World Health Organization (WHO). Novel coronavirus (2019-nCoV) situation reports
Yang R, Gui X, Xiong Y (2020) Patients with respiratory symptoms are at greater risk of COVID-19 transmission. Respir Med 165:105935
PubMed
PubMed Central
Google Scholar
Pollard CA, Morran MP, Nestor-Kalinoski AL (2020) The COVID-19 pandemic: a global health crisis. Physiol Genomics 52:549–557
CAS
PubMed
PubMed Central
Google Scholar
Zhang L, Peres TG, Silva MVF, Camargos P (2020) What we know so far about Coronavirus Disease 2019 in children: a meta-analysis of 551 laboratory-confirmed cases. Pediatr Pulmonol 55:2115–2127
PubMed
Google Scholar
Carsana L, Sonzogni A, Nasr A, Rossi RS, Pellegrinelli A, Zerbi P, Rech R, Colombo R, et al (2020) Pulmonary post-mortem findings in a series of COVID-19 cases from Northern Italy: a two-centre descriptive study. Lancet Infect Dis 20:1135–1140
CAS
PubMed
PubMed Central
Google Scholar
Cataldi M, Pignataro G, Taglialatela M (2020) Neurobiology of coronaviruses: potential relevance for COVID-19. Neurobiol Dis 143:105007
CAS
PubMed
PubMed Central
Google Scholar
Iadecola C, Anrather J, Kamel H (2020) Effects of COVID-19 on the nervous system. Cell 183:16-27.e1
CAS
PubMed
PubMed Central
Google Scholar
Mao L, Jin H, Wang M, Hu Y, Chen S, He Q, Chang J, Hong C, et al (2020) Neurologic manifestations of hospitalized patients with coronavirus disease 2019 in Wuhan. China JAMA Neurol 77:683–690
PubMed
Google Scholar
Buzhdygan TP, DeOre BJ, Baldwin-Leclair A, McGary H, Razmpour R, Galie PA, Potula R, Andrews AM, et al (2020) The SARS-CoV-2 spike protein alters barrier function in 2D static and 3D microfluidic in vitro models of the human blood-brain barrier. Neurobiol Dis 146:105131
CAS
PubMed
PubMed Central
Google Scholar
Yachou Y, El Idrissi A, Belapasov V, Ait Benali S (2020) Neuroinvasion, neurotropic, and neuroinflammatory events of SARS-CoV-2: understanding the neurological manifestations in COVID-19 patients. Neurol Sci 41:2657–2669
PubMed
Google Scholar
Bodnar B, Patel K, Ho W, Luo JJ, Hu W (2021) Cellular mechanisms underlying neurological/neuropsychiatric manifestations of COVID-19. J Med Virol 93:1983–1998
CAS
PubMed
Google Scholar
Colonna M, Butovsky O (2017) Microglia function in the central nervous system during health and neurodegeneration. Annu Rev Immunol 35:441–468
CAS
PubMed
PubMed Central
Google Scholar
Nimmerjahn A, Kirchhoff F, Helmchen F (2005) Resting microglial cells are highly dynamic surveillants of brain parenchyma in vivo. Science 308:1314–1318
CAS
PubMed
Google Scholar
Cartier N, Lewis CA, Zhang R, Rossi FM (2014) The role of microglia in human disease: therapeutic tool or target? Acta Neuropathol 128:363–380
CAS
PubMed
PubMed Central
Google Scholar
Du L, Zhang Y, Chen Y, Zhu J, Yang Y, Zhang HL (2017) Role of microglia in neurological disorders and their potentials as a therapeutic target. Mol Neurobiol 54:7567–7584
CAS
PubMed
Google Scholar
Mahad DJ, Ransohoff RM (2003) The role of MCP-1 (CCL2) and CCR2 in multiple sclerosis and experimental autoimmune encephalomyelitis (EAE). Semin Immunol 15:23–32
CAS
PubMed
Google Scholar
Loane DJ, Byrnes KR (2010) Role of microglia in neurotrauma. Neurotherapeutics 7:366–377
CAS
PubMed
PubMed Central
Google Scholar
Michell-Robinson MA, Touil H, Healy LM, Owen DR, Durafourt BA, Bar-Or A, Antel JP, Moore CS (2015) Roles of microglia in brain development, tissue maintenance and repair. Brain J Neurol 138:1138–1159
Google Scholar
Jimenez S, Baglietto-Vargas D, Caballero C, Moreno-Gonzalez I, Torres M, Sanchez-Varo R, Ruano D, Vizuete M, et al (2008) Inflammatory response in the hippocampus of PS1M146L/APP751SL mouse model of Alzheimer’s disease: age-dependent switch in the microglial phenotype from alternative to classic. J Neurosci 28:11650–11661
CAS
PubMed
PubMed Central
Google Scholar
Varnum MM, Ikezu T (2012) The classification of microglial activation phenotypes on neurodegeneration and regeneration in Alzheimer’s disease brain. Arch Immunol Ther Exp 60:251–266
CAS
Google Scholar
Liao B, Zhao W, Beers DR, Henkel JS, Appel SH (2012) Transformation from a neuroprotective to a neurotoxic microglial phenotype in a mouse model of ALS. Exp Neurol 237:147–152
CAS
PubMed
PubMed Central
Google Scholar
Cherry JD, Olschowka JA, O’Banion MK (2014) Neuroinflammation and M2 microglia: the good, the bad, and the inflamed. J Neuroinflammation 11:98
PubMed
PubMed Central
Google Scholar
Gerhard A, Pavese N, Hotton G, Turkheimer F, Es M, Hammers A, Eggert K, Oertel W et al (2006) In vivo imaging of microglial activation with [11C](R)-PK11195 PET in idiopathic Parkinson’s disease. Neurobiol Dis 21:404–412
CAS
PubMed
Google Scholar
Mondelli V, Vernon AC, Turkheimer F, Dazzan P, Pariante CM (2017) Brain microglia in psychiatric disorders. Lancet Psychiatry 4:563–572
PubMed
Google Scholar
Ikawa D, Makinodan M, Iwata K et al (2017) Microglia-derived neuregulin expression in psychiatric disorders. Brain Behav Immun 61:375–385
CAS
PubMed
Google Scholar
Dowlati Y, Herrmann N, Swardfager W, Liu H, Sham L, Reim EK, Lanctôt KL (2010) A meta-analysis of cytokines in major depression. Biol Psychiatry 67:446–457
CAS
PubMed
Google Scholar
Frick LR, Williams K, Pittenger C (2013) Microglial dysregulation in psychiatric disease. Clin Dev Immunol 2013:608654
PubMed
PubMed Central
Google Scholar
Velagapudi R, Lepiarz I, El-Bakoush A, Katola FO, Bhatia H, Fiebich BL, Olajide OA (2019) Induction of autophagy and activation of SIRT-1 deacetylation mechanisms mediate neuroprotection by the pomegranate metabolite urolithin A in BV2 microglia and differentiated 3D human neural progenitor cells. Mol Nutr Food Res 63:e1801237
PubMed
Google Scholar
Olajide OA, Akande IS, da Silva Maia Bezerra Filho C, Lepiarz-Raba I, de Sousa DP (2020) Methyl 3,4,5-trimethoxycinnamate suppresses inflammation in RAW264.7 macrophages and blocks macrophage-adipocyte interaction. Inflammopharmacology 28:1315–1326
CAS
PubMed
PubMed Central
Google Scholar
Velagapudi R, Kosoko AM, Olajide OA (2019) Induction of neuroinflammation and neurotoxicity by synthetic hemozoin. Cell Mol Neurobiol 39:1187–1200
CAS
PubMed
PubMed Central
Google Scholar
Kandasamy M (2021) NF-κB signalling as a pharmacological target in COVID-19: potential roles for IKKβ inhibitors. Naunyn Schmiedebergs Arch Pharmacol 394:561–567
CAS
PubMed
PubMed Central
Google Scholar
Coll RC, Robertson AA, Chae JJ et al (2015) A small-molecule inhibitor of the NLRP3 inflammasome for the treatment of inflammatory diseases. Nat Med 21:248–255
CAS
PubMed
PubMed Central
Google Scholar
Lee JC, Kumar S, Griswold DE, Underwood DC, Votta BJ, Adams JL (2000) Inhibition of p38 MAP kinase as a therapeutic strategy. Immunopharmacology 47:185–201
CAS
PubMed
Google Scholar
Yamada M, Ichikawa T, Ii M, Sunamoto M, Itoh K, Tamura N, Kitazaki T (2005) Discovery of novel and potent small-molecule inhibitors of NO and cytokine production as antisepsis agents: synthesis and biological activity of alkyl 6-(N-substituted sulfamoyl)cyclohex-1-ene-1-carboxylate. J Med Chem 48:7457–7467
CAS
PubMed
Google Scholar
Takashima K, Matsunaga N, Yoshimatsu M, Hazeki K, Kaisho T, Uekata M, Hazeki O, Akira S, et al (2009) Analysis of binding site for the novel small-molecule TLR4 signal transduction inhibitor TAK-242 and its therapeutic effect on mouse sepsis model. Br J Pharmacol 157:1250–1262
CAS
PubMed
PubMed Central
Google Scholar
Walls AC, Park YJ, Tortorici MA, Wall A, McGuire AT, Veesler D (2020) Structure, function, and antigenicity of the SARS-CoV-2 spike glycoprotein. Cell 181:281-292.e6
CAS
PubMed
PubMed Central
Google Scholar
Duan L, Zheng Q, Zhang H, Niu Y, Lou Y, Wang H (2020) The SARS-CoV-2 spike glycoprotein biosynthesis, structure, function, and antigenicity: implications for the design of spike-based vaccine immunogens. Front Immunol 11:576622
CAS
PubMed
PubMed Central
Google Scholar
Moradian N, Gouravani M, Salehi MA, Heidari A, Shafeghat M, Hamblin MR, Rezaei N (2020) Cytokine release syndrome: inhibition of pro-inflammatory cytokines as a solution for reducing COVID-19 mortality. Eur Cytokine Netw 31:81–93
CAS
PubMed
Google Scholar
Hirawat R, Saifi MA, Godugu C (2021) Targeting inflammatory cytokine storm to fight against COVID-19 associated severe complications. Life Sci 267:118923
CAS
PubMed
Google Scholar
Yang L, Liu S, Liu J, Zhang Z, Wan X, Huang B, Chen Y, Zhang Y (2020) COVID-19: immunopathogenesis and immunotherapeutics. Signal Transduct Target Ther 5:128
CAS
PubMed
PubMed Central
Google Scholar
Olajide OA, Iwuanyanwu VU, Lepiarz-Raba I, Al-Hindawi AA (2021) Induction of exaggerated cytokine production in human peripheral blood mononuclear cells by a recombinant SARS-CoV-2 spike glycoprotein S1 and its inhibition by dexamethasone. Inflammation 44:1865–1877
CAS
PubMed
Google Scholar
Imai Y, Ibata I, Ito D, Ohsawa K, Kohsaka S (1996) A novel gene iba1 in the major histocompatibility complex class III region encoding an EF hand protein expressed in a monocytic lineage. Biochem Biophys Res Commun 224:855–862
CAS
PubMed
Google Scholar
Ito D, Imai Y, Ohsawa K, Nakajima K, Fukuuchi Y, Kohsaka S (1998) Microglia-specific localisation of a novel calcium binding protein, Iba1. Brain Res Mol Brain Res 57:1–9
CAS
PubMed
Google Scholar
Tripathi MK, Kartawy M, Amal H (2020) The role of nitric oxide in brain disorders: autism spectrum disorder and other psychiatric, neurological, and neurodegenerative disorders. Redox Biol 34:101567
CAS
PubMed
PubMed Central
Google Scholar
Kouli A, Camacho M, Allinson K, Williams-Gray CH (2020) Neuroinflammation and protein pathology in Parkinson’s disease dementia. Acta Neuropathol Commun 8:211
CAS
PubMed
PubMed Central
Google Scholar
Zhang J, He H, Qiao Y, Zhou T, He H, Yi S, Zhang L, Mo L, et al (2020) Priming of microglia with IFN-γ impairs adult hippocampal neurogenesis and leads to depression-like behaviors and cognitive defects. Glia 68:2674–2692
PubMed
Google Scholar
Patra T, Meyer K, Geerling L, Isbell TS, Hoft DF, Brien J, Pinto AK, Ray RB, et al (2020) SARS-CoV-2 spike protein promotes IL-6 trans-signaling by activation of angiotensin II receptor signaling in epithelial cells. PLoS Pathog 16:e1009128
CAS
PubMed
PubMed Central
Google Scholar
Freeman TL, Swartz TH (2020) Targeting the NLRP3 inflammasome in severe COVID-19. Front Immunol 11:1518
PubMed
PubMed Central
Google Scholar
Chang YS, Ko BH, Ju JC, Chang HH, Huang SH, Lin CW (2020) SARS unique domain (sud) of severe acute respiratory syndrome coronavirus induces NLRP3 inflammasome-dependent CXCL10-mediated pulmonary inflammation. Int J Mol Sci 21:3179
CAS
PubMed Central
Google Scholar
Rodrigues TS, de Sá KSG, Ishimoto AY et al (2021) Inflammasomes are activated in response to SARS-CoV-2 infection and are associated with COVID-19 severity in patients. J Exp Med 218:e20201707
CAS
PubMed
Google Scholar
Venegas C, Heneka MT (2017) Danger-associated molecular patterns in Alzheimer’s disease. J Leukoc Biol 101:87–98
CAS
PubMed
Google Scholar
Zhang Y, Zhao Y, Zhang J, Yang G (2020) Mechanisms of NLRP3 inflammasome activation: its role in the treatment of Alzheimer’s disease. Neurochem Res 45:2560–2572
CAS
PubMed
Google Scholar
Chang Y, Zhu J, Wang D et al (2020) NLRP3 inflammasome-mediated microglial pyroptosis is critically involved in the development of post-cardiac arrest brain injury. J Neuroinflammation 17:219
CAS
PubMed
PubMed Central
Google Scholar
DeDiego ML, Nieto-Torres JL, Regla-Nava JA et al (2014) Inhibition of NF-κB–mediated inflammation in severe acute respiratory syndrome coronavirus-infected mice increases survival. J Virol 88:913–924
PubMed
PubMed Central
Google Scholar
Kersse K, Bertrand MJ, Lamkanfi M, Vandenabeele P (2011) NOD-like receptors and the innate immune system: coping with danger, damage and death. Cytokine Growth Factor Rev 22:257–276
CAS
PubMed
Google Scholar
Shirato K, Kizaki T (2021) SARS-CoV-2 spike protein S1 subunit induces pro-inflammatory responses via toll-like receptor 4 signaling in murine and human macrophages. Heliyon 7:e06187
PubMed
PubMed Central
Google Scholar
Zhao Y, Kuang M, Li J, Zhu L, Jia Z, Guo X, Hu Y, Kong J, et al (2021) SARS-CoV-2 spike protein interacts with and activates TLR41. Cell Res 31:818–820
PubMed
PubMed Central
Google Scholar