Skip to main content

Advertisement

Log in

IGF-1-Mediated Survival from Induced Death of Human Primary Cultured Retinal Pigment Epithelial Cells Is Mediated by an Akt-Dependent Signaling Pathway

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Degeneration of the human retinal pigmented epithelium (hRPE) is involved in several eye disorders such as age-related macular degeneration (AMD). In this study, we investigated the protective effect of IGF-1 on human primary cultured RPE cells and its underlying mechanism. IGF-1 dose- and time-dependently promoted the survival of RPE cells from serum deprivation. Western blot showed that IGF-1 stimulated the activation of the PI3K/Akt and MAPK pathways in hRPE. Inhibition of the PI3K/Akt pathway by the PI3K-specific inhibitor, LY294002 or inhibition of Akt by Akt-specific inhibitors Akt inhibitor VIII or SN-38, or downregulation Akt with siRNA specific for Akt blocked the effect of IGF-1 on hRPE. In contrast, blockade of the MAPK pathway with a specific inhibitor PD98059 had no effect. Interestingly, vitreous IGF-1 injection reversed the inhibitory effect of light exposure (a dry AMD model) on both a wave and b wave. Immunocytochemistry showed that vitreous IGF-1 injections promoted the survival of RPE cells in rat retina and the expression of RPE65 in RPE cells from light injury. These results indicate that IGF-1 is able to protect hRPE cell from different insults in vivo and in vitro. Further detailed studies may lead the way to a therapeutic intervention for retinal diseases in which cell death is an underlying contributory mechanism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Carr AJ, Vugler A, Lawrence J, Chen LL, Ahmado A, Chen FK, Semo M, Gias C et al (2009) Molecular characterization and functional analysis of phagocytosis by human embryonic stem cell-derived hRPE cells using a novel human retinal assay. Mol Vis 15:283–295

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Gao H, Hollyfield JG (1992) Aging of the human retina. Differential loss of neurons and retinal pigment epithelial cells. Invest Ophthalmol Vis Sci 33:1–17

    CAS  PubMed  Google Scholar 

  3. Slomiany MG, Rosenzweig SA (2004) IGF-1-induced VEGF and IGFBP-3 secretion correlates with increased HIF-1α expression and activity in retinal pigment epithelial cell line D407. Invest Ophthalmol Vis Sci 45:2838–2847

    Article  PubMed  Google Scholar 

  4. Takagi H, Yoshimura N, Tanihara H, Honda Y (1994) Insulin-like growth factor-related genes, receptors, and binding proteins in cultured human retinal pigment epithelial cells. Invest Ophthalmol Vis Sci 35:916–923

    CAS  PubMed  Google Scholar 

  5. Zapf J, Schmid C, Froesch ER (1984) Biological and immunological properties of insulin-like growth factors (IGF) I and II. Clin Endocrinol Metab 13:3–30

    Article  CAS  PubMed  Google Scholar 

  6. Guan J, Bennet L, Gluckman PD, Gunn AJ (2003) Insulin-like growth factor-1 and post-ischemic brain injury. Prog Neurobiol 70:443–462

    Article  CAS  PubMed  Google Scholar 

  7. Slomiany MG, Rosenzweig SA (2004) Autocrine effects of IGF-1-induced VEGF and IGFBP-3 secretion in retinal pigment epithelial cell line ARPE-19. Am J Physiol Cell Physiol 287:746–753

    Article  Google Scholar 

  8. Rauskolb S, Dombert B, Sendtner M (2017) Insulin-like growth factor 1 in diabetic neuropathy and amyotrophic lateral sclerosis. Neurobiol Dis 97:103–113

    Article  CAS  PubMed  Google Scholar 

  9. LeRoith D, Werner H, Bietner-Johnson D, Roberts CT Jr (1995) Molecular and cellular aspects of the insulin-like growth factor I receptor. Endocr Rev 16:143–163

    Article  CAS  PubMed  Google Scholar 

  10. Pollak MN, Schernhammer ES, Hankinson SE (2004) Hankinson. Insulin-like growth factors and neoplasia. Nat Rev Cancer 4:505–518

    Article  CAS  PubMed  Google Scholar 

  11. Jiang BH, Aoki M, Zheng JZ, Li J, Vogt PK (1999) Myogenic signaling of phosphatidylinositol 3-kinase requires the serine-threonine kinase Akt/protein kinase B. Proc Natl Acad Sci U S A 96:2077–2081

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Lawlor MA, Feng X, Everding DR, Sieger K, Stewart CE, Rotwein P (2000) Dual control of muscle cell survival by distinct growth factor-regulated signaling pathways. Mol Cell Biol 20:3256–3265

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Rommel C, Clarke BA, Zimmermann S, Nunez L, Rossman R, Reid K, Moelling K, Yancopoulos GD et al (1999) Differentiation stage-specific inhibition of the Raf- MEK-ERK pathway by Akt. Science 286:1738–1741

    Article  CAS  PubMed  Google Scholar 

  14. Accili D, Arden KC (2004) FoxOs at the crossroads of cellular metabolism, differentiation, and transformation. Cell 117:421–426

    Article  CAS  PubMed  Google Scholar 

  15. Zheng WH, Kar S, Quirion R (2002) Insulin-like growth factor-1-induced phosphorylation of transcription factor FKHRL1 is mediated by phosphatidylinositol 3-kinase/Akt kinase and role of this pathway in insulin-like growth factor-1-induced survival of cultured hippocampal neurons. Mol Pharmacol 62:225–233

    Article  CAS  PubMed  Google Scholar 

  16. Wang H, Zhou X, Huang J, Mu N, Guo Z, Wen Q, Wang R, Chen S et al (2013) The role of Akt/FoxO3a in the protective effect of venlafaxine against corticosterone-induced cell death in PC12 cells. Psychopharmacology 228:129–141

    Article  CAS  PubMed  Google Scholar 

  17. Holtkamp GM, Kijlstra A, Peek R, de Vos AF (2001) Retinal pigment epithelium-immune system interactions: cytokine production and cytokine-induced changes. Prog Retin Eye Res 20:29–48

    Article  CAS  PubMed  Google Scholar 

  18. Hecquet C, Lefevre G, Valtink M, Engelmann K, Mascarelli F (2002) Activation and role of MAP kinase-dependent pathways in retinal pigment epithelial cells: ERK and hRPE cell proliferation. Invest Ophthalmol Vis Sci 43:3091–3098

    PubMed  Google Scholar 

  19. Pfeiffer A, Spranger J, Meyer-Schwickerath R, Schatz H (1997) Growth factor alterations in advanced diabetic retinopathy: a possible role of blood retina barrier breakdown. Diabetes 46:S26–S30

    Article  CAS  PubMed  Google Scholar 

  20. Neff NT, Prevette D, Houenou LJ, Lewis ME, Glicksman MA, Yin QW, Oppenheim RW (1993) Insulin-like growth factors: putative muscle-derived trophic agents that promote motoneuron survival. J Neurobiol 24:1578–1588

    Article  CAS  PubMed  Google Scholar 

  21. Dobrowolny G, Giacinti C, Pelosi L, Nicoletti C, Winn N, Barberi L, Molinaro M, Rosenthal N et al (2005) Muscle expression of a local Igf-1 isoform protects motor neurons in an ALS mouse model. J Cell Biol 168:193–199

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Weng CY, Kothary PC, Verkade AJ, Reed DM, Del Monte MA (2009) MAP kinase pathway is involved in IGF-1-stimulated proliferation of human retinal pigment epithelial cells (hRPE). Curr Eye Res 34:867–876

    Article  CAS  PubMed  Google Scholar 

  23. Miele C, Rochford JJ, Filippa N, Giorgetti-Peraldi S, Van Obberghen E (2000) Insulin and insulin-like growth factor-1induce vascular endothelial growth factor mRNA expression via different signaling pathways. J Biol Chem 275:21695–21702

    Article  CAS  PubMed  Google Scholar 

  24. Cui Q, Almazan G (2007) IGF-1-induced oligodendrocyte progenitor proliferation requires PI3K/Akt, MEK/ERK, and Src-like tyrosine kinases. J Neurochem 100:1480–1493

    CAS  PubMed  Google Scholar 

  25. Ivanisevic L, Zheng W, Woo SB, Neet KE, Saragovi HU (2007) TrkA receptor “hot spots” for binding of NT-3 as a heterologous ligand. J Biol Chem 282:16754–16763

    Article  CAS  PubMed  Google Scholar 

  26. Delafontaine P, Song YH, Li Y (2004) Expression, regulation, and function of IGF-1, IGF-1R, and IGF-1 binding proteins in blood vessels. Arterioscler Thromb Vasc Biol 24:435–444

    Article  CAS  PubMed  Google Scholar 

  27. Demontis F, Perrimon N (2010) FOXO/4E-BP signaling in drosophila muscles regulates organism-wide proteostasis during aging. Cell 143:813–825

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Salih DA, Brunet A (2008) FoxO transcription factors in the maintenance of cellular homeostasis during aging. Curr Opin Cell Biol 20:126–136

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Manolopoulos KN, Klotz LO, Korsten P, Bornstein SR, Barthel A (2010) Linking Alzheimer’s disease to insulin resistance: the FoxO response to oxidative stress. Mol Psychiatry 15:1046–1052

    Article  CAS  PubMed  Google Scholar 

  30. Barthel A, Schmoll D, Unterman TG (2005) FoxO proteins in insulin action and metabolism. Trends Endocrinol Metab 16:183–189

    Article  CAS  PubMed  Google Scholar 

  31. Nakae J, Oki M, Cao Y (2008) The FoxO transcription factors and metabolic regulation. FEBS Lett 582:54–67

    Article  CAS  PubMed  Google Scholar 

  32. Manolagas SC, Almeida M (2007) Gone with the Wnts: beta-catenin, T-cell factor, forkhead box O, and oxidative stress in agedependent diseases of bone, lipid, and glucose metabolism. Mol Endocrinol 21:2605–2614

    Article  CAS  PubMed  Google Scholar 

  33. Greer EL, Brunet A (2008) FOXO transcription factors in ageing and cancer. Acta Physiol (Oxf) 192:19–28

    Article  CAS  Google Scholar 

  34. Kim Y, Seger R, Suresh Babu CV, Hwang SY, Yoo YS (2004) A positive role of the PI3-K/Akt signaling pathway in PC12 cell differentiation. Mol Cells 18:353–359

    CAS  PubMed  Google Scholar 

  35. Alejandro EU, Johnson JD (2008) Inhibition of Raf-1 alters multiple downstream pathways to induce pancreatic β-cell apoptosis. J Biol Chem 283:2407–2417

    Article  CAS  PubMed  Google Scholar 

  36. Costales J, Kolevzon A (2016) The therapeutic potential of insulin-like growth factor-1 in central nervous system disorders. Neurosci Biobehav Rev 63:207–222

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Sheline CT, Zhou Y, Bai S (2010) Light-induced photoreceptor and RPE degeneration involve zinc toxicity and are attenuated by pyruvate, nicotinamide, or cyclic light. Mol Vis 16:2639–2652

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Stein L, Roy K, Lei L, Kaushal S (2011) Clinical gene therapy for the treatment of RPE65-associated Leber congenital amaurosis. Expert Opin Biol Ther 11:429–439

    Article  CAS  PubMed  Google Scholar 

  39. Young B, Eggenberger E, Kaufman D (2012) Current electrophysiology in ophthalmology: a review. Curr Opin Ophthalmol 23:497–505

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This research was financially supported by the Guangdong Provincial Project of Science and Technology (2011B050200005), the National Natural Science Foundation of China (31371088), SRG2015-00004-FHS and MYRG2016-00052-FHS from University of Macau, and the Science and Technology Development Fund (FDCT) of Macao (FDCT 021/2015/A1 and FDCT 016/2016/A1).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wenhua Zheng.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Wenhua Zheng, Qian Meng, and Haitao Wang contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zheng, W., Meng, Q., Wang, H. et al. IGF-1-Mediated Survival from Induced Death of Human Primary Cultured Retinal Pigment Epithelial Cells Is Mediated by an Akt-Dependent Signaling Pathway. Mol Neurobiol 55, 1915–1927 (2018). https://doi.org/10.1007/s12035-017-0447-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-017-0447-0

Keywords

Navigation