Skip to main content

Advertisement

Log in

Assessment of the Effects of Stretch-Injury on Primary Rat Microglia

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Mechanical stretch-injury is a prominent force involved in the etiology of traumatic brain injury (TBI). It is known to directly cause damage and dysfunction in neurons, astrocytes, and endothelial cells. However, the deleterious effects of stretch-injury on microglia, the brain’s primary immunocompetent cell, are currently unknown. The Cell Injury Controller II (CICII), a validated cellular neurotrauma model, was used to induce a mechanical stretch-injury in primary rat microglia. Statistical analysis utilized Student’s t test and one- and two-way ANOVAs with Tukey’s and Sidak’s multiple comparisons, respectively. Cells exposed to stretch-injury showed no signs of membrane permeability, necrosis, or apoptosis, as measured by media-derived lactate dehydrogenase (LDH) and cleaved-caspase 3 immunocytochemistry, respectively. Interestingly, injured cells displayed a functional deficit in nitric oxide production (NO), identified by media assay and immunocytochemistry, at 6, 12, 18, and 48 h post-injury. Furthermore, gene expression analysis revealed the expression of inflammatory cytokines IL-6 and IL-10, and enzyme arginase-1 was significantly downregulated at 12 h post-injury. Time course evaluation of migration, using a cell exclusion zone assay, showed stretch-injured cells display decreased migration into the exclusion zone at 48- and 72-h post-stretch. Lastly, coinciding with the functional immune deficits was a significant change in morphology, with process length decreasing and cell diameter increasing following an injury at 12 h. Taken together, the data demonstrate that stretch-injury produces significant alterations in microglial function, which may have a marked impact on their response to injury or their interaction with other cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data Availability

The datasets used and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. Byrnes KR, Wilson CM, Brabazon F, von Leden R, Jurgens JS, Oakes TR, Selwyn RG (2014) FDG-PET imaging in mild traumatic brain injury: a critical review. Front Neuroenerg 5:13. https://doi.org/10.3389/fnene.2013.00013

    Article  Google Scholar 

  2. Kumar A, Alvarez-Croda D-M, Stoica BA, Faden AI, Loane DJ (2016) Microglial/macrophage polarization dynamics following traumatic brain injury. J Neurotrauma 33(19):1732–1750. https://doi.org/10.1089/neu.2015.4268

    Article  PubMed  PubMed Central  Google Scholar 

  3. Brabazon F, Bermudez S, Shaughness M, Khayrullina G, Byrnes KR (2018) The effects of insulin on the inflammatory activity of BV2 microglia. PLoS One 13(8):e0201878. https://doi.org/10.1371/journal.pone.0201878

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Kumar A, Stoica BA, Loane DJ, Yang M, Abulwerdi G, Khan N, Kumar A, Thom SR et al (2017) Microglial-derived microparticles mediate neuroinflammation after traumatic brain injury. J Neuroinflammation 14(1):47–47. https://doi.org/10.1186/s12974-017-0819-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Henry RJ, Ritzel RM, Barrett JP, Doran SJ, Jiao Y, Leach JB, Szeto GL, Wu J et al (2020) Microglial depletion with CSF1R inhibitor during chronic phase of experimental traumatic brain injury reduces neurodegeneration and neurological deficits. J Neurosci 40(14):2960–2974. https://doi.org/10.1523/jneurosci.2402-19.2020

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Gao T, Chen Z, Chen H, Yuan H, Wang Y, Peng X, Wei C, Yang J et al (2018) Inhibition of HMGB1 mediates neuroprotection of traumatic brain injury by modulating the microglia/macrophage polarization. Biochem Biophys Res Commun 497(1):430–436. https://doi.org/10.1016/j.bbrc.2018.02.102

    Article  CAS  PubMed  Google Scholar 

  7. Villapol S, Loane DJ, Burns MP (2017) Sexual dimorphism in the inflammatory response to traumatic brain injury. Glia 65(9):1423–1438. https://doi.org/10.1002/glia.23171

    Article  PubMed  PubMed Central  Google Scholar 

  8. Coughlin JM, Wang Y, Munro CA, Ma S, Yue C, Chen S, Airan R, Kim PK et al (2015) Neuroinflammation and brain atrophy in former NFL players: an in vivo multimodal imaging pilot study. Neurobiol Dis 74:58–65. https://doi.org/10.1016/j.nbd.2014.10.019

    Article  PubMed  Google Scholar 

  9. Ramlackhansingh AF, Brooks DJ, Greenwood RJ, Bose SK, Turkheimer FE, Kinnunen KM, Gentleman S, Heckemann RA et al (2011) Inflammation after trauma: microglial activation and traumatic brain injury. Ann Neurol 70(3):374–383. https://doi.org/10.1002/ana.22455

    Article  PubMed  Google Scholar 

  10. Hemphill MA, Dabiri BE, Gabriele S, Kerscher L, Franck C, Goss JA, Alford PW, Parker KK (2011) A possible role for integrin signaling in diffuse axonal injury. PLoS One 6(7):e22899. https://doi.org/10.1371/journal.pone.0022899

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. López-García I, Gerő D, Szczesny B, Szoleczky P, Olah G, Módis K, Zhang K, Gao J et al (2018) Development of a stretch-induced neurotrauma model for medium-throughput screening in vitro: identification of rifampicin as a neuroprotectant. Br J Pharmacol 175(2):284–300. https://doi.org/10.1111/bph.13642

    Article  CAS  PubMed  Google Scholar 

  12. Augustine C, Cepinskas G, Fraser DD (2014) Traumatic injury elicits JNK-mediated human astrocyte retraction in vitro. Neuroscience 274:1–10. https://doi.org/10.1016/j.neuroscience.2014.05.009

    Article  CAS  PubMed  Google Scholar 

  13. Salvador E, Neuhaus W, Foerster C (2013) Stretch in brain microvascular endothelial cells (cEND) as an in vitro traumatic brain injury model of the blood brain barrier. J Vis Exp 80:e50928. https://doi.org/10.3791/50928

    Article  CAS  Google Scholar 

  14. Yauger YJ, Bermudez S, Moritz KE, Glaser E, Stoica B, Byrnes KR (2019) Iron accentuated reactive oxygen species release by NADPH oxidase in activated microglia contributes to oxidative stress in vitro. J Neuroinflammation 16(1):41. https://doi.org/10.1186/s12974-019-1430-7

    Article  PubMed  PubMed Central  Google Scholar 

  15. Qu WS, Liu JL, Li CY, Li X, Xie MJ, Wang W, Tian DS (2015) Rapidly activated epidermal growth factor receptor mediates lipopolysaccharide-triggered migration of microglia. Neurochem Int 90:85–92. https://doi.org/10.1016/j.neuint.2015.07.007

    Article  CAS  PubMed  Google Scholar 

  16. Faden AI, Wu J, Stoica BA, Loane DJ (2016) Progressive inflammation-mediated neurodegeneration after traumatic brain or spinal cord injury. Br J Pharmacol 173(4):681–691. https://doi.org/10.1111/bph.13179

    Article  CAS  PubMed  Google Scholar 

  17. Tamashiro TT, Dalgard CL, Byrnes KR (2012) Primary microglia isolation from mixed glial cell cultures of neonatal rat brain tissue. J Vis Exp 66:e3814–e3814. https://doi.org/10.3791/3814

    Article  CAS  Google Scholar 

  18. Ciacci-Zanella J, Stone M, Henderson G, Jones C (1999) The latency-related gene of bovine herpesvirus 1 inhibits programmed cell death. J Virol 73(12):9734–9740. https://doi.org/10.1128/JVI.73.12.9734-9740.1999

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Byrnes KR, Stoica B, Loane DJ, Riccio A, Davis MI, Faden AI (2009) Metabotropic glutamate receptor 5 activation inhibits microglial associated inflammation and neurotoxicity. Glia 57(5):550–560. https://doi.org/10.1002/glia.20783

    Article  PubMed  PubMed Central  Google Scholar 

  20. Cooney SJ, Bermudez-Sabogal SL, Byrnes KR (2013) Cellular and temporal expression of NADPH oxidase (NOX) isotypes after brain injury. J Neuroinflammation 10:155. https://doi.org/10.1186/1742-2094-10-155

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Izzy S, Liu Q, Fang Z, Lule S, Wu L, Chung JY, Sarro-Schwartz A, Brown-Whalen A et al (2019) Time-dependent changes in microglia transcriptional networks following traumatic brain injury. Front Cell Neurosci 13:307–307. https://doi.org/10.3389/fncel.2019.00307

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Lobo-Silva D, Carriche GM, Castro AG, Roque S, Saraiva M (2016) Balancing the immune response in the brain: IL-10 and its regulation. J Neuroinflammation 13(1):297–297. https://doi.org/10.1186/s12974-016-0763-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Loane DJ, Kumar A (2016) Microglia in the TBI brain: the good, the bad, and the dysregulated. Exp Neurol 275:316–327. https://doi.org/10.1016/j.expneurol.2015.08.018

    Article  CAS  PubMed  Google Scholar 

  24. Butovsky O, Jedrychowski MP, Moore CS, Cialic R, Lanser AJ, Gabriely G, Koeglsperger T, Dake B et al (2014) Identification of a unique TGF-β-dependent molecular and functional signature in microglia. Nat Neurosci 17(1):131–143. https://doi.org/10.1038/nn.3599

    Article  CAS  PubMed  Google Scholar 

  25. Benson BA, Vercellotti GM, Dalmasso AP (2015) IL-4 and IL-13 induce protection from complement and melittin in endothelial cells despite initial loss of cytoplasmic proteins: membrane resealing impairs quantifying cytotoxicity with the lactate dehydrogenase permeability assay. Xenotransplantation 22(4):295–301. https://doi.org/10.1111/xen.12172

    Article  PubMed  PubMed Central  Google Scholar 

  26. Ellis EF, McKinney JS, Willoughby KA, Liang S, Povlishock JT (1995) A new model for rapid stretch-induced injury of cells in culture: characterization of the model using astrocytes. J Neurotrauma 12(3):325–339. https://doi.org/10.1089/neu.1995.12.325

    Article  CAS  PubMed  Google Scholar 

  27. Xu Z, Liu Y, Yang D, Yuan F, Ding J, Chen H, Tian H (2017) Sesamin protects SH-SY5Y cells against mechanical stretch injury and promoting cell survival. BMC Neurosci 18(1):57–57. https://doi.org/10.1186/s12868-017-0378-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Vainchtein ID, Molofsky AV (2020) Astrocytes and microglia: in sickness and in health. Trends Neurosci 43(3):144–154. https://doi.org/10.1016/j.tins.2020.01.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Fenn AM, Skendelas JP, Moussa DN, Muccigrosso MM, Popovich PG, Lifshitz J, Eiferman DS, Godbout JP (2015) Methylene blue attenuates traumatic brain injury-associated neuroinflammation and acute depressive-like behavior in mice. J Neurotrauma 32(2):127–138. https://doi.org/10.1089/neu.2014.3514

    Article  PubMed  PubMed Central  Google Scholar 

  30. Kumar A, Stoica BA, Sabirzhanov B, Burns MP, Faden AI, Loane DJ (2013) Traumatic brain injury in aged animals increases lesion size and chronically alters microglial/macrophage classical and alternative activation states. Neurobiol Aging 34(5):1397–1411. https://doi.org/10.1016/j.neurobiolaging.2012.11.013

    Article  CAS  PubMed  Google Scholar 

  31. Kuwar R, Rolfe A, Di L, Xu H, He L, Jiang Y, Zhang S, Sun D (2019) A novel small molecular NLRP3 inflammasome inhibitor alleviates neuroinflammatory response following traumatic brain injury. J Neuroinflammation 16(1):81. https://doi.org/10.1186/s12974-019-1471-y

    Article  PubMed  PubMed Central  Google Scholar 

  32. Kumar A, Henry RJ, Stoica BA, Loane DJ, Abulwerdi G, Bhat SA, Faden AI (2019) Neutral sphingomyelinase inhibition alleviates LPS-induced microglia activation and neuroinflammation after experimental traumatic brain injury. J Pharmacol Exp Ther 368(3):338–352. https://doi.org/10.1124/jpet.118.253955

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Shin N, Kim HG, Shin HJ, Kim S, Kwon HH, Baek H, Yi MH, Zhang E et al (2019) Uncoupled endothelial nitric oxide synthase enhances p-Tau in chronic traumatic encephalopathy mouse model. Antioxid Redox Signal 30(13):1601–1620. https://doi.org/10.1089/ars.2017.7280

    Article  CAS  PubMed  Google Scholar 

  34. Günther M, Al Nimer F, Piehl F, Risling M, Mathiesen T (2018) Susceptibility to oxidative stress is determined by genetic background in neuronal cell cultures. eNeuro 5(2):ENEURO.0335–ENEU17.2018. https://doi.org/10.1523/eneuro.0335-17.2018

    Article  CAS  Google Scholar 

  35. Ziaja M, Pyka J, Machowska A, Maslanka A, Plonka PM (2007) Nitric oxide spin-trapping and NADPH-diaphorase activity in mature rat brain after injury. J Neurotrauma 24(12):1845–1854. https://doi.org/10.1089/neu.2007.0303

    Article  PubMed  Google Scholar 

  36. Lucke-Wold BP, Logsdon AF, Turner RC, Huber JD, Rosen CL (2017) Endoplasmic reticulum stress modulation as a target for ameliorating effects of blast induced traumatic brain injury. J Neurotrauma 34(S1):S62–s70. https://doi.org/10.1089/neu.2016.4680

    Article  PubMed  Google Scholar 

  37. Tan HP, Guo Q, Hua G, Chen JX, Liang JC (2018) Inhibition of endoplasmic reticulum stress alleviates secondary injury after traumatic brain injury. Neural Regen Res 13(5):827–836. https://doi.org/10.4103/1673-5374.232477

    Article  PubMed  PubMed Central  Google Scholar 

  38. Yu J, Zhang Y, Ma H, Zeng R, Liu R, Wang P, Jin X, Zhao Y (2020) Epitranscriptomic profiling of N6-methyladenosine-related RNA methylation in rat cerebral cortex following traumatic brain injury. Mol Brain 13(1):11. https://doi.org/10.1186/s13041-020-0554-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Castro A, Bartos D, Kutas M, Weiss G (1974) A new microcolumn for steroid separation in radioimmunoassay. Clin Biochem 7(1):64–67. https://doi.org/10.1016/s0009-9120(74)90464-0

    Article  CAS  PubMed  Google Scholar 

  40. Henry RJ, Doran SJ, Barrett JP, Meadows VE, Sabirzhanov B, Stoica BA, Loane DJ, Faden AI (2019) Inhibition of miR-155 limits neuroinflammation and improves functional recovery after experimental traumatic brain injury in mice. Neurotherapeutics 16(1):216–230. https://doi.org/10.1007/s13311-018-0665-9

    Article  CAS  PubMed  Google Scholar 

  41. Brown GC (2007) Mechanisms of inflammatory neurodegeneration: iNOS and NADPH oxidase. Biochem Soc Trans 35(Pt 5):1119–1121. https://doi.org/10.1042/bst0351119

    Article  CAS  PubMed  Google Scholar 

  42. Chhor V, Le Charpentier T, Lebon S, Oré MV, Celador IL, Josserand J, Degos V, Jacotot E et al (2013) Characterization of phenotype markers and neuronotoxic potential of polarised primary microglia in vitro. Brain Behav Immun 32:70–85. https://doi.org/10.1016/j.bbi.2013.02.005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Chuang DY, Simonyi A, Kotzbauer PT, Gu Z, Sun GY (2015) Cytosolic phospholipase A2 plays a crucial role in ROS/NO signaling during microglial activation through the lipoxygenase pathway. J Neuroinflammation 12:199. https://doi.org/10.1186/s12974-015-0419-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Dalgard CL, Cole JT, Kean WS, Lucky JJ, Sukumar G, McMullen DC, Pollard HB, Watson WD (2012) The cytokine temporal profile in rat cortex after controlled cortical impact. Front Mol Neurosci 5:6. https://doi.org/10.3389/fnmol.2012.00006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Edwards KA, Pattinson CL, Guedes VA, Peyer J, Moore C, Davis T, Devoto C, Turtzo LC et al (2020) Inflammatory cytokines associate with neuroimaging after acute mild traumatic brain injury. Front Neurol 11:348–348. https://doi.org/10.3389/fneur.2020.00348

    Article  PubMed  PubMed Central  Google Scholar 

  46. Kamm K, VanderKolk W, Lawrence C, Jonker M, Davis AT (2006) The effect of traumatic brain injury upon the concentration and expression of Interleukin-1β and Interleukin-10 in the rat. J Trauma Acute Care Surg 60(1):152–157

    Article  Google Scholar 

  47. Herzog C, Pons Garcia L, Keatinge M, Greenald D, Moritz C, Peri F, Herrgen L (2019) Rapid clearance of cellular debris by microglia limits secondary neuronal cell death after brain injury in vivo. Development 146(9):dev174698. https://doi.org/10.1242/dev.174698

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Caplan HW, Cardenas F, Gudenkauf F, Zelnick P, Xue H, Cox CS, Bedi SS (2020) Spatiotemporal distribution of microglia after traumatic brain injury in male mice. ASN Neuro 12:1759091420911770. https://doi.org/10.1177/1759091420911770

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Ji J, Tyurina YY, Tang M, Feng W, Stolz DB, Clark RSB, Meaney DF, Kochanek PM et al (2012) Mitochondrial injury after mechanical stretch of cortical neurons in vitro: biomarkers of apoptosis and selective peroxidation of anionic phospholipids. J Neurotrauma 29(5):776–788. https://doi.org/10.1089/neu.2010.1602

    Article  PubMed  PubMed Central  Google Scholar 

  50. Saykally JN, Hatic H, Keeley KL, Jain SC, Ravindranath V, Citron BA (2017) Withania somnifera extract protects model neurons from in vitro traumatic injury. Cell Transplant 26(7):1193–1201. https://doi.org/10.1177/0963689717714320

    Article  PubMed  PubMed Central  Google Scholar 

  51. Wanner IB (2012) An in vitro trauma model to study rodent and human astrocyte reactivity. Methods Mol Biol 814:189–219. https://doi.org/10.1007/978-1-61779-452-0_14

    Article  CAS  PubMed  Google Scholar 

  52. Fan Y, Chen Z, Pathak JL, Carneiro AMD, Chung CY (2018) Differential regulation of adhesion and phagocytosis of resting and activated microglia by Ddpamine. Front Cell Neurosci 12:309–309. https://doi.org/10.3389/fncel.2018.00309

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Hornik TC, Vilalta A, Brown GC (2016) Activated microglia cause reversible apoptosis of pheochromocytoma cells, inducing their cell death by phagocytosis. J Cell Sci 129(1):65–79. https://doi.org/10.1242/jcs.174631

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Yi S, Jiang X, Tang X, Li Y, Xiao C, Zhang J, Zhou T (2020) IL-4 and IL-10 promotes phagocytic activity of microglia by up-regulation of TREM2. Cytotechnology. 72:589–602. https://doi.org/10.1007/s10616-020-00409-4

    Article  CAS  PubMed  Google Scholar 

  55. Chamak B, Mallat M (1991) Fibronectin and laminin regulate the in vitro differentiation of microglial cells. Neuroscience 45(3):513–527. https://doi.org/10.1016/0306-4522(91)90267-r

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Not applicable

Funding

This work was supported by the Defense Health Program, Congressionally Directed Medical Research Programs through the Spinal Cord Injury Research Program under Award No. SC170244. Opinions, interpretations, conclusions, and recommendations are those of the author and are not necessarily endorsed by the Defense Health Program, Congressionally Directed Medical Research Programs, the Department of Defense, or the Uniformed Services University. Additional funding was provided by the Center for the Study of Traumatic Stress (CSTS) at USUHS.

Author information

Authors and Affiliations

Authors

Contributions

MC designed and performed experiments, analyzed data, and drafted the manuscript. KB co-conceived the study, participated in its design and coordination, and helped draft the manuscript. All authors have read and approved the final version of the manuscript.

Corresponding author

Correspondence to Mike Shaughness.

Ethics declarations

Ethics Approval and Consent to Participate

Not applicable

Consent for Publication

Not applicable

Competing Interests

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shaughness, M., Byrnes, K. Assessment of the Effects of Stretch-Injury on Primary Rat Microglia. Mol Neurobiol 58, 3545–3560 (2021). https://doi.org/10.1007/s12035-021-02362-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-021-02362-5

Keywords

Navigation