Skip to main content

An In Vitro Trauma Model to Study Rodent and Human Astrocyte Reactivity

  • Protocol
  • First Online:
Astrocytes

Part of the book series: Methods in Molecular Biology ((MIMB,volume 814))

Abstract

Protocols are presented describing a unique in vitro injury model and how to culture and mature mouse, rat, and human astrocytes for its use. This injury model produces widespread injury and astrocyte reactivity that enable quantitative measurements of morphological, biochemical, and functional changes in rodent and human reactive astrocytes. To investigate structural and molecular mechanisms of reactivity in vitro, cultured astrocytes need to be purified and then in vitro “matured” to reach a highly differentiated state. This is achieved by culturing astrocytes on deformable collagen-coated membranes in the presence of adult-derived horse serum (HS), followed by its stepwise withdrawal. These in vitro matured, process-bearing, quiescent astrocytes are then subjected to mechanical stretch injury by an abrupt pressure pulse from a pressure control device that briefly deforms the culture well bottom. This inflicts a measured reproducible, widespread strain that induces reactivity and injury in rodent and human astrocytes. Cross-species comparisons are possible because mouse, rat, and human astrocytes are grown using essentially the same in vitro treatment regimen. Human astrocytes from fetal cerebral cortex are compared to those derived from cortical biopsies of epilepsy patients (ages 1–12 years old), with regard to growth, purity, and differentiation. This opens a unique opportunity for future studies on glial biology, maturation, and pathology of human astrocytes. Prototypical astrocyte proteins including GFAP, S100, aquaporin4, glutamate transporters, and tenascin are expressed in mouse, rat, and human in vitro matured astrocyte. Upon pressure-stretching, rodent and human astrocytes undergo dynamic morphological, gene expression, and protein changes that are characteristic for trauma-induced reactive astrogliosis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

bFGF:

Basic fibroblast growth factor

CIC II:

Second-generation cell injury controller

CM:

Conditioned medium

CNS:

Central nervous system

Conc.:

Concentration

EGF:

Epidermal growth factor

FBS:

Fetal bovine serum

HS:

Horse serum

Min:

Minutes

RT:

Room temperature

SD:

Standard deviation

References

  1. Montgomery, D.L., Astrocytes: form, functions, and roles in disease. Vet Pathol, 1994. 31(2): p. 145–67.

    Article  PubMed  CAS  Google Scholar 

  2. Sofroniew, M.V. and H.V. Vinters, Astrocytes: biology and pathology. Acta Neuropathol, 2010. 119(1): p. 7–35.

    Article  PubMed  Google Scholar 

  3. Escartin, C. and G. Bonvento, Targeted activation of astrocytes: a potential neuroprotective strategy. Mol Neurobiol, 2008. 38(3): p. 231–41.

    Article  PubMed  CAS  Google Scholar 

  4. Ridet, J.L., et al., Reactive astrocytes: cellular and molecular cues to biological function. Trends Neurosci, 1997. 20(12): p. 570–7.

    Article  PubMed  CAS  Google Scholar 

  5. Eddleston, M. and L. Mucke, Molecular profile of reactive astrocytes--implications for their role in neurologic disease. Neuroscience, 1993. 54(1): p. 15–36.

    Article  PubMed  CAS  Google Scholar 

  6. Sofroniew, M.V., Molecular dissection of reactive astrogliosis and glial scar formation. Trends Neurosci, 2009. 32(12): p. 638–47.

    Article  PubMed  CAS  Google Scholar 

  7. Jayakumar, A.R., et al., Trauma-induced cell swelling in cultured astrocytes. J Neuropathol Exp Neurol, 2008. 67(5): p. 417–27.

    Article  PubMed  CAS  Google Scholar 

  8. Norenberg, M.D., K.V. Rama Rao, and A.R. Jayakumar, Signaling factors in the mechanism of ammonia neurotoxicity. Metab Brain Dis, 2009. 24(1): p. 103–17.

    Google Scholar 

  9. Rao, K.V., et al., Aquaporin-4 in manganese-treated cultured astrocytes. Glia. 58(12): p. 1490–9.

    Google Scholar 

  10. Holtje, M., et al., Glutamate uptake and release by astrocytes are enhanced by Clostridium botulinum C3 protein. J Biol Chem, 2008. 283(14): p. 9289–99.

    Article  PubMed  Google Scholar 

  11. Ramakers, G.J. and W.H. Moolenaar, Regulation of astrocyte morphology by RhoA and lysophosphatidic acid. Exp Cell Res, 1998. 245(2): p. 252–62.

    Article  PubMed  CAS  Google Scholar 

  12. Chen, C.J., et al., L-glutamate activates RhoA GTPase leading to suppression of astrocyte stellation. Eur J Neurosci, 2006. 23(8): p. 1977–87.

    Article  PubMed  Google Scholar 

  13. Salinero, O., et al., beta-Amyloid peptide induced cytoskeletal reorganization in cultured astrocytes. J Neurosci Res, 1997. 47(2): p. 216–23.

    Article  PubMed  CAS  Google Scholar 

  14. Liu, B. and A.H. Neufeld, Activation of epidermal growth factor receptor causes astrocytes to form cribriform structures. Glia, 2004. 46(2): p. 153–68.

    Article  PubMed  Google Scholar 

  15. John, G.R., et al., Interleukin-1beta induces a reactive astroglial phenotype via deactivation of the Rho GTPase-Rock axis. J Neurosci, 2004. 24(11): p. 2837–45.

    Article  PubMed  CAS  Google Scholar 

  16. John, G.R., S.C. Lee, and C.F. Brosnan, Cytokines: powerful regulators of glial cell activation. Neuroscientist, 2003. 9(1): p. 10–22.

    Article  PubMed  CAS  Google Scholar 

  17. Chung, I.Y. and E.N. Benveniste, Tumor necrosis factor-alpha production by astrocytes. Induction by lipopolysaccharide, IFN-gamma, and IL-1 beta. J Immunol, 1990. 144(8): p. 2999–3007.

    PubMed  CAS  Google Scholar 

  18. Safavi-Abbasi, S., J.R. Wolff, and M. Missler, Rapid morphological changes in astrocytes are accompanied by redistribution but not by quantitative changes of cytoskeletal proteins. Glia, 2001. 36(1): p. 102–15.

    Article  PubMed  CAS  Google Scholar 

  19. Lee, S.C., D.W. Dickson, and C.F. Brosnan, Interleukin-1, nitric oxide and reactive astrocytes. Brain Behav Immun, 1995. 9(4): p. 345–54.

    Article  PubMed  CAS  Google Scholar 

  20. Morrison, R.S., et al., Hormones and growth factors induce the synthesis of glial fibrillary acidic protein in rat brain astrocytes. J Neurosci Res, 1985. 14(2): p. 167–76.

    Article  PubMed  CAS  Google Scholar 

  21. Liu, B. and A.H. Neufeld, Activation of epidermal growth factor receptors in astrocytes: from development to neural injury. J Neurosci Res, 2007. 85(16): p. 3523–9.

    Article  PubMed  CAS  Google Scholar 

  22. Hudgins, S.N. and S.W. Levison, Ciliary neurotrophic factor stimulates astroglial hypertrophy in vivo and in vitro. Exp Neurol, 1998. 150(2): p. 171–82.

    Article  PubMed  CAS  Google Scholar 

  23. Heffron, D.S. and J.W. Mandell, Opposing roles of ERK and p38 MAP kinases in FGF2-induced astroglial process extension. Mol Cell Neurosci, 2005. 28(4): p. 779-90.

    Article  PubMed  CAS  Google Scholar 

  24. Gadea, A., S. Schinelli, and V. Gallo, Endothelin-1 regulates astrocyte proliferation and reactive gliosis via a JNK/c-Jun signaling pathway. J Neurosci, 2008. 28(10): p. 2394–408.

    Article  PubMed  CAS  Google Scholar 

  25. Lim, R., K. Mitsunobu, and W.K. Li, Maturation-stimulation effect of brain extract and dibutyryl cyclic AMP on dissociated embryonic brain cells in culture. Exp Cell Res, 1973. 79(1): p. 243–6.

    Article  PubMed  CAS  Google Scholar 

  26. Moonen, G., et al., Variability of the effects of serum-free medium, dibutyryl-cyclic AMP or theophylline on the morphology of cultured new-born rat astroblasts. Cell Tissue Res, 1975. 163(3): p. 365–72.

    Article  PubMed  CAS  Google Scholar 

  27. Fedoroff, S., et al., Astrocyte cell lineage. V. Similarity of astrocytes that form in the presence of dBcAMP in cultures to reactive astrocytes in vivo. J Neurosci Res, 1984. 12(1): p. 14–27.

    Article  PubMed  CAS  Google Scholar 

  28. Stanimirovic, D.B., et al., Developmental regulation of glutamate transporters and glutamine synthetase activity in astrocyte cultures differentiated in vitro. Int J Dev Neurosci, 1999. 17(3): p. 173–84.

    Article  PubMed  CAS  Google Scholar 

  29. Daginakatte, G.C., et al., Expression profiling identifies a molecular signature of reactive astrocytes stimulated by cyclic AMP or proinflammatory cytokines. Exp Neurol, 2008. 210(1): p. 261–7.

    Article  PubMed  CAS  Google Scholar 

  30. Wandosell, F., P. Bovolenta, and M. Nieto-Sampedro, Differences between reactive astrocytes and cultured astrocytes treated with di-butyryl-cyclic AMP. J Neuropathol Exp Neurol, 1993. 52(3): p. 205–15.

    Article  PubMed  CAS  Google Scholar 

  31. Shearer, M.C. and J.W. Fawcett, The astrocyte/meningeal cell interface--a barrier to successful nerve regeneration? Cell Tissue Res, 2001. 305(2): p. 267–73.

    Article  PubMed  CAS  Google Scholar 

  32. Shearer, M.C., et al., The astrocyte/meningeal cell interface is a barrier to neurite outgrowth which can be overcome by manipulation of inhibitory molecules or axonal signalling pathways. Mol Cell Neurosci, 2003. 24(4): p. 913–25.

    Article  PubMed  CAS  Google Scholar 

  33. Fitch, M.T., et al., Cellular and molecular mechanisms of glial scarring and progressive cavitation: in vivo and in vitro analysis of inflammation-induced secondary injury after CNS trauma. J Neurosci, 1999. 19(19): p. 8182–98.

    PubMed  CAS  Google Scholar 

  34. Kornyei, Z., et al., Proliferative and migratory responses of astrocytes to in vitro injury. J Neurosci Res, 2000. 61(4): p. 421–9.

    Article  PubMed  CAS  Google Scholar 

  35. Yu, A.C., Y.L. Lee, and L.F. Eng, Astrogliosis in culture: I. The model and the effect of antisense oligonucleotides on glial fibrillary acidic protein synthesis. J Neurosci Res, 1993. 34(3): p. 295–303.

    Article  PubMed  CAS  Google Scholar 

  36. Petito, C.K., B.H. Juurlink, and L. Hertz, In vitro models differentiating between direct and indirect effects of ischemia on astrocytes. Exp Neurol, 1991. 113(3): p. 364–72.

    Article  PubMed  CAS  Google Scholar 

  37. Ellis, E.F., et al., A new model for rapid stretch-induced injury of cells in culture: characterization of the model using astrocytes. J Neurotrauma, 1995. 12(3): p. 325–39.

    Article  PubMed  CAS  Google Scholar 

  38. Wanner, I.B., et al., A new in vitro model of the glial scar inhibits axon growth. Glia, 2008. 56(15): p. 1691–1709.

    Article  PubMed  Google Scholar 

  39. Neary, J.T., et al., Activation of extracellular signal-regulated kinase by stretch-induced injury in astrocytes involves extracellular ATP and P2 purinergic receptors. J Neurosci, 2003. 23(6): p. 2348–56.

    Google Scholar 

  40. Bowman, C.L., et al., Mechanotransducing ion channels in astrocytes. Brain Res, 1992. 584(1-2): p. 272–86.

    Article  PubMed  CAS  Google Scholar 

  41. Di, X., et al., Mechanical injury alters volume activated ion channels in cortical astrocytes. Acta Neurochir Suppl, 2000. 76: p. 379–83.

    PubMed  CAS  Google Scholar 

  42. Ostrow, L.W. and F. Sachs, Mechanosensation and endothelin in astrocytes--hypothetical roles in CNS pathophysiology. Brain Res Brain Res Rev, 2005. 48(3): p. 488–508.

    Article  PubMed  CAS  Google Scholar 

  43. Gennarelli, T.A. and L.E. Thibault, Biological models of head injury, in Central Nervous System Trauma Status Report-1985, D.P. Becker and J.T. Povlishock, Editors. 1985, National Inst. of Health: Bethesda, MD. p. 391–404.

    Google Scholar 

  44. Shreiber, D.I., et al., Experimental investigation of cerebral contusion: histopathological and immunohistochemical evaluation of dynamic cortical deformation. J Neuropathol Exp Neurol, 1999. 58(2): p. 153–64.

    Article  PubMed  CAS  Google Scholar 

  45. Amruthesh, S.C., et al., Metabolism of arachidonic acid to epoxyeicosatrienoic acids, hydroxyeicosatetraenoic acids, and prostaglandins in cultured rat hippocampal astrocytes. J Neurochem, 1993. 61(1): p. 150–9.

    Article  PubMed  CAS  Google Scholar 

  46. Lamb, R.G., et al., Alterations in phosphatidylcholine metabolism of stretch-injured cultured rat astrocytes. J Neurochem, 1997. 68(5): p. 1904–10.

    Article  PubMed  CAS  Google Scholar 

  47. Floyd, C.L., et al., Antagonism of group I metabotropic glutamate receptors and PLC attenuates increases in inositol trisphosphate and reduces reactive gliosis in strain-injured astrocytes. J Neurotrauma, 2004. 21(2): p. 205–16.

    Article  PubMed  Google Scholar 

  48. Floyd, C.L., et al., Traumatic injury of cultured astrocytes alters inositol (1,4,5)-trisphosphate-mediated signaling. Glia, 2001. 33(1): p. 12–23.

    Article  PubMed  CAS  Google Scholar 

  49. Willoughby, K.A., et al., S100B protein is released by in vitro trauma and reduces delayed neuronal injury. J Neurochem, 2004. 91(6): p. 1284–91.

    Article  PubMed  CAS  Google Scholar 

  50. Ellis, E.F., et al., S100B protein is released from rat neonatal neurons, astrocytes, and microglia by in vitro trauma and anti-S100 increases trauma-induced delayed neuronal injury and negates the protective effect of exogenous S100B on neurons. J Neurochem, 2007. 101(6): p. 1463–70.

    Article  PubMed  CAS  Google Scholar 

  51. de Vellis, J., et al., Preparation of Normal and Reactive Astrocyte Cultures, in Protocols for Neural Cell Culture, L. Doering, Editor. 2009, Humana Press Inc. Springer: Totowa, NJ. p. Chapter 9:193–216.

    Google Scholar 

  52. Smith, G.M., et al., Maturation of astrocytes in vitro alters the extent and molecular basis of neurite outgrowth. Dev Biol, 1990. 138(2): p. 377–90.

    Article  PubMed  CAS  Google Scholar 

  53. Tomaselli, K.J., et al., N-cadherin and integrins: two receptor systems that mediate neuronal process outgrowth on astrocyte surfaces. Neuron, 1988. 1(1): p. 33–43.

    Article  PubMed  CAS  Google Scholar 

  54. Hertz, L., et al., Methodological Appendix: Astrocytes in primary cultures, in Neuroscience Approached through cell cultures, S.E. Pfeiffer, Editor. 1982, CRC Press: Boca Raton. p. 175–186.

    Google Scholar 

  55. Juurlink, B.H. and L. Hertz, Establishment of highly enriched type-2 astrocyte cultures and quantitative determination of intense glutamine synthetase activity in these cells. J Neurosci Res, 1991. 30(3): p. 531–9.

    Article  PubMed  CAS  Google Scholar 

  56. Oberheim, N.A., et al., Uniquely hominid features of adult human astrocytes. J Neurosci, 2009. 29(10): p. 3276-87.

    Article  PubMed  CAS  Google Scholar 

  57. Oberheim, N.A., et al., Astrocytic complexity distinguishes the human brain. Trends Neurosci, 2006. 29(10): p. 547–53.

    Article  PubMed  CAS  Google Scholar 

  58. Greenfield, J.P., et al., Use of human neural tissue for the generation of progenitors. Neurosurgery, 2008. 62(1): p. 21-37; discussion 27–30.

    Google Scholar 

  59. Palmer, T.D., et al., Cell culture. Progenitor cells from human brain after death. Nature, 2001. 411(6833): p. 42–3.

    Article  PubMed  CAS  Google Scholar 

  60. Walton, N.M., et al., Derivation and large-scale expansion of multipotent astroglial neural progenitors from adult human brain. Development, 2006. 133(18): p. 3671–81.

    Article  PubMed  CAS  Google Scholar 

  61. Nunes, M.C., et al., Identification and isolation of multipotential neural progenitor cells from the subcortical white matter of the adult human brain. Nat Med, 2003. 9(4): p. 439–47.

    Article  PubMed  CAS  Google Scholar 

  62. Schwartz, P.H., et al., Differentiation of neural lineage cells from human pluripotent stem cells. Methods, 2008. 45(2): p. 142–58.

    Article  PubMed  CAS  Google Scholar 

  63. Lue, L.F., et al., Characterization of glial cultures from rapid autopsies of Alzheimer’s and control patients. Neurobiol Aging, 1996. 17(3): p. 421–9.

    Article  PubMed  CAS  Google Scholar 

  64. De Groot, C.J., et al., Establishment of human adult astrocyte cultures derived from postmortem multiple sclerosis and control brain and spinal cord regions: immunophenotypical and functional characterization. J Neurosci Res, 1997. 49(3): p. 342–54.

    Article  PubMed  Google Scholar 

  65. Yong, V.W., et al., Morphologic heterogeneity of human adult astrocytes in culture: correlation with HLA-DR expression. J Neurosci Res, 1990. 27(4): p. 678–88.

    Article  PubMed  CAS  Google Scholar 

  66. Yong, V.W., S.U. Kim, and D.E. Pleasure, Growth factors for fetal and adult human astrocytes in culture. Brain Res, 1988. 444(1): p. 59–66.

    Article  PubMed  CAS  Google Scholar 

  67. Wu, J.Y., et al., Noninvasive testing, early surgery, and seizure freedom in tuberous sclerosis complex. Neurology, 2010. 74(5): p. 392–8.

    Article  PubMed  CAS  Google Scholar 

  68. Hemb, M., et al., Improved outcomes in pediatric epilepsy surgery: the UCLA experience, 1986-2008. Neurology, 2010. 74(22): p. 1768–75.

    Article  PubMed  CAS  Google Scholar 

  69. Kossoff, E.H., et al., Hemispherectomy for intractable unihemispheric epilepsy etiology vs outcome. Neurology, 2003. 61(7): p. 887–90.

    PubMed  CAS  Google Scholar 

  70. Sharif, A., et al., Differential erbB signaling in astrocytes from the cerebral cortex and the hypothalamus of the human brain. Glia, 2009. 57(4): p. 362–79.

    Article  PubMed  Google Scholar 

  71. Whittemore, S.R., H.R. Sanon, and P.M. Wood, Concurrent isolation and characterization of oligodendrocytes, microglia and astrocytes from adult human spinal cord. Int J Dev Neurosci, 1993. 11(6): p. 755–64.

    Article  PubMed  CAS  Google Scholar 

  72. Brewer, G.J., et al., Culture and regeneration of human neurons after brain surgery. J Neurosci Methods, 2001. 107(1-2): p. 15–23.

    Article  PubMed  CAS  Google Scholar 

  73. Mi, H., H. Haeberle, and B.A. Barres, Induction of astrocyte differentiation by endothelial cells. J Neurosci, 2001. 21(5): p. 1538–47.

    PubMed  CAS  Google Scholar 

  74. Usher, L.C., et al., A chemical screen identifies novel compounds that overcome glial-mediated inhibition of neuronal regeneration. J Neurosci, 2010. 30(13): p. 4693–706.

    Article  PubMed  CAS  Google Scholar 

  75. Sondej, M., et al., Sample preparation of primary astrocyte cellular and secreted proteins for 2-D gel electrophoresis and protein identification by mass spectrometry, in Sample preparation in biological mass spectrometry, A. Ivanov and A. Lazarev, Editors. 2011, Springer: Dordrecht. Vol. 39, p. 829–49.

    Google Scholar 

  76. Hamby, M.E., et al., Characterization of an improved procedure for the removal of microglia from confluent monolayers of primary astrocytes. J Neurosci Methods, 2006. 150(1): p. 128–37.

    Article  PubMed  CAS  Google Scholar 

  77. Aloisi, F., et al., Astrocyte cultures from human embryonic brain: characterization and modulation of surface molecules by inflammatory cytokines. J Neurosci Res, 1992. 32(4): p. 494–506.

    Article  PubMed  CAS  Google Scholar 

  78. Perricone, M.A., V. Saldate, and D.M. Hyde, Quantitation of fibroblast population growth rate in situ using computerized image analysis. Microsc Res Tech, 1995. 31(3): p. 257–64.

    Article  PubMed  CAS  Google Scholar 

  79. Suzuki, S., et al., The neural stem/progenitor cell marker nestin is expressed in proliferative endothelial cells, but not in mature vasculature. J Histochem Cytochem. 58(8): p. 721–30.

    Google Scholar 

  80. Mokry, J. and S. Nemecek, Cerebral angiogenesis shows nestin expression in endothelial cells. Gen Physiol Biophys, 1999. 18 Suppl 1: p. 25–9.

    PubMed  Google Scholar 

  81. Ozerdem, U., et al., NG2 proteoglycan is expressed exclusively by mural cells during vascular morphogenesis. Dev Dyn, 2001. 222(2): p. 218–27.

    Article  PubMed  CAS  Google Scholar 

  82. Ozerdem, U., E. Monosov, and W.B. Stallcup, NG2 proteoglycan expression by pericytes in pathological microvasculature. Microvasc Res, 2002. 63(1): p. 129–34.

    Article  PubMed  CAS  Google Scholar 

  83. Navarro, P., L. Ruco, and E. Dejana, Differential localization of VE- and N-cadherins in human endothelial cells: VE-cadherin competes with N-cadherin for junctional localization. J Cell Biol, 1998. 140(6): p. 1475–84.

    Article  PubMed  CAS  Google Scholar 

  84. Oikawa, H., et al., Expression profiles of nestin in vascular smooth muscle cells in vivo and in vitro. Exp Cell Res, 2010. 316(6): p. 940–50.

    Article  PubMed  CAS  Google Scholar 

  85. Alliot, F., et al., Pericytes and periendothelial cells of brain parenchyma vessels co-express aminopeptidase N, aminopeptidase A, and nestin. J Neurosci Res, 1999. 58(3): p. 367–78.

    Article  PubMed  CAS  Google Scholar 

  86. Gerhardt, H., et al., N-cadherin expression in endothelial cells during early angiogenesis in the eye and brain of the chicken: relation to blood-retina and blood-brain barrier development. Eur J Neurosci, 1999. 11(4): p. 1191–201.

    Article  PubMed  CAS  Google Scholar 

  87. Gerhardt, H., H. Wolburg, and C. Redies, N-cadherin mediates pericytic-endothelial interaction during brain angiogenesis in the chicken. Dev Dyn, 2000. 218(3): p. 472–9.

    Article  PubMed  CAS  Google Scholar 

  88. Norman, M.G. and J.R. O’Kusky, The growth and development of microvasculature in human cerebral cortex. J Neuropathol Exp Neurol, 1986. 45(3): p. 222–32.

    PubMed  CAS  Google Scholar 

  89. Imura, T., et al., Endothelial cell-derived bone morphogenetic proteins regulate glial differentiation of cortical progenitors. Eur J Neurosci, 2008. 27(7): p. 1596–606.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

Excellent technical assistance has been provided by Cristina Costales, Eunice Kwon, and Ana Fernandez. We greatly appreciate the excellent cooperation of the surgeons Dr. Gary Mathern, Dept. of Neurosurgery and his team, My Huynh and Dr. Julia Chang as well as Dr. Angela Chen, Dept. of OBGYN for providing brain biopsy and human fetal tissue. Special gratitude goes to patients and their parents for providing full consent in donating tissue for research purposes. We acknowledge the efficient assistance in deidentification and transfer of the specimen by Dr. Sarah Dry, Dept. of Pathology and Dr. Harry Vinters Dept. of Neuropathology. We further like to thank Dr. Michael Sofroniew and Rose Korsak, Dept. of Neurobiology as well as Dr. Campagnoni, and his assistants Vance Handley and Vilma Spreuer, Semel Institute, for providing mouse pups and Dr. Jean deVellis, Semel Institute, IDDRC, for providing cell culture and imaging facilities. Thank goes to Drs. Mary Hamby and Ariane Sharif, for their helpful comments to the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ina-Beate Wanner .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Wanner, IB. (2012). An In Vitro Trauma Model to Study Rodent and Human Astrocyte Reactivity. In: Milner, R. (eds) Astrocytes. Methods in Molecular Biology, vol 814. Humana Press. https://doi.org/10.1007/978-1-61779-452-0_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-452-0_14

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-61779-451-3

  • Online ISBN: 978-1-61779-452-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics