Skip to main content

Advertisement

Log in

Retina and Brain Display Early and Differential Molecular and Cellular Changes in the 3xTg-AD Mouse Model of Alzheimer’s Disease

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

The concept 'the retina as a window to the brain' has been increasingly explored in Alzheimer´s disease (AD) in recent years, since some patients present visual alterations before the first symptoms of dementia. The retina is an extension of the brain and can be assessed by noninvasive methods. However, assessing the retina for AD diagnosis is still a matter of debate. Using the triple transgenic mouse model of AD (3xTg-AD; males), this study was undertaken to investigate whether the retina and brain (hippocampus and cortex) undergo similar molecular and cellular changes during the early stages (4 and 8 months) of the pathology, and if the retina can anticipate the alterations occurring in the brain. We assessed amyloid-beta (Aβ) and hyperphosphorylated tau (p-tau) levels, barrier integrity, cell death, neurotransmitter levels, and glial changes. Overall, the retina, hippocampus, and cortex of 3xTg-AD are not significantly affected at these early stages. However, we detected a few differential changes in the retina and brain regions, and particularly a different profile in microglia branching in the retina and hippocampus, only at 4 months, where the number and length of the processes decreased in the retina and increased in the hippocampus. In summary, at the early stages of pathology, the retina, hippocampus, and cortex are not significantly affected but already present some molecular and cellular alterations. The retina did not mirror the changes detected in the brain, and these observations should be taking into account when using the retina as a potential diagnostic tool for AD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data Availability

Raw data files are available upon request.

Code Availability

Not applicable.

Abbreviations

Aβ:

Amyloid beta

AD:

Alzheimer´s disease

AP:

Alkaline phosphatase

APP:

Amyloid precursor protein

BACE:

Beta-secretase

BBB:

Blood–brain barrier

BCA:

Bicinchoninic acid

BRB:

Blood–retinal barrier

BSA:

Bovine serum albumin

CNS:

Central nervous system

ChAT:

Choline acetyltransferase

DAPI:

6-Diamidino-2-phenylindole

DOC:

Sodium deoxycholate

DTT:

Dithiothreitol

ECF:

Chemifluorescence

ECL:

Chemiluminescence

EDTA:

Ethylenediaminetetraacetic acid

EGTA:

Ethylene glycol tetraacetic acid

GABA:

Gamma-aminobutyric acid

GFAP:

Glial fibrillary acidic protein

HBSS:

Hank’s balanced salt solution

HPLC:

High-performance liquid chromatography

HRP:

Horseradish peroxidase

Iba-1:

Ionized calcium-binding adapter molecule 1

PAGE:

Polyacrylamide gel electrophoresis

PBS:

Phosphate buffer saline

PFA:

Paraformaldehyde

PMSF:

Phenylmethylsulfonyl fluoride

PSD95:

Postsynaptic density protein 95

p-tau:

Phosphorylated tau

PVDF:

Polyvinylidene difluoride

RGCs:

Retinal ganglion cells

RT:

Room temperature

SDS:

Sodium dodecyl sulfate

THB:

Tissue homogenization buffer

vGlut1:

Vesicular glutamate transporter type I

WT:

Wild-type

TJ:

Tight junctions

TUNEL:

Terminal deoxynucleotidyl transferase dUTP nick end labeling

ZO-1:

Zonula occludens-1

References

  1. London A, Benhar I, Schwartz M (2013) The retina as a window to the brain—from eye research to CNS disorders. Nat Rev Neurol 9(1):44–53. https://doi.org/10.1038/nrneurol.2012.227

    Article  CAS  PubMed  Google Scholar 

  2. Chang LY, Lowe J, Ardiles A, Lim J, Grey AC, Robertson K, Danesh-Meyer H, Palacios AG et al (2014) Alzheimer’s disease in the human eye. Clinical tests that identify ocular and visual information processing deficit as biomarkers. Alzheimers Dement 10(2):251–261. https://doi.org/10.1016/j.jalz.2013.06.004

    Article  PubMed  Google Scholar 

  3. Chiquita S, Rodrigues-Neves AC, Baptista FI, Carecho R, Moreira PI, Castelo-Branco M, Ambrosio AF (2019) The retina as a window or mirror of the brain changes detected in Alzheimer’s disease: critical aspects to unravel. Mol Neurobiol. 56:5416–5435. https://doi.org/10.1007/s12035-018-1461-6

    Article  CAS  PubMed  Google Scholar 

  4. Liew SC, Penfold PL, Provis JM, Madigan MC, Billson FA (1994) Modulation of MHC class II expression in the absence of lymphocytic infiltrates in Alzheimer’s retinae. J Neuropathol Exp Neurol 53(2):150–157. https://doi.org/10.1097/00005072-199403000-00006

    Article  CAS  PubMed  Google Scholar 

  5. Blanks JC, Schmidt SY, Torigoe Y, Porrello KV, Hinton DR, Blanks RH (1996) Retinal pathology in Alzheimer’s disease. II. Regional neuron loss and glial changes in GCL. Neurobiol Aging 17(3):385–395

    CAS  PubMed  Google Scholar 

  6. Hopperton KE, Mohammad D, Trepanier MO, Giuliano V, Bazinet RP (2018) Markers of microglia in post-mortem brain samples from patients with Alzheimer’s disease: a systematic review. Mol Psychiatry 23(2):177–198. https://doi.org/10.1038/mp.2017.246

    Article  CAS  PubMed  Google Scholar 

  7. Hinton DR, Sadun AA, Blanks JC, Miller CA (1986) Optic-nerve degeneration in Alzheimer’s disease. N Engl J Med 315(8):485–487. https://doi.org/10.1056/NEJM198608213150804

    Article  CAS  PubMed  Google Scholar 

  8. Blanks JC, Torigoe Y, Hinton DR, Blanks RH (1991) Retinal degeneration in the macula of patients with Alzheimer’s disease. Ann N Y Acad Sci 640:44–46. https://doi.org/10.1111/j.1749-6632.1991.tb00188.x

    Article  CAS  PubMed  Google Scholar 

  9. Blanks JC, Torigoe Y, Hinton DR, Blanks RH (1996) Retinal pathology in Alzheimer’s disease. I. Ganglion cell loss in foveal/parafoveal retina. Neurobiol Aging 17(3):377–384

    CAS  PubMed  Google Scholar 

  10. La Morgia C, Ross-Cisneros FN, Koronyo Y, Hannibal J, Gallassi R, Cantalupo G, Sambati L, Pan BX et al (2016) Melanopsin retinal ganglion cell loss in Alzheimer disease. Ann Neurol 79(1):90–109. https://doi.org/10.1002/ana.24548

    Article  CAS  PubMed  Google Scholar 

  11. Blanks JC, Hinton DR, Sadun AA, Miller CA (1989) Retinal ganglion cell degeneration in Alzheimer’s disease. Brain Res 501(2):364–372. https://doi.org/10.1016/0006-8993(89)90653-7

    Article  CAS  PubMed  Google Scholar 

  12. Koronyo-Hamaoui M, Koronyo Y, Ljubimov AV, Miller CA, Ko MK, Black KL, Schwartz M, Farkas DL (2011) Identification of amyloid plaques in retinas from Alzheimer’s patients and noninvasive in vivo optical imaging of retinal plaques in a mouse model. Neuroimage 54(Suppl 1):S204–S217. https://doi.org/10.1016/j.neuroimage.2010.06.020

    Article  CAS  PubMed  Google Scholar 

  13. Ho CY, Troncoso JC, Knox D, Stark W, Eberhart CG (2014) Beta-amyloid, phospho-tau and alpha-synuclein deposits similar to those in the brain are not identified in the eyes of Alzheimer’s and Parkinson’s disease patients. Brain Pathol 24(1):25–32. https://doi.org/10.1111/bpa.12070

    Article  CAS  PubMed  Google Scholar 

  14. Koronyo Y, Biggs D, Barron E, Boyer DS, Pearlman JA, Au WJ, Kile SJ, Blanco A et al (2017) Retinal amyloid pathology and proof-of-concept imaging trial in Alzheimer’s disease. JCI Insight 2(16). https://doi.org/10.1172/jci.insight.93621

  15. Chiquita S, Ribeiro M, Castelhano J, Oliveira F, Sereno J, Batista M, Abrunhosa A, Rodrigues-Neves AC et al (2019) A longitudinal multimodal in vivo molecular imaging study of the 3xTg-AD mouse model shows progressive early hippocampal and taurine loss. Hum Mol Genet 28(13):2174–2188. https://doi.org/10.1093/hmg/ddz045

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Chiquita S, Campos EJ, Castelhano J, Ribeiro M, Sereno J, Moreira PI, Castelo-Branco M, Ambrosio AF (2019) Retinal thinning of inner sub-layers is associated with cortical atrophy in a mouse model of Alzheimer’s disease: a longitudinal multimodal in vivo study. Alzheimers Res Ther 11(1):90. https://doi.org/10.1186/s13195-019-0542-8

    Article  PubMed  PubMed Central  Google Scholar 

  17. Oddo S, Caccamo A, Shepherd JD, Murphy MP, Golde TE, Kayed R, Metherate R, Mattson MP et al (2003) Triple-transgenic model of Alzheimer’s disease with plaques and tangles: intracellular Abeta and synaptic dysfunction. Neuron 39(3):409–421

    Article  CAS  Google Scholar 

  18. Casali BT, Landreth GE (2016) Abeta extraction from murine brain homogenates. Bio Protoc 6 (8). doi:10.21769/BioProtoc.1787

  19. Baptista FI, Pinto MJ, Elvas F, Almeida RD, Ambrosio AF (2013) Diabetes alters KIF1A and KIF5B motor proteins in the hippocampus. PLoS One 8(6):e65515. https://doi.org/10.1371/journal.pone.0065515

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. George Paxinos KF (2008). The mouse brain in stereotaxic coordinates, compact. 3rd Edition. Elsevier Academic Press:256

  21. Caetano L, Pinheiro H, Patricio P, Mateus-Pinheiro A, Alves ND, Coimbra B, Baptista FI, Henriques SN et al (2017) Adenosine A2A receptor regulation of microglia morphological remodeling-gender bias in physiology and in a model of chronic anxiety. Mol Psychiatry 22(7):1035–1043. https://doi.org/10.1038/mp.2016.173

    Article  CAS  PubMed  Google Scholar 

  22. Simoes-Henriques C, Mateus-Pinheiro M, Gaspar R, Pinheiro H, Mendes Duarte J, Baptista FI, Canas PM, Fontes-Ribeiro CA et al (2020) Microglia cytoarchitecture in the brain of adenosine A2A receptor knockout mice: brain region and sex specificities. Eur J Neurosci 51(6):1377–1387. https://doi.org/10.1111/ejn.14561

    Article  PubMed  Google Scholar 

  23. Duarte JM, Gaspar R, Caetano L, Patricio P, Soares-Cunha C, Mateus-Pinheiro A, Alves ND, Santos AR et al (2019) Region-specific control of microglia by adenosine A2A receptors: uncoupling anxiety and associated cognitive deficits in female rats. Glia 67(1):182–192. https://doi.org/10.1002/glia.23476

    Article  PubMed  Google Scholar 

  24. Mastrangelo MA, Bowers WJ (2008) Detailed immunohistochemical characterization of temporal and spatial progression of Alzheimer’s disease-related pathologies in male triple-transgenic mice. BMC Neurosci 9:81. https://doi.org/10.1186/1471-2202-9-81

    Article  PubMed  PubMed Central  Google Scholar 

  25. Carvalho C, Cardoso S, Correia SC, Santos RX, Santos MS, Baldeiras I, Oliveira CR, Moreira PI (2012) Metabolic alterations induced by sucrose intake and Alzheimer’s disease promote similar brain mitochondrial abnormalities. Diabetes 61(5):1234–1242. https://doi.org/10.2337/db11-1186

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Carvalho C, Machado N, Mota PC, Correia SC, Cardoso S, Santos RX, Santos MS, Oliveira CR et al (2013) Type 2 diabetic and Alzheimer’s disease mice present similar behavioral, cognitive, and vascular anomalies. J Alzheimers Dis 35(3):623–635. https://doi.org/10.3233/JAD-130005

    Article  CAS  PubMed  Google Scholar 

  27. Carvalho C, Santos MS, Oliveira CR, Moreira PI (2015) Alzheimer’s disease and type 2 diabetes-related alterations in brain mitochondria, autophagy and synaptic markers. Biochim Biophys Acta 1852(8):1665–1675. https://doi.org/10.1016/j.bbadis.2015.05.001

    Article  CAS  PubMed  Google Scholar 

  28. Yoon SS, Jo SA (2012) Mechanisms of amyloid-beta peptide clearance: potential therapeutic targets for Alzheimer’s disease. Biomol Ther (Seoul) 20(3):245–255. https://doi.org/10.4062/biomolther.2012.20.3.245

    Article  CAS  Google Scholar 

  29. Ramanathan A, Nelson AR, Sagare AP, Zlokovic BV (2015) Impaired vascular-mediated clearance of brain amyloid beta in Alzheimer’s disease: the role, regulation and restoration of LRP1. Front Aging Neurosci 7:136. https://doi.org/10.3389/fnagi.2015.00136

    Article  PubMed  PubMed Central  Google Scholar 

  30. Wildsmith KR, Holley M, Savage JC, Skerrett R, Landreth GE (2013) Evidence for impaired amyloid beta clearance in Alzheimer’s disease. Alzheimers Res Ther 5(4):33. https://doi.org/10.1186/alzrt187

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Grimaldi A, Brighi C, Peruzzi G, Ragozzino D, Bonanni V, Limatola C, Ruocco G, Di Angelantonio S (2018) Inflammation, neurodegeneration and protein aggregation in the retina as ocular biomarkers for Alzheimer’s disease in the 3xTg-AD mouse model. Cell Death Dis 9(6):685. https://doi.org/10.1038/s41419-018-0740-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Alexandrov PN, Pogue A, Bhattacharjee S, Lukiw WJ (2011) Retinal amyloid peptides and complement factor H in transgenic models of Alzheimer’s disease. Neuroreport 22(12):623–627. https://doi.org/10.1097/WNR.0b013e3283497334

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Sprinkle TJ, McMorris FA, Yoshino J, DeVries GH (1985) Differential expression of 2':3'-cyclic nucleotide 3'-phosphodiesterase in cultured central, peripheral, and extraneural cells. Neurochem Res 10(7):919–931. https://doi.org/10.1007/BF00964629

    Article  CAS  PubMed  Google Scholar 

  34. Oddo S, Caccamo A, Cheng D, Jouleh B, Torp R, LaFerla FM (2007) Genetically augmenting tau levels does not modulate the onset or progression of Abeta pathology in transgenic mice. J Neurochem 102(4):1053–1063. https://doi.org/10.1111/j.1471-4159.2007.04607.x

    Article  CAS  PubMed  Google Scholar 

  35. Mondragon-Rodriguez S, Perry G, Luna-Munoz J, Acevedo-Aquino MC, Williams S (2014) Phosphorylation of tau protein at sites Ser(396-404) is one of the earliest events in Alzheimer’s disease and Down syndrome. Neuropathol Appl Neurobiol 40(2):121–135. https://doi.org/10.1111/nan.12084

    Article  CAS  PubMed  Google Scholar 

  36. Ujiie M, Dickstein DL, Carlow DA, Jefferies WA (2003) Blood–brain barrier permeability precedes senile plaque formation in an Alzheimer disease model. Microcirculation 10(6):463–470. https://doi.org/10.1038/sj.mn.7800212

    Article  CAS  PubMed  Google Scholar 

  37. Kumar-Singh S, Pirici D, McGowan E, Serneels S, Ceuterick C, Hardy J, Duff K, Dickson D et al (2005) Dense-core plaques in Tg2576 and PSAPP mouse models of Alzheimer’s disease are centered on vessel walls. Am J Pathol 167(2):527–543. https://doi.org/10.1016/S0002-9440(10)62995-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Bien-Ly N, Boswell CA, Jeet S, Beach TG, Hoyte K, Luk W, Shihadeh V, Ulufatu S et al (2015) Lack of widespread BBB disruption in Alzheimer’s disease models: focus on therapeutic antibodies. Neuron 88(2):289–297. https://doi.org/10.1016/j.neuron.2015.09.036

    Article  CAS  PubMed  Google Scholar 

  39. Biron KE, Dickstein DL, Gopaul R, Jefferies WA (2011) Amyloid triggers extensive cerebral angiogenesis causing blood brain barrier permeability and hypervascularity in Alzheimer’s disease. PLoS One 6(8):e23789. https://doi.org/10.1371/journal.pone.0023789

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Park SW, Kim JH, Mook-Jung I, Kim KW, Park WJ, Park KH, Kim JH (2014) Intracellular amyloid beta alters the tight junction of retinal pigment epithelium in 5XFAD mice. Neurobiol Aging 35(9):2013–2020. https://doi.org/10.1016/j.neurobiolaging.2014.03.008

    Article  CAS  PubMed  Google Scholar 

  41. Auld DS, Kornecook TJ, Bastianetto S, Quirion R (2002) Alzheimer’s disease and the basal forebrain cholinergic system: relations to beta-amyloid peptides, cognition, and treatment strategies. Prog Neurobiol 68(3):209–245

    Article  CAS  Google Scholar 

  42. Girao da Cruz MT, Jordao J, Dasilva KA, Ayala-Grosso CA, Ypsilanti A, Weng YQ, Laferla FM, McLaurin J et al (2012) Early increases in soluble amyloid-beta levels coincide with cholinergic degeneration in 3xTg-AD mice. J Alzheimers Dis 32(2):267–272. https://doi.org/10.3233/JAD-2012-100732

    Article  CAS  PubMed  Google Scholar 

  43. Gao L, Chen X, Tang Y, Zhao J, Li Q, Fan X, Xu H, Yin ZQ (2015) Neuroprotective effect of memantine on the retinal ganglion cells of APPswe/PS1DeltaE9 mice and its immunomodulatory mechanisms. Exp Eye Res 135:47–58. https://doi.org/10.1016/j.exer.2015.04.013

    Article  CAS  PubMed  Google Scholar 

  44. Bravarenko NI, Onufriev MV, Stepanichev MY, Ierusalimsky VN, Balaban PM, Gulyaeva NV (2006) Caspase-like activity is essential for long-term synaptic plasticity in the terrestrial snail Helix. Eur J Neurosci 23(1):129–140. https://doi.org/10.1111/j.1460-9568.2005.04549.x

    Article  CAS  PubMed  Google Scholar 

  45. Li Z, Jo J, Jia JM, Lo SC, Whitcomb DJ, Jiao S, Cho K, Sheng M (2010) Caspase-3 activation via mitochondria is required for long-term depression and AMPA receptor internalization. Cell 141(5):859–871. https://doi.org/10.1016/j.cell.2010.03.053

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. D'Amelio M, Cavallucci V, Middei S, Marchetti C, Pacioni S, Ferri A, Diamantini A, De Zio D et al (2011) Caspase-3 triggers early synaptic dysfunction in a mouse model of Alzheimer’s disease. Nat Neurosci 14(1):69–76. https://doi.org/10.1038/nn.2709

    Article  CAS  PubMed  Google Scholar 

  47. Revilla S, Sunol C, Garcia-Mesa Y, Gimenez-Llort L, Sanfeliu C, Cristofol R (2014) Physical exercise improves synaptic dysfunction and recovers the loss of survival factors in 3xTg-AD mouse brain. Neuropharmacology 81:55–63. https://doi.org/10.1016/j.neuropharm.2014.01.037

    Article  CAS  PubMed  Google Scholar 

  48. Sun DS, Gao LF, Jin L, Wu H, Wang Q, Zhou Y, Fan S, Jiang X et al (2017) Fluoxetine administration during adolescence attenuates cognitive and synaptic deficits in adult 3xTgAD mice. Neuropharmacology 126:200–212. https://doi.org/10.1016/j.neuropharm.2017.08.037

    Article  CAS  PubMed  Google Scholar 

  49. Chen Y, Zhao Y, Dai CL, Liang Z, Run X, Iqbal K, Liu F, Gong CX (2014) Intranasal insulin restores insulin signaling, increases synaptic proteins, and reduces Abeta level and microglia activation in the brains of 3xTg-AD mice. Exp Neurol 261:610–619. https://doi.org/10.1016/j.expneurol.2014.06.004

    Article  CAS  PubMed  Google Scholar 

  50. Yao PJ, Bushlin I, Furukawa K (2005) Preserved synaptic vesicle recycling in hippocampal neurons in a mouse Alzheimer’s disease model. Biochem Biophys Res Commun 330(1):34–38. https://doi.org/10.1016/j.bbrc.2005.02.121

    Article  CAS  PubMed  Google Scholar 

  51. Baazaoui N, Flory M, Iqbal K (2017) Synaptic compensation as a probable cause of prolonged mild cognitive impairment in Alzheimer’s disease: implications from a transgenic mouse model of the disease. J Alzheimers Dis 56(4):1385–1401

  52. Mukaetova-Ladinska EB, Garcia-Siera F, Hurt J, Gertz HJ, Xuereb JH, Hills R, Brayne C, Huppert FA et al (2000) Staging of cytoskeletal and beta-amyloid changes in human isocortex reveals biphasic synaptic protein response during progression of Alzheimer’s disease. Am J Pathol 157(2):623–636. https://doi.org/10.1016/s0002-9440(10)64573-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Limon A, Reyes-Ruiz JM, Miledi R (2012) Loss of functional GABA(A) receptors in the Alzheimer diseased brain. Proc Natl Acad Sci U S A 109(25):10071–10076. https://doi.org/10.1073/pnas.1204606109

    Article  PubMed  PubMed Central  Google Scholar 

  54. Bernareggi A, Duenas Z, Reyes-Ruiz JM, Ruzzier F, Miledi R (2007) Properties of glutamate receptors of Alzheimer’s disease brain transplanted to frog oocytes. Proc Natl Acad Sci U S A 104(8):2956–2960. https://doi.org/10.1073/pnas.0611513104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Gueli MC, Taibi G (2013) Alzheimer’s disease: amino acid levels and brain metabolic status. Neurol Sci 34(9):1575–1579. https://doi.org/10.1007/s10072-013-1289-9

    Article  PubMed  Google Scholar 

  56. Villette V, Dutar P (2017) GABAergic microcircuits in Alzheimer’s disease models. Curr Alzheimer Res 14(1):30–39

    Article  CAS  Google Scholar 

  57. Huang D, Liu D, Yin J, Qian T, Shrestha S, Ni H (2017) Glutamate–glutamine and GABA in brain of normal aged and patients with cognitive impairment. Eur Radiol 27(7):2698–2705. https://doi.org/10.1007/s00330-016-4669-8

    Article  PubMed  Google Scholar 

  58. Calvo-Flores Guzman B, Vinnakota C, Govindpani K, Waldvogel HJ, Faull RLM, Kwakowsky A (2018) The GABAergic system as a therapeutic target for Alzheimer’s disease. J Neurochem 146(6):649–669. https://doi.org/10.1111/jnc.14345

    Article  CAS  PubMed  Google Scholar 

  59. Hascup KN, Hascup ER (2015) Altered neurotransmission prior to cognitive decline in AbetaPP/PS1 mice, a model of Alzheimer’s disease. J Alzheimers Dis 44(3):771–776. https://doi.org/10.3233/JAD-142160

    Article  CAS  PubMed  Google Scholar 

  60. Silva AC, Lemos C, Goncalves FQ, Pliassova AV, Machado NJ, Silva HB, Canas PM, Cunha RA et al (2018) Blockade of adenosine A2A receptors recovers early deficits of memory and plasticity in the triple transgenic mouse model of Alzheimer’s disease. Neurobiol Dis 117:72–81. https://doi.org/10.1016/j.nbd.2018.05.024

    Article  CAS  PubMed  Google Scholar 

  61. Dzamba D, Harantova L, Butenko O, Anderova M (2016) Glial cells—the key elements of Alzheimer’s disease. Curr Alzheimer Res 13(8):894–911

    Article  CAS  Google Scholar 

  62. Chidlow G, Wood JP, Manavis J, Finnie J, Casson RJ (2017) Investigations into retinal pathology in the early stages of a mouse model of Alzheimer’s disease. J Alzheimers Dis 56(2):655–675. https://doi.org/10.3233/JAD-160823

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Edwards MM, Rodriguez JJ, Gutierrez-Lanza R, Yates J, Verkhratsky A, Lutty GA (2014) Retinal macroglia changes in a triple transgenic mouse model of Alzheimer’s disease. Exp Eye Res 127:252–260. https://doi.org/10.1016/j.exer.2014.08.006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Joly S, Lamoureux S, Pernet V (2017) Nonamyloidogenic processing of amyloid beta precursor protein is associated with retinal function improvement in aging male APPswe/PS1DeltaE9 mice. Neurobiol Aging 53:181–191. https://doi.org/10.1016/j.neurobiolaging.2017.02.004

    Article  CAS  PubMed  Google Scholar 

  65. Tay TL, Savage JC, Hui CW, Bisht K, Tremblay ME (2017) Microglia across the lifespan: from origin to function in brain development, plasticity and cognition. J Physiol 595(6):1929–1945. https://doi.org/10.1113/JP272134

    Article  CAS  PubMed  Google Scholar 

  66. Rodriguez JJ, Noristani HN, Hilditch T, Olabarria M, Yeh CY, Witton J, Verkhratsky A (2013) Increased densities of resting and activated microglia in the dentate gyrus follow senile plaque formation in the CA1 subfield of the hippocampus in the triple transgenic model of Alzheimer’s disease. Neurosci Lett 552:129–134. https://doi.org/10.1016/j.neulet.2013.06.036

    Article  CAS  PubMed  Google Scholar 

  67. Salobrar-Garcia E, Rodrigues-Neves AC, Ramirez AI, de Hoz R, Fernandez-Albarral JA, Lopez-Cuenca I, Ramirez JM, Ambrosio AF et al (2020) Microglial activation in the retina of a triple-transgenic Alzheimer’s disease mouse model (3xTg-AD). Int J Mol Sci 21(3). https://doi.org/10.3390/ijms21030816

  68. Davies DS, Ma J, Jegathees T, Goldsbury C (2017) Microglia show altered morphology and reduced arborization in human brain during aging and Alzheimer’s disease. Brain Pathol 27(6):795–808. https://doi.org/10.1111/bpa.12456

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

Santa Casa Mantero Belard Award 2015 (MB-1049-2015), Foundation for Science and Technology (PEst UID/NEU/04539/2013 and UID/NEU/04539/2019: CNC.IBILI; PEst UIDB/04539/2020 and UIDP/04539/2020: CIBB), COMPETE-FEDER (POCI-01-0145-FEDER-007440), and Centro 2020 Regional Operational Programme (CENTRO-01-0145-FEDER-000008: BrainHealth 2020).

Author information

Authors and Affiliations

Authors

Contributions

ACRN, RC, and AFA conceived and designed the experiments. ACRN, RC, SCC, CC, EJC, and FIB performed the experiments. ACRN, RC, SCC, CC, EJC, FIB, PIM, and AFA analyzed the results. PIM and AFA contributed with reagents/materials/analysis tools. ACRN wrote the first draft of the manuscript, and all authors have read and approved the final version.

Corresponding author

Correspondence to António Francisco Ambrósio.

Ethics declarations

Ethics Approval

All experiments using animals were approved by the Animal Welfare (Órgão Responsável pelo Bem-Estar Animal - ORBEA 16/2015) of the Coimbra Institute for Clinical and Biomedical research (iCBR), Faculty of Medicine, University of Coimbra, and by Direção Geral de Alimentação e Veterinária (DGAV 0421/000/000/2015) and conducted in accordance with the European Community directive guidelines for the use of animals in laboratory (2010/63/EU) transposed to the Portuguese law in 2013 (Decreto-Lei 113/2013), and in agreement with the Association for Research in Vision and Ophthalmology statement for animal use.

Consent to Participate

Not applicable.

Consent for Publication

All authors have reviewed and approved the manuscript.

Conflict of Interest

The authors declare no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supporting Information

Online Resource 1

includes table 1 and table 2. (DOCX 16 kb)

Online Resource 2

can be found on online version. (AVI 49152 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rodrigues-Neves, A.C., Carecho, R., Correia, S.C. et al. Retina and Brain Display Early and Differential Molecular and Cellular Changes in the 3xTg-AD Mouse Model of Alzheimer’s Disease. Mol Neurobiol 58, 3043–3060 (2021). https://doi.org/10.1007/s12035-021-02316-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-021-02316-x

Keywords

Navigation