Skip to main content

Advertisement

Log in

Methylphenidate with or without fluoxetine triggers reinstatement of cocaine seeking behavior in rats

  • Article
  • Published:
Neuropsychopharmacology Submit manuscript

Abstract

Methylphenidate (MP) is commonly prescribed to treat attention-deficit hyperactivity disorder (ADHD). MP is also taken for non-medical purposes as a recreational drug or “cognitive enhancer”. Combined exposure to MP and selective serotonin reuptake inhibitors such as fluoxetine (FLX) can also occur, such as in the treatment of ADHD with depression comorbidity or when patients taking FLX use MP for non-medical purposes. It is unclear if such exposure could subsequently increase the risk for relapse in former cocaine users. We investigated if an acute challenge with MP, FLX, or the combination of MP + FLX could trigger reinstatement of cocaine seeking behavior in a model for relapse in rats. Juvenile rats self-administered cocaine (600 µg/kg/infusion, 1–2 h/day, 7–8 days) and then underwent extinction and withdrawal during late adolescence-early adulthood. Reinstatement was tested at a low dose of MP (2 mg/kg, I.P., comparable to doses used therapeutically) or a high dose of MP (5 mg/kg, comparable to doses used recreationally or as a cognitive enhancer), with or without FLX (2.5–5 mg/kg, I.P.). An acute challenge with the high dose of MP (5 mg/kg), with or without FLX, reinstated cocaine seeking behavior to levels comparable to those seen after an acute challenge with cocaine (15 mg/kg, I.P.). The low dose of MP (2 mg/kg) with or without FLX did not reinstate cocaine seeking behavior. Our results suggest that acute exposure to a high dose of MP, with or without FLX, may increase the risk for relapse in individuals who used cocaine during the juvenile period.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1: Effects of Vehicle (n = 9), MP2 (n = 6), or MP5 (n = 8) on seeking behavior during a within-session extinction/reinstatement test.
Fig. 2: Effects of Vehicle, FLX5, MP5, FLX5 + MP5, or COC15 administered sequentially in the same rats on seeking behavior during a between-session extinction/reinstatement test (n = 6).
Fig. 3: Effects of Vehicle, FLX2.5 (n = 6), FLX5 (n = 7), MP2 (n = 13), MP2 + FLX2.5 (n = 9), MP2 + FLX5 (n = 11), MP5 (n = 11), MP5 + FLX.2.5 (n = 9), MP5 + FLX5 (n = 6), or COC15 (n = 10) on seeking behavior during a between-sessions extinction/reinstatement test.

Similar content being viewed by others

References

  1. Mahoney JJ 3rd, Kalechstein AD, De La Garza R 2nd, Newton TF. A qualitative and quantitative review of cocaine-induced craving: the phenomenon of priming. Prog Neuropsychopharmacol Biol Psychiatry. 2007;31:593–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Cami J, Farre M. Drug addiction. N Engl J Med. 2003;349:975–86.

    CAS  PubMed  Google Scholar 

  3. Kapur A. Is methylphenidate beneficial and safe in pharmacological cognitive enhancement? CNS Drugs. 2020;34:1045–62.

    CAS  PubMed  Google Scholar 

  4. Kollins SH, MacDonald EK, Rush CR. Assessing the abuse potential of methylphenidate in nonhuman and human subjects: a review. Pharmacol Biochem Behav. 2001;68:611–27.

    CAS  PubMed  Google Scholar 

  5. Cantwell DP. Attention deficit disorder: a review of the past 10 years. J Am Acad Child Adolesc Psychiatry. 1996;35:978–87.

    CAS  PubMed  Google Scholar 

  6. Parran TV Jr., Jasinski DR. Intravenous methylphenidate abuse. Prototype for prescription drug abuse. Arch Intern Med. 1991;151:781–3.

    PubMed  Google Scholar 

  7. Klein-Schwartz W. Abuse and toxicity of methylphenidate. Curr Opin Pediatr. 2002;14:219–23.

    PubMed  Google Scholar 

  8. Clemow DB. Misuse of methylphenidate. Curr Top Behav Neurosci. 2017;34:99–124.

    CAS  PubMed  Google Scholar 

  9. McCabe SE, Veliz P, Boyd CJ. Early exposure to stimulant medications and substance-related problems: the role of medical and nonmedical contexts. Drug Alcohol Depend. 2016;163:55–63.

    PubMed  PubMed Central  Google Scholar 

  10. Teter CJ, McCabe SE, LaGrange K, Cranford JA, Boyd CJ. Illicit use of specific prescription stimulants among college students: prevalence, motives, and routes of administration. Pharmacotherapy. 2006;26:1501–10.

    PubMed  PubMed Central  Google Scholar 

  11. White BP, Becker-Blease KA, Grace-Bishop K. Stimulant medication use, misuse, and abuse in an undergraduate and graduate student sample. J Am Coll Health. 2006;54:261–8.

    PubMed  Google Scholar 

  12. Drug abuse statistics. Retrieved October 9, 2023 from: https://drugabusestatistics.org/.

  13. Faraone SV, Rostain AL, Montano CB, Mason O, Antshel KM, Newcorn JH. Systematic review: nonmedical use of prescription stimulants: risk factors, outcomes, and risk reduction strategies. J Am Acad Child Psychitary. 2020;59:100–12.

    Google Scholar 

  14. Ponnet K, Tholen R, De Bruyn S, Wouters E, Van Ouytsel J, Walrave M, et al. Students’ stimulant use for cognitive enhancement: a deliberate choice rather than an emotional response to a given situation. Drug Alcohol Depend. 2021;218:108410.

    CAS  PubMed  Google Scholar 

  15. Grabowski J, Roache JD, Schmitz JM, Rhoades H, Creson D, Korszun A. Replacement medication for cocaine dependence: methylphenidate. J Clin Psychopharmacol. 1997;17:485–8.

    CAS  PubMed  Google Scholar 

  16. Vogel M, Bucher P, Strasser J, Liechti ME, Krahenbuhl S, Dursteler KM. Similar and different? Subjective effects of methylphenidate and cocaine in opioid-maintained patients. J Psychoactive Drugs. 2016;48:93–100.

    PubMed  Google Scholar 

  17. Dursteler KM, Berger EM, Strasser J, Caflisch C, Mutschler J, Herdener M, et al. Clinical potential of methylphenidate in the treatment of cocaine addiction: a review of the current evidence. Subst Abuse Rehabil. 2015;6:61–74.

    PubMed  PubMed Central  Google Scholar 

  18. Castells X, Cunill R, Perez-Mana C, Vidal X, Capella D. Psychostimulant drugs for cocaine dependence. Cochrane Database Syst Rev. 2016;9:CD007380.

    PubMed  Google Scholar 

  19. Castells X, Casas M, Perez-Mana C, Roncero C, Vidal X, Capella D. Efficacy of psychostimulant drugs for cocaine dependence. Cochrane Database Syst Rev. 2010;2:CD007380.

  20. Levin FR, Evans SM, McDowell DM, Kleber HD. Methylphenidate treatment for cocaine abusers with adult attention-deficit/hyperactivity disorder: a pilot study. J Clin Psychiatry. 1998;59:300–5.

    CAS  PubMed  Google Scholar 

  21. Elangovan N, Barbato M, Cooper T, Winsberg B. Neurohormonal and behavioral response to methylphenidate in cocaine abstinence. Psychiatry Res. 1996;65:65–71.

    CAS  PubMed  Google Scholar 

  22. Bright GM. Abuse of medications employed for the treatment of ADHD: results from a large-scale community survey. Medscape J Med. 2008;10:111.

    PubMed  PubMed Central  Google Scholar 

  23. Sepulveda DR, Thomas LM, McCabe SE, Cranford JA, Boyd CJ, Teter CJ. Misuse of prescribed stimulant medication for ADHD and associated patterns of substance use: preliminary analysis among college students. J Pharm Pract. 2011;24:551–60.

    PubMed  PubMed Central  Google Scholar 

  24. Gammon GD, Brown TE. Fluoxetine and methylphenidate in combination for treatment of attention deficit disorder and comorbid depressive disorder. J Child Adolesc Psychopharmacol. 1993;3:1–10.

    CAS  PubMed  Google Scholar 

  25. Rushton JL, Whitmire JT. Pediatric stimulant and selective serotonin reuptake inhibitor prescription trends: 1992 to 1998. Arch Pediatr Adolesc Med. 2001;155:560–5.

    CAS  PubMed  Google Scholar 

  26. Safer DJ, Zito JM, DosReis S. Concomitant psychotropic medication for youths. Am J Psychiatry. 2003;160:438–49.

    PubMed  Google Scholar 

  27. Kadison R. Getting an edge-use of stimulants and antidepressants in college. N Engl J Med. 2005;353:1089–91.

    CAS  PubMed  Google Scholar 

  28. Kollins SH. ADHD, substance use disorders, and psychostimulant treatment: current literature and treatment guidelines. J Atten Disord. 2008;12:115–25.

    PubMed  Google Scholar 

  29. Swanson JM, Volkow ND. Increasing use of stimulants warns of potential abuse. Nature. 2008;453:586.

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Wilens TE, Adler LA, Adams J, Sgambati S, Rotrosen J, Sawtelle R, et al. Misuse and diversion of stimulants prescribed for ADHD: a systematic review of the literature. J Am Acad Child Psy. 2008;47:21–31.

    Google Scholar 

  31. van Waes V, Steiner H. Fluoxetine and other SSRI antidepressants potentiate addiction-related gene regulation by psychostimulant medications. In: Pinna G, editor Fluoxetine: Pharmacology, Mechanisms of Action and Potential Side Effects. Hauppauge, NY: Nova Science Publishers; 2015. p. 207-25.

  32. Kuczenski R, Segal DS. Effects of methylphenidate on extracellular dopamine, serotonin, and norepinephrine: comparison with amphetamine. J Neurochem. 1997;68:2032–7.

    CAS  PubMed  Google Scholar 

  33. Kuczenski R, Segal DS. Dynamic changes in sensitivity occur during the acute response to cocaine and methylphenidate. Psychopharmacology. 1999;147:96–103.

    CAS  PubMed  Google Scholar 

  34. Guan XM, McBride WJ. Fluoxetine increases the extracellular levels of serotonin in the nucleus accumbens. Brain Res Bull. 1988;21:43–46.

    CAS  PubMed  Google Scholar 

  35. Wong WC, Ford KA, Pagels NE, McCutcheon JE, Marinelli M. Adolescents are more vulnerable to cocaine addiction: behavioral and electrophysiological evidence. J Neurosci. 2013;33:4913–22.

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Kandel DB, Logan JA. Patterns of drug use from adolescence to young adulthood: I. Periods of risk for initiation, continued use, and discontinuation. Am J Public Health. 1984;74:660–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Wagner FA, Anthony JC. From first drug use to drug dependence; developmental periods of risk for dependence upon marijuana, cocaine, and alcohol. Neuropsychopharmacology. 2002;26:479–88.

    PubMed  Google Scholar 

  38. Kuczenski R, Segal DS. Stimulant actions in rodents: implications for attention-deficit/hyperactivity disorder treatment and potential substance abuse. Biol Psychiatry. 2005;57:1391–6.

    CAS  PubMed  Google Scholar 

  39. Al-Ramadhan FR, Abulmeaty MMA, Alquraishi M, Razak S, Alhussain MH. Effect of Vitamin D3 on depressive behaviors of rats exposed to chronic unpredictable mild stress. Biomedicines. 2023;11:2112.

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Steiner H, Van Waes V, Marinelli M. Fluoxetine potentiates methylphenidate-induced gene regulation in addiction-related brain regions: concerns for use of cognitive enhancers? Biol Psychiatry. 2010;67:592–4.

    CAS  PubMed  Google Scholar 

  41. Fuchs RA, Tran-Nguyen LT, Specio SE, Groff RS, Neisewander JL. Predictive validity of the extinction/reinstatement model of drug craving. Psychopharmacology. 1998;135:151–60.

    CAS  PubMed  Google Scholar 

  42. Conrad KL, McCutcheon JE, Cotterly LM, Ford KA, Beales M, Marinelli M. Persistent increases in cocaine-seeking behavior after acute exposure to cold swim stress. Biol Psychiatry. 2010;68:303–5.

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Renoux C, Shin JY, Dell’Aniello S, Fergusson E, Suissa S. Prescribing trends of attention-deficit hyperactivity disorder (ADHD) medications in UK primary care, 1995-2015. Br J Clin Pharmacol. 2016;82:858–68.

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Manza P, Shokri-Kojori E, Wiers CE, Kroll D, Feldman D, McPherson K, et al. Sex differences in methylphenidate-induced dopamine increases in ventral striatum. Mol Psychiatry. 2022;27:939–46.

    CAS  PubMed  Google Scholar 

  45. Beverley JA, Piekarski C, Van Waes V, Steiner H. Potentiated gene regulation by methylphenidate plus fluoxetine treatment: long-term gene blunting (Zif268, Homer1a) and behavioral correlates. Basal Ganglia. 2014;4:109–16.

    PubMed  PubMed Central  Google Scholar 

  46. Van Waes V, Vandrevala M, Beverley J, Steiner H. Selective serotonin re-uptake inhibitors potentiate gene blunting induced by repeated methylphenidate treatment: Zif268 versus Homer1a. Addict Biol. 2014;19:986–95.

    PubMed  Google Scholar 

  47. Van Waes V, Beverley J, Marinelli M, Steiner H. Selective serotonin reuptake inhibitor antidepressants potentiate methylphenidate (Ritalin)-induced gene regulation in the adolescent striatum. Eur J Neurosci. 2010;32:435–47.

    PubMed  PubMed Central  Google Scholar 

  48. Schenk S, Partridge B. Cocaine-seeking produced by experimenter-administered drug injections: dose-effect relationships in rats. Psychopharmacology. 1999;147:285–90.

    CAS  PubMed  Google Scholar 

  49. Economidou D, Dalley JW, Everitt BJ. Selective norepinephrine reuptake inhibition by atomoxetine prevents cue-induced heroin and cocaine seeking. Biol Psychiatry. 2011;69:266–74.

    CAS  PubMed  Google Scholar 

  50. Borycz J, Zapata A, Quiroz C, Volkow ND, Ferre S. 5-HT 1B receptor-mediated serotoninergic modulation of methylphenidate-induced locomotor activation in rats. Neuropsychopharmacology. 2008;33:619–26.

    CAS  PubMed  Google Scholar 

  51. Lamoureux L, Beverley JA, Marinelli M, Steiner H. Fluoxetine potentiates methylphenidate-induced behavioral responses: enhanced locomotion or stereotypies and facilitated acquisition of cocaine self-administration. Addic Neuroscience. 2023;9:100131.

    Google Scholar 

  52. Senior D, McCarthy M, Ahmed R, Klein S, Lee WX, Hadjiargyrou M, et al. Chronic oral methylphenidate plus fluoxetine treatment in adolescent rats increases cocaine self-administration. Addic Neuroscience. 2023;8:100127.

    Google Scholar 

  53. Thanos PK, McCarthy M, Senior D, Watts S, Connor C, Hammond N, et al. Combined chronic oral methylphenidate and fluoxetine treatment during adolescence: effects on behavior. Curr Pharm Biotechnol. 2023;24:1307–14.

    CAS  PubMed  Google Scholar 

  54. Senior D, Ahmed R, Arnavut E, Carvalho A, Lee WX, Blum K, et al. Behavioral, neurochemical and developmental effects of chronic oral methylphenidate: a review. J Person Med. 2023;13:574.

    Google Scholar 

  55. Stoops WW, Rush CR. Agonist replacement for stimulant dependence: a review of clinical research. Curr Pharm Des. 2013;19:7026–35.

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Konova AB, Moeller SJ, Tomasi D, Volkow ND, Goldstein RZ. Effects of methylphenidate on resting-state functional connectivity of the mesocorticolimbic dopamine pathways in cocaine addiction. JAMA Psychiatry. 2013;70:857–68.

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Roache JD, Grabowski J, Schmitz JM, Creson DL, Rhoades HM. Laboratory measures of methylphenidate effects in cocaine-dependent patients receiving treatment. J Clin Psychopharmacol. 2000;20:61–68.

    CAS  PubMed  Google Scholar 

  58. Schubiner H, Saules KK, Arfken CL, Johanson CE, Schuster CR, Lockhart N, et al. Double-blind placebo-controlled trial of methylphenidate in the treatment of adult ADHD patients with comorbid cocaine dependence. Exp Clin Psychopharmacol. 2002;10:286–94.

    CAS  PubMed  Google Scholar 

  59. Tardelli VS, Bisaga A, Arcadepani FB, Gerra G, Levin FR, Fidalgo TM. Prescription psychostimulants for the treatment of stimulant use disorder: a systematic review and meta-analysis. Psychopharmacology. 2020;237:2233–55.

    CAS  PubMed  Google Scholar 

  60. Schmidt HD, Pierce RC. Systemic administration of a dopamine, but not a serotonin or norepinephrine, transporter inhibitor reinstates cocaine seeking in the rat. Behav Brain Res. 2006;175:189–94.

    CAS  PubMed  Google Scholar 

  61. Sofuoglu M, Sewell RA. Norepinephrine and stimulant addiction. Addic Biol. 2009;14:119–29.

    CAS  Google Scholar 

Download references

Funding

Funding

This work was supported by National Institute on Drug Abuse Grants R21 DA031916 to MM and R01 DA046794 to HS.

Author information

Authors and Affiliations

Authors

Contributions

Conception and design of the study: MM and HS. Acquisition of the work: LL, JB and MM. Analysis of the data: MM and HS. Drafting and revising of the manuscript: MM and HS.

Corresponding author

Correspondence to Michela Marinelli.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lamoureux, L., Beverley, J., Steiner, H. et al. Methylphenidate with or without fluoxetine triggers reinstatement of cocaine seeking behavior in rats. Neuropsychopharmacol. 49, 953–960 (2024). https://doi.org/10.1038/s41386-023-01777-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41386-023-01777-z

  • Springer Nature Switzerland AG

Navigation