Skip to main content

Advertisement

Log in

Fluoxetine Potentiates Oral Methylphenidate-Induced Gene Regulation in the Rat Striatum

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Methylphenidate (MP) is combined with selective serotonin reuptake inhibitors (SSRIs) such as fluoxetine (FLX) to treat various disorders. MP, a dopamine reuptake inhibitor, helps manage attention-deficit hyperactivity disorder (ADHD) and is abused as a cognitive enhancer; it has a reduced addiction liability. We showed that combining FLX (serotonin) with MP potentiates MP-induced gene regulation in the striatum. These studies used intraperitoneal drug administration, which is relevant for MP abuse. Clinically, MP and FLX are taken orally (slower bioavailability). Here, we investigated whether chronic oral administration of MP and FLX also altered striatal gene regulation. MP (30/60 mg/kg/day), FLX (20 mg/kg/day), and MP + FLX were administered in rats’ drinking water for 8 h/day over 4 weeks. We assessed the expression of dynorphin and substance P (both markers for striatal direct pathway neurons) and enkephalin (indirect pathway) by in situ hybridization histochemistry. Chronic oral MP alone produced a tendency for increased dynorphin and substance P expression and no changes in enkephalin expression. Oral FLX alone did not increase gene expression. In contrast, when given together, FLX greatly enhanced MP-induced expression of dynorphin and substance P and to a lesser degree enkephalin. Thus, FLX potentiated oral MP-induced gene regulation predominantly in direct pathway neurons, mimicking cocaine effects. The three functional domains of the striatum were differentially affected. MP + SSRI concomitant therapies are indicated in ADHD/depression comorbidity and co-exposure occurs with MP misuse as a cognitive enhancer by patients on SSRIs. Our findings indicate that MP + SSRI combinations, even given orally, may enhance addiction-related gene regulation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability

The data generated during the current study are available from the corresponding author on reasonable request.

Code Availability

Not applicable.

References

  1. Carlezon WAJ, Konradi C (2004) Understanding the neurobiological consequences of early exposure to psychotropic drugs: linking behavior with molecules. Neuropharmacology 47:47–60

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Carrey N, Wilkinson M (2011) A review of psychostimulant-induced neuroadaptation in developing animals. Neurosci Bull 27:197–214

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Marco EM, Adriani W, Ruocco LA, Canese R, Sadile AG, Laviola G (2011) Neurobehavioral adaptations to methylphenidate: the issue of early adolescent exposure. Neurosci Biobehav Rev 35:1722–1739

    Article  CAS  PubMed  Google Scholar 

  4. Van Waes V, Steiner H (2015) Fluoxetine and other SSRI antidepressants potentiate addiction-related gene regulation by psychostimulant medications. In: Pinna G (ed) Fluoxetine: pharmacology, mechanisms of action and potential side effects. Nova Science Publishers, Hauppauge, NY, pp 207–225

    Google Scholar 

  5. Iversen L (2006) Neurotransmitter transporters and their impact on the development of psychopharmacology. Br J Pharmacol 147(Suppl 1):S82-88

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Castle L, Aubert RE, Verbrugge RR, Khalid M, Epstein RS (2007) Trends in medication treatment for ADHD. J Atten Disord 10:335–342

    Article  PubMed  Google Scholar 

  7. Kollins SH (2008) ADHD, substance use disorders, and psychostimulant treatment: current literature and treatment guidelines. J Atten Disord 12:115–125

    Article  PubMed  Google Scholar 

  8. Swanson JM, Wigal TL, Volkow ND (2011) Contrast of medical and nonmedical use of stimulant drugs, basis for the distinction, and risk of addiction: comment on Smith and Farah (2011). Psychol Bull 137:742–748

    Article  PubMed  PubMed Central  Google Scholar 

  9. DSMMD, Diagnostic and statistical manual of mental disorders, fourth Edition. 2000, Washington, DC: American Psychiatric Association.

  10. SAMHSA (2015) Behavioral health trends in the United States: results from the 2014 national survey on drug use and health. NSDUH Series H-50, HHS Publication No (SMA) 15-4927 https://www.samhsa.gov/data/sites/default/files/NSDUH-FRR1-2014/NSDUH-FRR1-2014.pdf

  11. Benson K, Flory K, Humphreys KL, Lee SS (2015) Misuse of stimulant medication among college students: a comprehensive review and meta-analysis. Clin Child Fam Psychol Rev 18:50–76

    Article  PubMed  Google Scholar 

  12. Compton WM, Han B, Blanco C, Johnson K, Jones CM (2018) Prevalence and correlates of prescription stimulant use, misuse, use disorders, and motivations for misuse among adults in the United States. Am J Psychiatry 175:741–755

    Article  PubMed  PubMed Central  Google Scholar 

  13. White BP, Becker-Blease KA, Grace-Bishop K (2006) Stimulant medication use, misuse, and abuse in an undergraduate and graduate student sample. J Am Coll Health 54:261–268

    Article  PubMed  Google Scholar 

  14. Rushton JL, Whitmire JT (2001) Pediatric stimulant and selective serotonin reuptake inhibitor prescription trends: 1992 to 1998. Arch Pediatr Adolesc Med 155:560–565

    Article  CAS  PubMed  Google Scholar 

  15. Safer DJ, Zito JM, DosReis S (2003) Concomitant psychotropic medication for youths. Am J Psychiatry 160:438–449

    Article  PubMed  Google Scholar 

  16. Waxmonsky J (2003) Assessment and treatment of attention deficit hyperactivity disorder in children with comorbid psychiatric illness. Curr Opin Pediatr 15:476–482

    Article  PubMed  Google Scholar 

  17. Spencer TJ (2006) ADHD and comorbidity in childhood. J Clin Psychiatry 67(Suppl 8):27–31

    PubMed  Google Scholar 

  18. Nelson JC (2007) Augmentation strategies in the treatment of major depressive disorder. Recent findings and current status of augmentation strategies. CNS Spectr 12(Suppl 22):6–9

    PubMed  Google Scholar 

  19. Ishii M, Tatsuzawa Y, Yoshino A, Nomura S (2008) Serotonin syndrome induced by augmentation of SSRI with methylphenidate. Psychiatry Clin Neurosci 62:246

    Article  PubMed  Google Scholar 

  20. Ravindran AV, Kennedy SH, O’Donovan MC, Fallu A, Camacho F, Binder CE (2008) Osmotic-release oral system methylphenidate augmentation of antidepressant monotherapy in major depressive disorder: results of a double-blind, randomized, placebo-controlled trial. J Clin Psychiatry 69:87–94

    Article  CAS  PubMed  Google Scholar 

  21. Lavretsky H, Kim MD, Kumar A, Reynolds CF (2003) Combined treatment with methylphenidate and citalopram for accelerated response in the elderly: an open trial. J Clin Psychiatry 64:1410–1414

    Article  CAS  PubMed  Google Scholar 

  22. Csoka A, Bahrick A, Mehtonen OP (2008) Persistent sexual dysfunction after discontinuation of selective serotonin reuptake inhibitors. J Sex Med 5:227–233

    Article  CAS  PubMed  Google Scholar 

  23. Volkow ND, Wang GJ, Fowler JS, Logan J, Franceschi D, Maynard L, Ding YS, Gatley SJ et al. (2002) Relationship between blockade of dopamine transporters by oral methylphenidate and the increases in extracellular dopamine: therapeutic implications. Synapse 43:181–187

    Article  CAS  PubMed  Google Scholar 

  24. Yano M, Steiner H (2007) Methylphenidate and cocaine: the same effects on gene regulation? Trends Pharmacol Sci 28:588–596

    Article  CAS  PubMed  Google Scholar 

  25. Pan D, Gatley SJ, Dewey SL, Chen R, Alexoff DA, Ding YS, Fowler JS (1994) Binding of bromine-substituted analogs of methylphenidate to monoamine transporters. Eur J Neurosci 264:177–182

    CAS  Google Scholar 

  26. Kuczenski R, Segal DS (1997) Effects of methylphenidate on extracellular dopamine, serotonin, and norepinephrine: comparison with amphetamine. J Neurochem 68:2032–2037

    Article  CAS  PubMed  Google Scholar 

  27. Segal DS, Kuczenski R (1999) Escalating dose-binge treatment with methylphenidate: role of serotonin in the emergent behavioral profile. J Pharmacol Exp Ther 291:19–30

    CAS  PubMed  Google Scholar 

  28. Han DD, Gu HH (2006) Comparison of the monoamine transporters from human and mouse in their sensitivities to psychostimulant drugs. BMC Pharmacol 6:6

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. Yano M, Beverley JA, Steiner H (2006) Inhibition of methylphenidate-induced gene expression in the striatum by local blockade of D1 dopamine receptors: interhemispheric effects. Neuroscience 140:699–709

    Article  CAS  PubMed  Google Scholar 

  30. Alburges ME, Hoonakker AJ, Horner KA, Fleckenstein AE, Hanson GR (2011) Methylphenidate alters basal ganglia neurotensin systems through dopaminergic mechanisms: a comparison with cocaine treatment. J Neurochem 117:470–478

    Article  CAS  PubMed  Google Scholar 

  31. Steiner H, Van Waes V (2013) Addiction-related gene regulation: risks of exposure to cognitive enhancers vs. other psychostimulants. Prog Neurobiol 100:60–80

    Article  CAS  PubMed  Google Scholar 

  32. Bhat RV, Baraban JM (1993) Activation of transcription factor genes in striatum by cocaine: role of both serotonin and dopamine systems. J Pharmacol Exp Ther 267:496–505

    CAS  PubMed  Google Scholar 

  33. Lucas JJ, Segu L, Hen R (1997) 5-Hydroxytryptamine1B receptors modulate the effect of cocaine on c-fos expression: converging evidence using 5-hydroxytryptamine1B knockout mice and the 5-hydroxytryptamine1B/1D antagonist GR127935. Mol Pharmacol 51:755–763

    Article  CAS  PubMed  Google Scholar 

  34. Castanon N, Scearce-Levie K, Lucas JJ, Rocha B, Hen R (2000) Modulation of the effects of cocaine by 5-HT1B receptors: a comparison of knockouts and antagonists. Pharmacol Biochem Behav 67:559–566

    Article  CAS  PubMed  Google Scholar 

  35. Morris BJ, Reimer S, Hollt V, Herz A (1988) Regulation of striatal prodynorphin mRNA levels by the raphe-striatal pathway. Brain Res 464:15–22

    CAS  PubMed  Google Scholar 

  36. Walker PD, Capodilupo JG, Wolf WA, Carlock LR (1996) Preprotachykinin and preproenkephalin mRNA expression within striatal subregions in response to altered serotonin transmission. Brain Res 732:25–35

    Article  CAS  PubMed  Google Scholar 

  37. Horner KA, Adams DH, Hanson GR, Keefe KA (2005) Blockade of stimulant-induced preprodynorphin mRNA expression in the striatal matrix by serotonin depletion. Neuroscience 131:67–77

    Article  CAS  PubMed  Google Scholar 

  38. Steiner H, Gerfen CR (1998) Role of dynorphin and enkephalin in the regulation of striatal output pathways and behavior. Exp Brain Res 123:60–76

    Article  CAS  PubMed  Google Scholar 

  39. Van Waes V, Ehrlich S, Beverley JA, Steiner H (2015) Fluoxetine potentiation of methylphenidate-induced gene regulation in striatal output pathways: Potential role for 5-HT1B receptor. Neuropharmacology 89:77–86

    Article  PubMed  CAS  Google Scholar 

  40. Alter D, Beverley JA, Patel R, Bolaños-Guzmán CA, Steiner H (2017) The 5-HT1B serotonin receptor regulates methylphenidate-induced gene expression in the striatum: Differential effects on immediate-early genes. J Psychopharmacol 31:1078–1087

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Padovan-Neto FE, Patterson S, Voelkner NM, Altwal F, Beverley JA, West AR, Steiner H (2020) Selective regulation of 5-HT1B serotonin receptor expression in the striatum by dopamine depletion and repeated L-DOPA treatment: relationship to L-DOPA-induced dyskinesias. Mol Neurobiol 57:736–751

    Article  CAS  PubMed  Google Scholar 

  42. Samaha AN, Mallet N, Ferguson SM, Gonon F, Robinson TE (2004) The rate of cocaine administration alters gene regulation and behavioral plasticity: implications for addiction. J Neurosci 24:6362–6370

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Barrett SP, Darredeau C, Bordy LE, Pihl RO (2005) Characteristics of methylphenidate misuse in a university student sample. Can J Psychiatry 51:126–127

    Google Scholar 

  44. Teter CJ, McCabe SE, LaGrange K, Cranford JA, Boyd CJ (2006) Illicit use of specific prescription stimulants among college students: prevalence, motives, and routes of administration. Pharmacotherapy 26:1501–1510

    Article  PubMed  PubMed Central  Google Scholar 

  45. Swanson JM, Volkow ND (2003) Serum and brain concentrations of methylphenidate: implications for use and abuse. Neurosci Biobehav Rev 27:615–621

    Article  CAS  PubMed  Google Scholar 

  46. Thanos PK, Robison LS, Steier J, Hwang YF, Cooper T, Swanson JM, Komatsu DE, Hadjiargyrou M et al (2015) A pharmacokinetic model of oral methylphenidate in the rat and effects on behavior. Pharmacol Biochem Behav 131:143–153

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Robison LS, Ananth M, Hadjiargyrou M, Komatsu DE, Thanos PK (2017) Chronic oral methylphenidate treatment reversibly increases striatal dopamine transporter and dopamine type 1 receptor binding in rats. J Neural Transm 124:655–667

    Article  CAS  PubMed  Google Scholar 

  48. Robison LS, Michaelos M, Gandhi J, Fricke D, Miao E, Lam CY, Mauceri A, Vitale M et al (2017) Sex differences in the physiological and behavioral effects of chronic oral methylphenidate treatment in rats. Front Behav Neurosci 11:53

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  49. Willuhn I, Sun W, Steiner H (2003) Topography of cocaine-induced gene regulation in the rat striatum: relationship to cortical inputs and role of behavioural context. Eur J Neurosci 17:1053–1066

    Article  PubMed  Google Scholar 

  50. Paxinos G, Watson C (1998) The rat brain in stereotaxic coordinates. Academic Press, New York

    Google Scholar 

  51. Yano M, Steiner H (2005) Methylphenidate (Ritalin) induces Homer 1a and zif 268 expression in specific corticostriatal circuits. Neuroscience 132:855–865

    Article  CAS  PubMed  Google Scholar 

  52. Brandon CL, Steiner H (2003) Repeated methylphenidate treatment in adolescent rats alters gene regulation in the striatum. Eur J Neurosci 18:1584–1592

    Article  PubMed  Google Scholar 

  53. Yano M, Steiner H (2005) Topography of methylphenidate (Ritalin)-induced gene regulation in the striatum: differential effects on c-fos, substance P and opioid peptides. Neuropsychopharmacology 30:901–915

    Article  CAS  PubMed  Google Scholar 

  54. Van Waes V, Carr B, Beverley JA, Steiner H (2012) Fluoxetine potentiation of methylphenidate-induced neuropeptide expression in the striatum occurs selectively in direct pathway (striatonigral) neurons. J Neurochem 122:1054–1064

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  55. Van Waes V, Beverley J, Marinelli M, Steiner H (2010) Selective serotonin reuptake inhibitor antidepressants potentiate methylphenidate (Ritalin)-induced gene regulation in the adolescent striatum. Eur J Neurosci 32:435–447

    Article  PubMed  PubMed Central  Google Scholar 

  56. Martin C, Fricke D, Vijayashanthar A, Lowinger C, Koutsomitis D, Popoola D, Hadjiargyrou M, Komatsu DE et al (2018) Recovery from behavior and developmental effects of chronic oral methylphenidate following an abstinence period. Pharmacol Biochem Behav 172:22–32

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Carias E, Fricke D, Vijayashanthar A, Smith L, Somanesan R, Martin C, Kalinowski L, Popoola D et al (2019) Weekday-only chronic oral methylphenidate self-administration in male rats: reversibility of the behavioral and physiological effects. Behav Brain Res 356:189–196

    Article  CAS  PubMed  Google Scholar 

  58. Kalinowski L, Connor C, Somanesan R, Carias E, Richer K, Smith L, Martin C, Mackintosh M et al (2020) Brief and extended abstinence from chronic oral methylphenidate treatment produces reversible behavioral and physiological effects. Dev Psychobiol 62:170–180

    Article  CAS  PubMed  Google Scholar 

  59. Carias E, Hamilton J, Robison LS, Delis F, Eiden R, Quattrin T, Hadjiargyrou M, Komatsu D et al (2018) Chronic oral methylphenidate treatment increases microglial activation in rats. J Neural Transm (Vienna) 125:1867–1875

    Article  CAS  Google Scholar 

  60. Jalloh K, Roeder N, Hamilton J, Delis F, Hadjiargyrou M, Komatsu D, Thanos PK (2021) Chronic oral methylphenidate treatment in adolescent rats promotes dose-dependent effects on NMDA receptor binding. Life Sci 1(264):118708

    Article  CAS  Google Scholar 

  61. Connor C, Hamilton J, Robison L, Hadjiargyrou M, Komatsu D, Thanos P (2021) Abstinence from chronic methylphenidate exposure modifies cannabinoid receptor 1 levels in the brain in a dose-dependent manner. Curr Pharm Des online ahead of print:

  62. Nestler EJ (2014) Epigenetic mechanisms of drug addiction. Neuropharmacology 76(part B (0 0)):259–268

    Article  CAS  PubMed  Google Scholar 

  63. Steiner H, Gerfen CR (1993) Cocaine-induced c-fos messenger RNA is inversely related to dynorphin expression in striatum. J Neurosci 13:5066–5081

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Barnes NM, Sharp T (1999) A review of central 5-HT receptors and their function. Neuropharmacology 38:1083–1152

    Article  CAS  PubMed  Google Scholar 

  65. Borycz J, Zapata A, Quiroz C, Volkow ND, Ferré S (2008) 5-HT(1B) receptor-mediated serotoninergic modulation of methylphenidate-induced locomotor activation in rats. Neuropsychopharmacology 33:619–626

    Article  CAS  PubMed  Google Scholar 

  66. Heiman M, Schaefer A, Gong S, Peterson JD, Day M, Ramsey KE, Suárez-Fariñas M, Schwarz C et al (2008) A translational profiling approach for the molecular characterization of CNS cell types. Cell 135:738–748

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Lobo MK, Nestler EJ (2011) The striatal balancing act in drug addiction: distinct roles of direct and indirect pathway medium spiny neurons. Front Neuroanat 5:41

    Article  PubMed  PubMed Central  Google Scholar 

  68. Kim Y, Teylan MA, Baron M, Sands A, Nairn AC, Greengard P (2009) Methylphenidate-induced dendritic spine formation and DeltaFosB expression in nucleus accumbens. Proc Natl Acad Sci U S A 106:2915–2920

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Steiner H (2017) Psychostimulant-induced gene regulation in striatal circuits. In: Steiner H, Tseng KY (eds) Handbook of Basal Ganglia Structure and Function. Academic Press/Elsevier, London, pp 639–672

    Google Scholar 

  70. Beverley JA, Piekarski C, Van Waes V, Steiner H (2014) Potentiated gene regulation by methylphenidate plus fluoxetine treatment: long-term gene blunting (Zif268, Homer1a) and behavioral correlates. Basal Ganglia 4:109–116

    Article  PubMed  PubMed Central  Google Scholar 

  71. Van Waes V, Vandrevala M, Beverley J, Steiner H (2014) Selective serotonin re-uptake inhibitors potentiate gene blunting induced by repeated methylphenidate treatment: Zif268 versus Homer1a. Addict Biol 19:986–995

    Article  PubMed  CAS  Google Scholar 

  72. Berke JD, Paletzki RF, Aronson GJ, Hyman SE, Gerfen CR (1998) A complex program of striatal gene expression induced by dopaminergic stimulation. J Neurosci 18:5301–5310

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. McClung CA, Nestler EJ (2003) Regulation of gene expression and cocaine reward by CREB and DeltaFosB. Nat Neurosci 6:1208–1215

    Article  CAS  PubMed  Google Scholar 

  74. Yuferov V, Kroslak T, Laforge KS, Zhou Y, Ho A, Kreek MJ (2003) Differential gene expression in the rat caudate putamen after “binge” cocaine administration: advantage of triplicate microarray analysis. Synapse 48:157–169

    Article  CAS  PubMed  Google Scholar 

  75. Yuferov V, Nielsen D, Butelman E, Kreek MJ (2005) Microarray studies of psychostimulant-induced changes in gene expression. Addict Biol 10:101–118

    Article  CAS  PubMed  Google Scholar 

  76. Black YD, Maclaren FR, Naydenov AV, Carlezon WAJ, Baxter MG, Konradi C (2006) Altered attention and prefrontal cortex gene expression in rats after binge-like exposure to cocaine during adolescence. J Neurosci 26:9656–9665

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Adriani W, Leo D, Greco D, Rea M, di Porzio U, Laviola G, Perrone-Capano C (2006) Methylphenidate administration to adolescent rats determines plastic changes in reward-related behavior and striatal gene expression. Neuropsychopharmacology 31:1946–1956

    Article  CAS  PubMed  Google Scholar 

  78. Adriani W, Leo D, Guarino M, Natoli A, Di Consiglio E, De Angelis G, Traina E, Testai E et al (2006) Short-term effects of adolescent methylphenidate exposure on brain striatal gene expression and sexual/endocrine parameters in male rats. Ann N Y Acad Sci 1074:52–73

    Article  CAS  PubMed  Google Scholar 

  79. Pierce RC, Kalivas PW (1997) A circuitry model of the expression of behavioral sensitization to amphetamine-like psychostimulants. Brain Res Rev 25:192–216

    Article  CAS  PubMed  Google Scholar 

  80. Balleine BW, Dickinson A (1998) Goal-directed instrumental action: contingency and incentive learning and their cortical substrates. Neuropharmacology 37:407–419

    Article  CAS  PubMed  Google Scholar 

  81. Yin HH, Knowlton BJ (2006) The role of the basal ganglia in habit formation. Nat Rev Neurosci 7:464–476

    Article  CAS  PubMed  Google Scholar 

  82. Berke JD, Hyman SE (2000) Addiction, dopamine, and the molecular mechanisms of memory. Neuron 25:515–532

    Article  CAS  PubMed  Google Scholar 

  83. Gerdeman GL, Partridge JG, Lupica CR, Lovinger DM (2003) It could be habit forming: drugs of abuse and striatal synaptic plasticity. Trends Neurosci 26:184–192

    Article  CAS  PubMed  Google Scholar 

  84. Everitt BJ, Robbins TW (2005) Neural systems of reinforcement for drug addiction: from actions to habits to compulsion. Nat Neurosci 8:1481–1489

    Article  CAS  PubMed  Google Scholar 

  85. Belin-Rauscent A, Everitt BJ, Belin D (2012) Intrastriatal shifts mediate the transition from drug-seeking actions to habits. Biol Psychiatry 72:343–345

    Article  PubMed  Google Scholar 

  86. Gremel CM, Lovinger DM (2017) Associative and sensorimotor cortico-basal ganglia circuit roles in effects of abused drugs. Genes Brain Behav 16:71–85

    Article  CAS  PubMed  Google Scholar 

  87. Jedynak JP, Uslaner JM, Esteban JA, Robinson TE (2007) Methamphetamine-induced structural plasticity in the dorsal striatum. Eur J Neurosci 25:847–853

    Article  PubMed  Google Scholar 

  88. Everitt BJ (2014) Neural and psychological mechanisms underlying compulsive drug seeking habits and drug memories–indications for novel treatments of addiction. Eur J Neurosci 40:2163–2182

    Article  PubMed  PubMed Central  Google Scholar 

  89. Vanderschuren LJ, Di Ciano P, Everitt BJ (2005) Involvement of the dorsal striatum in cue-controlled cocaine seeking. J Neurosci 25:8665–8670

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Fuchs RA, Branham RK, See RE (2006) Different neural substrates mediate cocaine seeking after abstinence versus extinction training: a critical role for the dorsolateral caudate–putamen. J Neuroscience 26:3584–3588

    Article  CAS  Google Scholar 

  91. See RE, Elliott JC, Feltenstein MW (2007) The role of dorsal vs ventral striatal pathways in cocaine-seeking behavior after prolonged abstinence in rats. Psychopharmacology 194:321–331

    Article  CAS  PubMed  Google Scholar 

  92. Alexander GE, DeLong MR, Strick PL (1986) Parallel organization of functionally segregated circuits linking basal ganglia and cortex. Annu Rev Neurosci 9:357–381

    Article  CAS  PubMed  Google Scholar 

  93. Albin RL, Young AB, Penney JB (1989) The functional anatomy of basal ganglia disorders. Trends Neurosci 12:366–375

    Article  CAS  PubMed  Google Scholar 

  94. Kravitz AV, Freeze BS, Parker PR, Kay K, Thwin MT, Deisseroth K, Kreitzer AC (2010) Regulation of parkinsonian motor behaviours by optogenetic control of basal ganglia circuitry. Nature 466:622–626

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Freeze BS, Kravitz AV, Hammack N, Berke JD, Kreitzer AC (2013) Control of basal ganglia output by direct and indirect pathway projection neurons. J Neurosci 33:18531–18539

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Lobo MK, Covington HE, Chaudhury D, Friedman AK, Sun H, Damez-Werno D, Dietz DM, Zaman S et al (2010) Cell type-specific loss of BDNF signaling mimics optogenetic control of cocaine reward. Science 330:385–390

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Ferguson SM, Eskenazi D, Ishikawa M, Wanat MJ, Phillips PE, Dong Y, Roth BL, Neumaier JF (2011) Transient neuronal inhibition reveals opposing roles of indirect and direct pathways in sensitization. Nat Neurosci 14:22–24

    Article  CAS  PubMed  Google Scholar 

  98. Kravitz AV, Kreitzer AC (2012) Striatal mechanisms underlying movement, reinforcement, and punishment. Physiology (Bethesda) 27:167–177

    Google Scholar 

  99. Lovinger DM, Gremel CM (2021) A circuit-based information approach to substance abuse research. Trends Neurosci 44:122–135

    Article  CAS  PubMed  Google Scholar 

  100. Brandon CL, Marinelli M, Baker LK, White FJ (2001) Enhanced reactivity and vulnerability to cocaine following methylphenidate treatment in adolescent rats. Neuropsychopharmacology 25:651–661

    Article  CAS  PubMed  Google Scholar 

  101. Schenk S, Izenwasser S (2002) Pretreatment with methylphenidate sensitizes rats to the reinforcing effects of cocaine. Pharmacol Biochem Behav 72:651–657

    Article  CAS  PubMed  Google Scholar 

  102. Crawford CA, Baella SA, Farley CM, Herbert MS, Horn LR, Campbell RH, Zavala AR (2011) Early methylphenidate exposure enhances cocaine self-administration but not cocaine-induced conditioned place preference in young adult rats. Psychopharmacology 213:43–52

    Article  CAS  PubMed  Google Scholar 

  103. Warren BL, Iñiguez SD, Alcantara LF, Wright KN, Parise EM, Weakley SK, Bolaños-Guzmán CA (2011) Juvenile administration of concomitant methylphenidate and fluoxetine alters behavioral reactivity to reward- and mood-related stimuli and disrupts ventral tegmental area gene expression in adulthood. J Neurosci 31:10347–10358

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work was supported in part by the National Institutes of Health Grants DA046794 (H.S.) and HD070888 (P.K.T.) and the New York Research Foundation [Q0942016] (P.K.T.).

Author information

Authors and Affiliations

Authors

Contributions

Heinz Steiner and Panayotis K. Thanos were responsible for study design; Matt Marion and Connor Moon performed the experimental studies and data collection; Connor Moon, Matt Marion, Panayotis K. Thanos, and Heinz Steiner contributed to data analysis; Heinz Steiner wrote the first draft of the manuscript, and all authors commented on and approved the manuscript.

Corresponding author

Correspondence to Heinz Steiner.

Ethics declarations

Ethics Approval

All experimental procedures followed the guidelines as described in the “Guide for the Care and Use of Laboratory Rats” (National Academy of Science and NRC, 1996) and were approved by the State University at Buffalo Institutional Animal Care and Use Committee.

Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Moon, C., Marion, M., Thanos, P.K. et al. Fluoxetine Potentiates Oral Methylphenidate-Induced Gene Regulation in the Rat Striatum. Mol Neurobiol 58, 4856–4870 (2021). https://doi.org/10.1007/s12035-021-02466-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-021-02466-y

Keywords

Navigation