Skip to main content

Advertisement

Log in

All-Trans Retinoic Acid Attenuates Blue Light-Induced Apoptosis of Retinal Photoreceptors by Upregulating MKP-1 Expression

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

The study investigated the antiapoptotic effects of all-trans retinoic acid (RA) on retinal degeneration caused by exposure to blue light. Sprague-Dawley rats received intraperitoneal injections of RA and, if necessary, the mitogen-activated protein kinase phosphotase-1(MKP-1) inhibitor, (E)-2-benzylidene-3-(cyclohexylamino)-2, 3-dihydro-1H-inden-1-one (BCI), or the retinoic acid receptor (RAR) antagonist, AGN 193109. Retinal damage was induced by 24 h of continuous exposure to blue light. Haematoxylin and eosin staining and electroretinography were performed to measure retinal thickness and retinal function before and at 3 days and 7 days after light exposure. The retinal protein expression levels of phosphorylated c-Jun N-terminal kinase (JNK), phosphorylated nuclear factor-κB, MKP-1, Bim, Bax, and cleaved caspase-3 were also measured. Terminal-deoxynucleotidyl-transferase-mediated deoxyuridine triphosphate-biotin nick end labelling (TUNEL) staining and immunofluorescent staining of cleaved caspase-3 were also performed to evaluate photoreceptor apoptosis. The administration of RA significantly mitigated retinal dysfunction and the decrease in the outer nuclear layer (ONL) thickness at 3 days and 7 days after light exposure. RA also reduced the percentage of TUNEL-positive nuclei in the ONL and cleaved caspase-3 immunofluorescence intensity at 3 days after light exposure. Light exposure increased the retinal expression of proapoptotic proteins (Bim, Bax, and cleaved caspase-3), which was attenuated by RA. Moreover, RA enhanced the expression of MKP-1 and inhibited the phosphorylation of JNK, which were attenuated by the inhibition of RAR. The inhibitory effects of RA on blue light-induced photoreceptor apoptosis were abrogated by the MKP-1inhibitor. Our results indicate that RA alleviates photoreceptor loss following blue light exposure, at least partly, by the MKP-1/JNK pathway, which may serve as a therapeutic target for relieving retinal degeneration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

References

  1. Huang Y, Enzmann V, Ildstad ST (2011) Stem cell-based therapeutic applications in retinal degenerative diseases. Stem Cell Rev Rep 7:434–445

    Article  PubMed  Google Scholar 

  2. Wiley LA, Burnight ER, Songstad AE, Drack AV, Mullins RF, Stone EM, Tucker BA (2015) Patient-specific induced pluripotent stem cells (iPSCs) for the study and treatment of retinal degenerative diseases. Prog Retin Eye Res 44:15–35

    Article  PubMed  Google Scholar 

  3. Wong WL, Su X, Li X, Cheung CMG, Klein R, Cheng C et al (2014) Global prevalence of age-related macular degeneration and disease burden projection for 2020 and 2040: a systematic review and meta-analysis. Lancet Glob Health 2:E106–E116

    Article  PubMed  Google Scholar 

  4. Curcio CA, Medeiros NE, Millican CL (1996) Photoreceptor loss in age-related macular degeneration. Invest Ophthalmol Vis Sci 37:1236–1249

    CAS  PubMed  Google Scholar 

  5. Hartong DT, Berson EL, Dryja TP (2006) Retinitis pigmentosa. Lancet 368:1795–1809

    Article  CAS  Google Scholar 

  6. Hafezi F, Marti A, Munz K, Reme CE (1997) Light-induced apoptosis: differential timing in the retina and pigment epithelium. Exp Eye Res 64:963–970

    Article  CAS  PubMed  Google Scholar 

  7. Konta T, Xu QH, Furusu A, Nakayama K, Kitamura M (2001) Selective roles of retinoic acid receptor and retinoid X receptor in the suppression of apoptosis by all-trans-retinoic acid. J Biol Chem 276:12697–12701

    Article  CAS  PubMed  Google Scholar 

  8. Ahlemeyer B, Bauerbach E, Plath M, Steuber M, Heers C, Tegtmeier F, Krieglstein J (2001) Retinoic acid reduces apoptosis and oxidative stress by preservation of SOD protein level. Free Radical Bio Med 30:1067–1077

    Article  CAS  Google Scholar 

  9. Plane JM, Whitney JT, Schallert T, Parent JM (2008) Retinoic acid and environmental enrichment alter subventricular zone and striatal neurogenesis after stroke. Exp Neurol 214:125–134

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Li M, Tian X, An R, Yang M, Zhang Q, Xiang F, Liu H, Wang Y et al (2018) All-trans retinoic acid ameliorates the early experimental cerebral ischemia-reperfusion injury in rats by inhibiting the loss of the blood-brain barrier via the JNK/P38MAPK signaling pathway. Neurochem Res 43:1283–1296

    Article  CAS  PubMed  Google Scholar 

  11. Deng L, Chen M, Tanaka M, Ku Y, Itoh T, Shoji I, Hotta H (2015) HCV upregulates Bim through the ROS/JNK signalling pathway, leading to Bax-mediated apoptosis. J Gen Virol 96:2670–2683

    Article  CAS  PubMed  Google Scholar 

  12. Donovan M, Doonan F, Cotter TG (2011) Differential roles of ERK1/2 and JNK in retinal development and degeneration. J Neurochem 116:33–42

    Article  CAS  PubMed  Google Scholar 

  13. Choudhury S, Bhootada Y, Gorbatyuk O, Gorbatyuk M (2013) Caspase-7 ablation modulates UPR, reprograms TRAF2-JNK apoptosis and protects T17M rhodopsin mice from severe retinal degeneration. Cell Death Dis 4:e528

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Farooq A, Zhou MM (2004) Structure and regulation of MAPK phosphatases. Cell Signal 16:769–779

    Article  CAS  PubMed  Google Scholar 

  15. Dreixler JC, Bratton A, Du E, Shaikh AR, Savoie B, Alexander M et al (2011) Mitogen-activated protein kinase phosphatase-1 (MKP-1) in retinal ischemic preconditioning. Exp Eye Res 93:340–349

    Article  CAS  PubMed  Google Scholar 

  16. Kovacs K, Vaczy A, Fekete K, Kovari P, Atlasz T, Reglodi D, Gabriel R, Gallyas F et al (2019) PARP inhibitor protects against chronic hypoxia/reoxygenation-induced retinal injury by regulation of MAPKs, HIF1 alpha, Nrf2, and NF kappa B. Invest Ophthalmol Vis Sci 60:1478–1490

    Article  CAS  PubMed  Google Scholar 

  17. Zhang M, Xu G, Liu W, Ni Y, Zhou W (2012) Role of fractalkine/CX3CR1 interaction in light-induced photoreceptor degeneration through regulating retinal microglial activation and migration. Plos One 7:

  18. Liu L, Doran S, Xu Y, Manwani B, Ritzel R, Benashski S, McCullough L, Li J (2014) Inhibition of mitogen-activated protein kinase phosphatase-1 (MKP-1) increases experimental stroke injury. Exp Neurol 261:404–411

    Article  CAS  PubMed  Google Scholar 

  19. Molina G, Vogt A, Bakan A, Dai W, de Oliveira PQ, Znosko W, Smithgall TE, Bahar I et al (2009) Zebrafish chemical screening reveals an inhibitor of Dusp6 that expands cardiac cell lineages. Nat Chem Biol 5:680–687

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Korotchenko VN, Saydmohammed M, Vollmer LL, Bakan A, Sheetz K, Debiec KT, Greene KA, Agliori CS et al (2014) In vivo structure-activity relationship studies support allosteric targeting of a dual specificity phosphatase. Chembiochem 15:1436–1445

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Sun J, Feng H, Xing W, Han Y, Suo J, Yallowitz AR, Qian N, Shi Y et al (2020) Histone demethylase LSD1 is critical for endochondral ossification during bone fracture healing. Sci Adv 6:eaaz1410

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Gu R, Tang W, Lei B, Ding X, Jiang C, Xu G (2017) Glucocorticoid-induced leucine zipper protects the retina from light-induced retinal degeneration by inducing Bcl-xL in Rats. Invest Ophthalmol Vis Sci 58:3656–3668

    Article  CAS  PubMed  Google Scholar 

  23. Ni Y, Xu G, Hu W, Shi L, Qin Y, Da C (2008) Neuroprotective effects of naloxone against light-induced photoreceptor degeneration through inhibiting retinal microglial activation. Invest Ophthalmol Vis Sci 49:2589–2598

    Article  PubMed  Google Scholar 

  24. Doonan F, Donovan M, Gomez-Vicente V, Bouillet P, Cotter TG (2007) Bim expression indicates the pathway to retinal cell death in development and degeneration. J Neurosci 27:10887–10894

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Hahn P, Lindsten T, Lyubarsky A, Ying G, Pugh EN, Thompson CB et al (2004) Deficiency of Bax and Bak protects photoreceptors from light damage in vivo. Cell Death Differ 11:1192–1197

    Article  CAS  PubMed  Google Scholar 

  26. Wu JM, Gorman A, Zhou XH, Sandra C, Chen E (2002) Involvement of caspase-3 in photoreceptor cell apoptosis induced by in vivo blue light exposure. Invest Ophthalmol Vis Sci 43:3349–3354

    PubMed  Google Scholar 

  27. Wu TH, Chen YG, Chiang S, Tso M (2002) NF-kappa B activation in light-induced retinal degeneration in a mouse model. Invest Ophthalmol Vis Sci 43:2834–2840

    PubMed  Google Scholar 

  28. Lee HY, Sueoka N, Hong WK, Mangelsdorf DJ, Claret FX, Kurie JM (1999) All-trans-retinoic acid inhibits Jun N-terminal kinase by increasing dual-specificity phosphatase activity. Mol Cell Biol 19:1973–1980

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Chambon P (1996) A decade of molecular biology of retinoic acid receptors. FASEB J 10:940–954

    Article  CAS  PubMed  Google Scholar 

  30. Xu QH, Konta T, Furusu A, Nakayama K, Lucio-Cazana J, Fine LG, Kitamura M (2002) Transcriptional induction of mitogen-activated protein kinase phosphatase 1 by retinoids - selective roles of nuclear receptors and contribution to the antiapoptotic effect. J Biol Chem 277:41693–41700

    Article  CAS  PubMed  Google Scholar 

  31. Zhu Y, Liu Y, Yang F, Chen W, Jiang J, He P, Jiang S, Li M et al (2020) All-trans retinoic acid exerts neuroprotective effects in amyotrophic lateral sclerosis-like Tg (SOD1*G93A)1Gur Mice. Mol Neurobiol 57:3603–3615

    Article  CAS  PubMed  Google Scholar 

  32. Colas J, Chessel N, Ouared A, Gruz-Gibelli E, Marin P, Herrmann FR et al (2020) Neuroprotection against amyloid-beta-induced DNA double-strand breaks is mediated by multiple retinoic acid-dependent pathways. Neural Plast 2020:9369815

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. Marsharmstrong N, Mccaffery P, Gilbert W, Dowling JE, Drager UC (1994) Retinoic acid is necessary for development of the ventral retina in zebrafish. P Natl Acad Sci Usa 91:7286–7290

    Article  CAS  Google Scholar 

  34. Kelley MW, Williams RC, Turner JK, Creech-Kraft JM, Reh TA (1999) Retinoic acid promotes rod photoreceptor differentiation in rat retina in vivo. Neuroreport 10:2389–2394

    Article  CAS  PubMed  Google Scholar 

  35. Chen Y, Okano K, Maeda T, Chauhan V, Golczak M, Maeda A, Palczewski K (2012) Mechanism of all-trans-retinal toxicity with implications for stargardt disease and age-related macular degeneration. J Biol Chem 287:5059–5069

    Article  CAS  PubMed  Google Scholar 

  36. Maeda A, Maeda T, Golczak M, Chou S, Desai A, Hoppel CL, Matsuyama S, Palczewski K (2009) Involvement of all-trans-retinal in acute light-induced retinopathy of mice. J Biol Chem 284:15173–15183

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Pollock LM, Xie J, Bell BA, Anand-Apte B (2018) Retinoic acid signaling is essential for maintenance of the blood-retinal barrier. FASEB J 32:5674–5684

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Sakamoto K, Hiraiwa M, Saito M, Nakahara T, Sato Y, Nagao T, Ishii K (2010) Protective effect of all-trans retinoic acid on NMDA-induced neuronal cell death in rat retina. Eur J Pharmacol 635:56–61

    Article  CAS  PubMed  Google Scholar 

  39. Soderpalm AK, Fox DA, Karlsson JO, van Veen T (2000) Retinoic acid produces rod photoreceptor selective apoptosis in developing mammalian retina. Invest Ophthalmol Vis Sci 41:937–947

    CAS  PubMed  Google Scholar 

  40. Tang W, Ma J, Gu R, Lei B, Ding X, Xu G (2018) Light-induced lipocalin 2 facilitates cellular apoptosis by positively regulating reactive oxygen species/Bim signaling in retinal degeneration. Invest Ophthalmol Vis Sci 59:6014–6025

    Article  CAS  PubMed  Google Scholar 

  41. Dai M, Liu Y, Nie X, Zhang J, Wang Y, Ben J, Zhang S, Yang X et al (2015) Expression of RBMX in the light-induced damage of rat retina in vivo. Cell Mol Neurobiol 35:463–471

    Article  CAS  PubMed  Google Scholar 

  42. Kim H, Tu HC, Ren D, Takeuchi O, Jeffers JR, Zambetti GP, Hsieh JJD, Cheng EHY (2009) Stepwise activation of BAX and BAK by tBID, BIM, and PUMA initiates mitochondrial apoptosis. Mol Cell 36:487–499

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Chang Q, Peter ME, Grassi MA (2012) Fas ligand-Fas signaling participates in light-induced apoptotic death in photoreceptor cells. Invest Ophthalmol Vis Sci 53:3703–3716

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Lee MO, Kang HJ, Kim YM, Oum JH, Park J (2002) Repression of FasL expression by retinoic acid involves a novel mechanism of inhibition of transactivation function of the nuclear factors of activated T-cells. Eur J Biochem 269:1162–1170

    Article  CAS  PubMed  Google Scholar 

  45. Shen HM, Liu ZG (2006) JNK signaling pathway is a key modulator in cell death mediated by reactive oxygen and nitrogen species. Free Radical Bio Med 40:928–939

    Article  CAS  Google Scholar 

  46. Imai S, Inokuchi Y, Nakamura S, Tsuruma K, Shimazawa M, Hara H (2010) Systemic administration of a free radical scavenger, edaravone, protects against light-induced photoreceptor degeneration in the mouse retina. Eur J Pharmacol 642:77–85

    Article  CAS  PubMed  Google Scholar 

  47. Crawford MJ, Krishnamoorthy RR, Rudick VL, Collier RJ, Kapin M, Aggarwal BB, al-Ubaidi MR, Agarwal N (2001) Bcl-2 overexpression protects photooxidative stress-induced apoptosis of photoreceptor cells via NF-kappa B preservation. Biochem Bioph Res Co 281:1304–1312

    Article  CAS  Google Scholar 

  48. Xu QH, Konta T, Nakayama KJ, Furusu A, Moreno-Manzano V, Lucio-Cazana J, Ishikawa Y, Fine LG et al (2004) Cellular defense against H2O2-induced apoptosis via map kinase-MKP-1 pathway. Free Radical Bio Med 36:985–993

    Article  CAS  Google Scholar 

  49. Ji Y, Dai Z, Wu G, Wu Z (2016) 4-Hydroxy-2-nonenal induces apoptosis by activating ERK1/2 signaling and depleting intracellular glutathione in intestinal epithelial cells. Sci Rep-Uk 6

  50. Kamata H, Honda S, Maeda S, Chang LF, Hirata H, Karin M (2005) Reactive oxygen species promote TNF alpha-induced death and sustained JNK activation by inhibiting MAP kinase phosphatases. Cell 120:649–661

    Article  CAS  PubMed  Google Scholar 

  51. Taylor DM, Moser R, Regulier E, Breuillaud L, Dixon M, Beesen AA, Elliston L, Silva Santos MF et al (2013) MAP kinase phosphatase 1 (MKP-1/DUSP1) is neuroprotective in Huntington's disease via additive effects of JNK and p38 inhibition. J Neurosci 33:2313–2325

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Koga S, Kojima S, Kishimoto T, Kuwabara S, Yamaguchi A (2012) Over-expression of map kinase phosphatase-1 (MKP-1) suppresses neuronal death through regulating JNK signaling in hypoxia/re-oxygenation. Brain Res 1436:137–146

    Article  CAS  PubMed  Google Scholar 

  53. Celaya AM, Sanchez-Perez I, Bermudez-Munoz JM, Rodriguez-de La Rosa L, Pintado-Berninches L, Perona R et al (2019) Deficit of mitogen-activated protein phosphatase 1 (DUSP1) accelerates progressive hearing loss. Elife 8:

  54. Gui Y, Duan S, Xiao L, Tang J, Li A (2020) Bexarotent attenuated chronic constriction injury-induced spinal neuroinflammation and neuropathic pain by targeting mitogen-activated protein kinase phosphatase-1. J Pain 21:1149–1159

    Article  CAS  PubMed  Google Scholar 

  55. Liu C, Peng M, Laties AM, Wen R (1998) Preconditioning with bright light evokes a protective response against light damage in the rat retina. J Neurosci 18:1337–1344

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Liang D, Zuo A, Shao H, Born WK, O'Brien RL, Kaplan HJ, Sun D (2013) Retinoic acid inhibits CD25+ dendritic cell expansion and gammadelta T-cell activation in experimental autoimmune uveitis. Invest Ophthalmol Vis Sci 54:3493–3503

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Code Availability

Not applicable.

Funding

This study was supported by research grants from the National Key Basic Research Program of China (2013CB967503) and the Youth Project of the National Natural Science Fund (81700851).

Author information

Authors and Affiliations

Authors

Contributions

XZ and JM conceived and designed the experiments. XZ, SX, and MZ performed the experiments. XZ, JM, and ZS analysed the data, wrote, and revised the manuscript. GZ and ZS obtained funding and supervised the experiments. All authors contributed to the article and approved the submitted version.

Corresponding author

Correspondence to Zhongcui Sun.

Ethics declarations

Ethics Approval

All protocols conformed to the ARVO Statement on the Use of Animals in Research and were authorised by the Animal Ethics Committee of the Eye and Ear Nose Throat Hospital of Fudan University, Shanghai, China.

Consent to Participate

Not applicable.

Consent for Publication

All the authors consent on publication.

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

ESM 1

(DOCX 110 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhuang, X., Ma, J., Xu, S. et al. All-Trans Retinoic Acid Attenuates Blue Light-Induced Apoptosis of Retinal Photoreceptors by Upregulating MKP-1 Expression. Mol Neurobiol 58, 4157–4168 (2021). https://doi.org/10.1007/s12035-021-02380-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-021-02380-3

Keywords

Navigation