang S, Tanzi RE, Li A (2019) Quantitative analysis of neuronal dendritic arborization complexity in Drosophila. Journal of visualized experiments : JoVE (143). https://doi.org/10.3791/57139

  108. Sarkar T, Patro N, Patro IK (2020) Neuronal changes and cognitive deficits in a multi-hit rat model following cumulative impact of early life stressors. Biology open 9 (9). https://doi.org/10.1242/bio.054130

  109. Moodley KK, Chan D (2014) The hippocampus in neurodegenerative disease. Front Neurol Neurosci 34:95–108. https://doi.org/10.1159/000356430

    Article  CAS  PubMed  Google Scholar 

  110. Huttenrauch M, Brauss A, Kurdakova A, Borgers H, Klinker F, Liebetanz D, Salinas-Riester G, Wiltfang J, Klafki HW, Wirths O (2016) Physical activity delays hippocampal neurodegeneration and rescues memory deficits in an Alzheimer disease mouse model. Transl Psychiatry 6:e800. https://doi.org/10.1038/tp.2016.65

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Investigators M-EN (2018) Early childhood cognitive development is affected by interactions among illness, diet, enteropathogens and the home environment: findings from the MAL-ED birth cohort study. BMJ Glob Health 3(4):e000752. https://doi.org/10.1136/bmjgh-2018-000752

    Article  Google Scholar 

  112. Kihara M, Carter JA, Holding PA, Vargha-Khadem F, Scott RC, Idro R, Fegan GW, de Haan M, Neville BG, Newton CR (2009) Impaired everyday memory associated with encephalopathy of severe malaria: the role of seizures and hippocampal damage. Malar J 8:273. https://doi.org/10.1186/1475-2875-8-273

    Article  PubMed  PubMed Central  Google Scholar 

  113. Langfitt JT, McDermott MP, Brim R, Mboma S, Potchen MJ, Kampondeni SD, Seydel KB, Semrud-Clikeman M, Taylor TE (2019) Neurodevelopmental impairments 1 year after cerebral malaria. Pediatrics 143 (2). https://doi.org/10.1542/peds.2018-1026

  114. Idro R, Jenkins NE, Newton CR (2005) Pathogenesis, clinical features, and neurological outcome of cerebral malaria. The Lancet Neurology 4(12):827–840. https://doi.org/10.1016/S1474-4422(05)70247-7

    Article  PubMed  Google Scholar 

  115. Lillemoe K, Brewington D, Lord A, Czeisler B, Lewis A, Kurzweil A (2019) Teaching NeuroImages: hippocampal sclerosis in cerebral malaria. Neurology 93(1):e112–e113. https://doi.org/10.1212/WNL.0000000000007725

    Article  PubMed  Google Scholar 

  116. Kuriakose M, Younger D, Ravula AR, Alay E, Rama Rao KV, Chandra N (2019) Synergistic role of oxidative stress and blood-brain barrier permeability as injury mechanisms in the acute pathophysiology of blast-induced neurotrauma. Sci Rep 9(1):7717. https://doi.org/10.1038/s41598-019-44147-w

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Casas AI, Geuss E, Kleikers PWM, Mencl S, Herrmann AM, Buendia I, Egea J, Meuth SG, Lopez MG, Kleinschnitz C, Schmidt H (2017) NOX4-dependent neuronal autotoxicity and BBB breakdown explain the superior sensitivity of the brain to ischemic damage. Proc Natl Acad Sci USA 114(46):12315–12320. https://doi.org/10.1073/pnas.1705034114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Casas AI, Kleikers PW, Geuss E, Langhauser F, Adler T, Busch DH, Gailus-Durner V, de Angelis MH, Egea J, Lopez MG, Kleinschnitz C, Schmidt HH (2019) Calcium-dependent blood-brain barrier breakdown by NOX5 limits postreperfusion benefit in stroke. J Clin Investig 129(4):1772–1778. https://doi.org/10.1172/JCI124283

    Article  PubMed  PubMed Central  Google Scholar 

  119. John CC, Kutamba E, Mugarura K, Opoka RO (2010) Adjunctive therapy for cerebral malaria and other severe forms of Plasmodium falciparum malaria. Expert Rev Anti Infect Ther 8(9):997–1008. https://doi.org/10.1586/eri.10.90

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Varo R, Crowley VM, Sitoe A, Madrid L, Serghides L, Kain KC, Bassat Q (2018) Adjunctive therapy for severe malaria: a review and critical appraisal. Malar J 17(1):47. https://doi.org/10.1186/s12936-018-2195-7

    Article  PubMed  PubMed Central  Google Scholar 

  121. Jackman KA, Miller AA, De Silva TM, Crack PJ, Drummond GR, Sobey CG (2009) Reduction of cerebral infarct volume by apocynin requires pretreatment and is absent in Nox2-deficient mice. Br J Pharmacol 156(4):680–688. https://doi.org/10.1111/j.1476-5381.2008.00073.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Paterniti I, Galuppo M, Mazzon E, Impellizzeri D, Esposito E, Bramanti P, Cuzzocrea S (2010) Protective effects of apocynin, an inhibitor of NADPH oxidase activity, in splanchnic artery occlusion and reperfusion. J Leukoc Biol 88(5):993–1003. https://doi.org/10.1189/jlb.0610322

    Article  CAS  PubMed  Google Scholar 

  123. Tang XN, Cairns B, Cairns N, Yenari MA (2008) Apocynin improves outcome in experimental stroke with a narrow dose range. Neuroscience 154(2):556–562. https://doi.org/10.1016/j.neuroscience.2008.03.090

    Article  CAS  PubMed  Google Scholar 

  124. Choi BY, Jang BG, Kim JH, Lee BE, Sohn M, Song HK, Suh SW (2012) Prevention of traumatic brain injury-induced neuronal death by inhibition of NADPH oxidase activation. Brain Res 1481:49–58. https://doi.org/10.1016/j.brainres.2012.08.032

    Article  CAS  PubMed  Google Scholar 

  125. Lu XY, Wang HD, Xu JG, Ding K, Li T (2014) NADPH oxidase inhibition improves neurological outcome in experimental traumatic brain injury. Neurochem Int 69:14–19. https://doi.org/10.1016/j.neuint.2014.02.006

    Article  CAS  PubMed  Google Scholar 

  126. Feng Y, Cui C, Liu X, Wu Q, Hu F, Zhang H, Ma Z, Wang L (2017) Protective role of apocynin via suppression of neuronal autophagy and TLR4/NF-kappaB signaling pathway in a rat model of traumatic brain injury. Neurochem Res 42(11):3296–3309. https://doi.org/10.1007/s11064-017-2372-z

    Article  CAS  PubMed  Google Scholar 

  127. Song SX, Gao JL, Wang KJ, Li R, Tian YX, Wei JQ, Cui JZ (2013) Attenuation of brain edema and spatial learning de fi cits by the inhibition of NADPH oxidase activity using apocynin following diffuse traumatic brain injury in rats. Mol Med Rep 7(1):327–331. https://doi.org/10.3892/mmr.2012.1147

    Article  CAS  PubMed  Google Scholar 

  128. Parastan RH, Christopher M, Torrys YS, Mahadewa TGB (2020) Combined therapy potential of apocynin and tert-butylhydroquinone as a therapeutic agent to prevent secondary progression to traumatic brain injury. Asian J Neurosurg 15(1):10–15. https://doi.org/10.4103/ajns.AJNS_231_19

    Article  PubMed  PubMed Central  Google Scholar 

  129. Lee SH, Choi BY, Kho AR, Jeong JH, Hong DK, Kang DH, Kang BS, Song HK, Choi HC, Suh SW (2018) Inhibition of NADPH oxidase activation by apocynin rescues seizure-induced reduction of adult hippocampal neurogenesis. Int J Mol Sci 19 (10). https://doi.org/10.3390/ijms19103087

  130. Lu BW, Baum L, So KF, Chiu K, Xie LK (2019) More than anti-malarial agents: therapeutic potential of artemisinins in neurodegeneration. Neural Regen Res 14(9):1494–1498. https://doi.org/10.4103/1673-5374.255960

    Article  PubMed  PubMed Central  Google Scholar 

  131. Li S, Zhao X, Lazarovici P, Zheng W (2019) Artemether activation of AMPK/GSK3beta(ser9)/Nrf2 Signaling confers neuroprotection towards beta-amyloid-induced neurotoxicity in 3xTg Alzheimer’s mouse model. Oxid Med Cell Longev 2019:1862437. https://doi.org/10.1155/2019/1862437

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Okorji UP, Velagapudi R, El-Bakoush A, Fiebich BL, Olajide OA (2016) Antimalarial drug artemether inhibits neuroinflammation in BV2 microglia through Nrf2-dependent mechanisms. Mol Neurobiol 53(9):6426–6443. https://doi.org/10.1007/s12035-015-9543-1

    Article  CAS  PubMed  Google Scholar 

  133. Akinlolu AA, Shokunbi MT (2010) Neurotoxic effects of 25mg/kg/bodyweight of artemether on the histology of the trapezoid nuclei and behavioural functions in adult male Wistar rats. Acta Histochem 112(2):193–198. https://doi.org/10.1016/j.acthis.2008.09.006

    Article  CAS  PubMed  Google Scholar 

  134. Kasaragod VB, Hausrat TJ, Schaefer N, Kuhn M, Christensen NR, Tessmer I, Maric HM, Madsen KL, Sotriffer C, Villmann C, Kneussel M, Schindelin H (2019) Elucidating the molecular basis for inhibitory neurotransmission regulation by artemisinins. Neuron 101(4):673-689 e611. https://doi.org/10.1016/j.neuron.2019.01.001

    Article  CAS  PubMed  Google Scholar 

  135. Wang HL, Xiang YT, Li QY, Wang XP, Liu ZC, Hao SS, Liu X, Liu LL, Wang GH, Wang DG, Zhang PA, Bao AY, Chiu HF, Ungvari GS, Lai KY, Buchanan RW (2014) The effect of artemether on psychotic symptoms and cognitive impairment in first-episode, antipsychotic drug-naive persons with schizophrenia seropositive to Toxoplasma gondii. J Psychiatr Res 53:119–124. https://doi.org/10.1016/j.jpsychires.2014.02.016

    Article  CAS  PubMed  Google Scholar 

  136. Zhao S, Duan H, Yang Y, Yan X, Fan K (2019) Fenozyme protects the integrity of the blood-brain barrier against experimental cerebral malaria. Nano Lett 19(12):8887–8895. https://doi.org/10.1021/acs.nanolett.9b03774

    Article  CAS  PubMed  Google Scholar 

  137. Murphy SC, Breman JG (2001) Gaps in the childhood malaria burden in Africa: cerebral malaria, neurological sequelae, anemia, respiratory distress, hypoglycemia, and complications of pregnancy. Am J Trop Med Hyg 64(1–2 Suppl):57–67. https://doi.org/10.4269/ajtmh.2001.64.57

    Article  CAS  PubMed  Google Scholar 

  138. Oluwayemi IO, Brown BJ, Oyedeji OA, Oluwayemi MA (2013) Neurological sequelae in survivors of cerebral malaria. Pan Afr Med J 15:88. https://doi.org/10.11604/pamj.2013.15.88.1897

    Article  PubMed  PubMed Central  Google Scholar 

  139. Antoine T, Fisher N, Amewu R, O’Neill PM, Ward SA, Biagini GA (2014) Rapid kill of malaria parasites by artemisinin and semi-synthetic endoperoxides involves ROS-dependent depolarization of the membrane potential. J Antimicrob Chemother 69(4):1005–1016. https://doi.org/10.1093/jac/dkt486

    Article  CAS  PubMed  Google Scholar 

  140. Kavishe RA, Koenderink JB, Alifrangis M (2017) Oxidative stress in malaria and artemisinin combination therapy: pros and cons. FEBS J 284(16):2579–2591. https://doi.org/10.1111/febs.14097

    Article  CAS  PubMed  Google Scholar 

  141. Gopalakrishnan AM, Kumar N (2015) Antimalarial action of artesunate involves DNA damage mediated by reactive oxygen species. Antimicrob Agents Chemother 59(1):317–325. https://doi.org/10.1128/AAC.03663-14

    Article  CAS  PubMed  Google Scholar 

  142. Kulkarni VA, Firestein BL (2012) The dendritic tree and brain disorders. Mol Cell Neurosci 50(1):10–20. https://doi.org/10.1016/j.mcn.2012.03.005

    Article  CAS  PubMed  Google Scholar 

  143. Lopez-Domenech G, Higgs NF, Vaccaro V, Ros H, Arancibia-Carcamo IL, MacAskill AF, Kittler JT (2016) Loss of dendritic complexity precedes neurodegeneration in a mouse model with disrupted mitochondrial distribution in mature dendrites. Cell Rep 17(2):317–327. https://doi.org/10.1016/j.celrep.2016.09.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Kweon JH, Kim S, Lee SB (2017) The cellular basis of dendrite pathology in neurodegenerative diseases. BMB Rep 50(1):5–11. https://doi.org/10.5483/bmbrep.2017.50.1.131

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Tang FL, Zhao L, Zhao Y, Sun D, Zhu XJ, Mei L, Xiong WC (2020) Coupling of terminal differentiation deficit with neurodegenerative pathology in Vps35-deficient pyramidal neurons. Cell Death Differ 27(7):2099–2116. https://doi.org/10.1038/s41418-019-0487-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Kapoor M, Sharma N, Sandhir R, Nehru B (2018) Effect of the NADPH oxidase inhibitor apocynin on ischemia-reperfusion hippocampus injury in rat brain. Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie 97:458–472. https://doi.org/10.1016/j.biopha.2017.10.123

  147. Bartsch T, Dohring J, Reuter S, Finke C, Rohr A, Brauer H, Deuschl G, Jansen O (2015) Selective neuronal vulnerability of human hippocampal CA1 neurons: lesion evolution, temporal course, and pattern of hippocampal damage in diffusion-weighted MR imaging. Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism 35 (11):1836-1845. https://doi.org/10.1038/jcbfm.2015.137

  148. Dang DK, Shin EJ, Nam Y, Ryoo S, Jeong JH, Jang CG, Nabeshima T, Hong JS, Kim HC (2016) Apocynin prevents mitochondrial burdens, microglial activation, and pro-apoptosis induced by a toxic dose of methamphetamine in the striatum of mice via inhibition of p47phox activation by ERK. J Neuroinflammation 13:12. https://doi.org/10.1186/s12974-016-0478-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Merlini M, Rafalski VA, Rios Coronado PE, Gill TM, Ellisman M, Muthukumar G, Subramanian KS, Ryu JK, Syme CA, Davalos D, Seeley WW, Mucke L, Nelson RB, Akassoglou K (2019) Fibrinogen induces microglia-mediated spine elimination and cognitive impairment in an Alzheimer’s disease model. Neuron 101(6):1099-1108 e1096. https://doi.org/10.1016/j.neuron.2019.01.014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Hou L, Sun F, Huang R, Sun W, Zhang D, Wang Q (2019) Inhibition of NADPH oxidase by apocynin prevents learning and memory deficits in a mouse Parkinson’s disease model. Redox Biol 22:101134. https://doi.org/10.1016/j.redox.2019.101134

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Olumese PE, Bjorkman A, Gbadegesin RA, Adeyemo AA, Walker O (1999) Comparative efficacy of intramuscular artemether and intravenous quinine in Nigerian children with cerebral malaria. Acta Trop 73(3):231–236. https://doi.org/10.1016/s0001-706x(99)00031-5

    Article  CAS  PubMed  Google Scholar 

  152. van Hensbroek MB, Palmer A, Jaffar S, Schneider G, Kwiatkowski D (1997) Residual neurologic sequelae after childhood cerebral malaria. J Pediatr 131(1 Pt 1):125–129. https://doi.org/10.1016/s0022-3476(97)70135-5

    Article  PubMed  Google Scholar 

  153. Walker O, Salako LA, Omokhodion SI, Sowunmi A (1993) An open randomized comparative study of intramuscular artemether and intravenous quinine in cerebral malaria in children. Trans R Soc Trop Med Hyg 87(5):564–566. https://doi.org/10.1016/0035-9203(93)90092-5

    Article  CAS  PubMed  Google Scholar 

  154. Bitta MA, Kariuki SM, Mwita C, Gwer S, Mwai L, Newton C (2017) Antimalarial drugs and the prevalence of mental and neurological manifestations: a systematic review and meta-analysis. Wellcome Open Res 2:13. https://doi.org/10.12688/wellcomeopenres.10658.2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Dranka BP, Gifford A, McAllister D, Zielonka J, Joseph J, O’Hara CL, Stucky CL, Kanthasamy AG, Kalyanaraman B (2014) A novel mitochondrially-targeted apocynin derivative prevents hyposmia and loss of motor function in the leucine-rich repeat kinase 2 (LRRK2(R1441G)) transgenic mouse model of Parkinson’s disease. Neurosci Lett 583:159–164. https://doi.org/10.1016/j.neulet.2014.09.042

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Choi BY, Kim JH, Kho AR, Kim IY, Lee SH, Lee BE, Choi E, Sohn M, Stevenson M, Chung TN, Kauppinen TM, Suh SW (2015) Inhibition of NADPH oxidase activation reduces EAE-induced white matter damage in mice. J Neuroinflammation 12:104. https://doi.org/10.1186/s12974-015-0325-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Pioli EY, Gaskill BN, Gilmour G, Tricklebank MD, Dix SL, Bannerman D, Garner JP (2014) An automated maze task for assessing hippocampus-sensitive memory in mice. Behav Brain Res 261:249–257. https://doi.org/10.1016/j.bbr.2013.12.009

    Article  PubMed  PubMed Central  Google Scholar 

  158. Sivakumaran MH, Mackenzie AK, Callan IR, Ainge JA, O’Connor AR (2018) The discrimination ratio derived from novel object recognition tasks as a measure of recognition memory sensitivity, not bias. Sci Rep 8(1):11579. https://doi.org/10.1038/s41598-018-30030-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Van Den Herrewegen Y, Denewet L, Buckinx A, Albertini G, Van Eeckhaut A, Smolders I, De Bundel D (2019) The Barnes maze task reveals specific impairment of spatial learning strategy in the intrahippocampal kainic acid model for temporal lobe epilepsy. Neurochem Res 44(3):600–608. https://doi.org/10.1007/s11064-018-2610-z

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank Dr. Nakka Venkata Prasuja for sparing apocynin.

Funding

The authors wish to recognize the financial assistance from the Ministry of Science and Technology, Department of Science and Technology, Govt. of India, DST-CSRI file no. SR/CSRI/196/2016; DST-SERB Core grant, file no. CRG/2020/005021; and Department of Biotechnology, Govt. of India, BT/PR17686/MED/30/1664/2016, and financial support to the University of Hyderabad-IoE by the Ministry of Education, Govt. of India (F11/9/2019-U3(A), and INSPIRE student Fellowship (DST/INSPIRE Fellowship/2013/710), Government of India.

Author information

Authors and Affiliations

Authors

Contributions

SPK designed the hypothesis and experimental methodology. PPB guided and assisted with editing the manuscript.

Corresponding author

Correspondence to Phanithi Prakash Babu.

Ethics declarations

Ethics Approval

All the animal experiments were conducted as per the guidelines of the Committee for the Purpose of Control and Supervision of Experimental Animals (CPCSEA), Government of India (Registration No: 48/1999/CPCSEA), after approval from the Institutional Animal Ethics Committee (UH/IAEC/PPB2014-I/68), University of Hyderabad, India.

Consent to Participate

Not applicable.

Consent for Publication

The authors declare that no human subjects were involved in the study.

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (MP4 27533 KB)

Supplementary file2 (M4V 16719 KB)

Supplementary file3 (M4V 10019 KB)

Supplementary file4 (M4V 14627 KB)

Supplementary file5 (M4V 20112 KB)

Supplementary file6 (M4V 8256 KB)

Supplementary file7 (MP4 8271 KB)

Supplementary file8 (MP4 3041 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, S.P., Babu, P.P. NADPH Oxidase: a Possible Therapeutic Target for Cognitive Impairment in Experimental Cerebral Malaria. Mol Neurobiol 59, 800–820 (2022). https://doi.org/10.1007/s12035-021-02598-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-021-02598-1

Keywords

Navigation