Skip to main content

Advertisement

Log in

The Expanding Regulatory Mechanisms and Cellular Functions of Long Non-coding RNAs (lncRNAs) in Neuroinflammation

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

LncRNAs have emerged as important regulatory molecules in biological processes. They serve as regulators of gene expression pathways through interactions with proteins, RNA, and DNA. LncRNA expression is altered in several diseases of the central nervous system (CNS), such as neurodegenerative disorders, stroke, trauma, and infection. More recently, it has become clear that lncRNAs contribute to regulating both pro-inflammatory and anti-inflammatory pathways in the CNS. In this review, we discuss the molecular pathways involved in the expression of lncRNAs, their role and mechanism of action during gene regulation, cellular functions, and use of lncRNAs as therapeutic targets during neuroinflammation in CNS disorders.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data Availability

Not applicable

Abbreviations

AD :

Alzheimer’s disease

ALS:

amyotrophic lateral sclerosis

ANRIL:

antisense non-coding RNA in the INK4 locus

APP :

amyloid precursor protein

Aβ:

amyloid beta

BACE1:

β-site amyloid precursor protein cleaving enzyme 1

BBB:

blood-brain barrier

BDNF:

brain-derived neurotrophic factor

BMECs:

brain microvascular endothelial cells

C2dat1 :

CAMK2D-associated transcript 1

CCAT1:

colon cancer–associated transcript-1

CCL2:

C-C motif chemokine ligand 2

ceRNAs:

competing endogenous RNAs

CNS :

central nervous system

CRNDE:

colorectal neoplasia differentially expressed

DGCR5:

DiGeorge syndrome critical region gene 5

DILC:

LncRNA downregulated in liver cancer stem cells

DM:

diabetes mellitus

DRG:

dorsal root ganglion

EAE:

experimental autoimmune encephalomyelitis

EBI:

early brain injury

EZH2:

enhancer of zester homolog 2

FAL1:

focally amplified lncRNA on chromosome 1

FIRRE:

functional intergenic repeating RNA element

FosDT:

Fos downstream transcript

FUS:

fused in sarcoma

GAS5:

growth arrest-specific 5

GBM:

glioblastoma multiforme

GBP9:

LncRNA guanylate binding protein-9

GFAP:

glial fibrillary acidic protein

GO:

gene ontology

HIV-1:

human immunodeficiency virus

HMGB-1:

high mobility group box-1

HnRNP-A2/B1:

heterogeneous nuclear ribonucleoprotein A/B and A2/B1

I/R:

ischemia and reperfusion

ICH:

intracerebral hemorrhage

IFN-γ:

interferon-gamma

IL-1β :

interleukin-1β

IL-6 :

interleukin-6

iNOS:

inducible nitric oxide synthases

KEGG:

Kyoto Encyclopedia of Genes and Genomes

lincRNAs:

long intergenic non-coding RNAs

lncRNAs:

long non-coding RNAs

LPS:

lipopolysaccharide

Maclpil:

macrophage contained LCP1-related pro-inflammatory

MALAT1:

metastasis-associated lung adenocarcinoma transcript 1

MAPK :

mitogen-activated protein kinase

MCAO:

middle cerebral artery occlusion mouse

MCP-1:

monocyte chemoattractant protein-1

miRNAs:

microRNAs

MPTP:

1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine

MS :

multiple sclerosis

Mtss1:

metastasis suppressor-1

ncRNAs:

non-coding RNAs

NDM29:

neuroblastoma differentiation marker 29

NEAT1:

nuclear paraspeckle assembly transcript 1

NF-κB:

nuclear factor-k-gene binding

NKILA:

NF-κB interacting lncRNA

NLRP3:

Nod-like receptor protein 3

NO:

nitric oxide

NRON:

non-coding repressor of nuclear factor of activated T cells

OGD/R:

oxygen glucose deprivation/reoxygenation

PCAI:

protect cells from apoptosis and inflammation

PD:

Parkinson’s disease

PI3K :

phosphoinositide 3-kinase

PKC:

protein kinase C

PRC2:

polycomb repressive complex 2

RGCs:

retinal ganglion cells

RMST:

rhabdomyosarcoma 2–associated transcript

ROS:

reactive oxygen species

SAE:

sepsis-associated encephalopathy

SAH:

subarachnoid hemorrhage

SCI:

spinal cord injury

siRNAs:

small interfering RNAs

SNL:

spinal nerve ligation

SOCS3:

suppressor of cytokine signaling 3

SOD1:

superoxide dismutase 1

STAT6:

signal transduction and activators of transcription 6

TAK1:

TGF-β-activated kinase 1

TARDBP:

transactive response DNA binding protein

TBI:

traumatic brain injury

TGF-β:

transforming growth factor

TLE:

temporal lobe epilepsy

TNF-α :

tumor necrosis factor-α

TUG1:

taurine-upregulated gene 1

VEGF:

vascular endothelial growth factor

XIST:

X inactive specific transcript

References

  1. Djebali S, Davis CA, Merkel A, Dobin A, Lassmann T, Mortazavi A, Tanzer A, Lagarde J et al (2012) Landscape of transcription in human cells. Nature 489:101–108. https://doi.org/10.1038/nature11233

  2. Kristensen LS, Andersen MS, Stagsted LVW, Ebbesen KK, Hansen TB, Kjems J (2019) The biogenesis, biology and characterization of circular RNAs. Nat Rev Genet 20:675–691. https://doi.org/10.1038/s41576-019-0158-7

    Article  CAS  PubMed  Google Scholar 

  3. Memczak S, Jens M, Elefsinioti A, Torti F, Krueger J, Rybak A, Maier L, Mackowiak SD et al (2013) Circular RNAs are a large class of animal RNAs with regulatory potency. Nature 495:333–338. https://doi.org/10.1038/nature11928

  4. Bartel DP (2018) Metazoan microRNAs. Cell 173:20–51. https://doi.org/10.1016/j.cell.2018.03.006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Czech B, Munafò M, Ciabrelli F, Eastwood EL, Fabry MH, Kneuss E, Hannon GJ (2018) piRNA-guided genome defense: from biogenesis to silencing. Annu Rev Genet 52:131–157. https://doi.org/10.1146/annurev-genet-120417-031441

    Article  CAS  PubMed  Google Scholar 

  6. Rajappa A, Banerjee S, Sharma V, Khandelia P (2020) Circular RNAs: emerging role in cancer diagnostics and therapeutics. Front Mol Biosci 7:577938. https://doi.org/10.3389/fmolb.2020.577938

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Rinn JL, Chang HY (2012) Genome regulation by long noncoding RNAs. Annu Rev Biochem 81:145–166. https://doi.org/10.1146/annurev-biochem-051410-092902

    Article  CAS  PubMed  Google Scholar 

  8. Bonasio R, Shiekhattar R (2014) Regulation of transcription by long noncoding RNAs. Annu Rev Genet 48:433–455. https://doi.org/10.1146/annurev-genet-120213-092323

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Fernandes J, Acuña S, Aoki J, Floeter-Winter L, Muxel S (2019) Long non-coding RNAs in the regulation of gene expression: physiology and disease. Non-Coding RNA 5:17. https://doi.org/10.3390/ncrna5010017

    Article  CAS  PubMed Central  Google Scholar 

  10. Iyer MK, Niknafs YS, Malik R, Singhal U, Sahu A, Hosono Y, Barrette TR, Prensner JR et al (2015) The landscape of long noncoding RNAs in the human transcriptome. Nat Genet 47:199–208. https://doi.org/10.1038/ng.3192

  11. Zhao Y, Li H, Fang S, Kang Y, wu W, Hao Y, Li Z, Bu D et al (2016) NONCODE 2016: an informative and valuable data source of long non-coding RNAs. Nucleic Acids Res 44:D203–D208. https://doi.org/10.1093/nar/gkv1252

  12. St Laurent G, Wahlestedt C, Kapranov P (2015) The landscape of long noncoding RNA classification. Trends Genet TIG 31:239–251. https://doi.org/10.1016/j.tig.2015.03.007

    Article  CAS  PubMed  Google Scholar 

  13. Gil N, Ulitsky I (2020) Regulation of gene expression by cis-acting long non-coding RNAs. Nat Rev Genet 21:102–117. https://doi.org/10.1038/s41576-019-0184-5

    Article  CAS  PubMed  Google Scholar 

  14. Rinn JL, Chang HY (2020) Long noncoding RNAs: molecular modalities to organismal functions. Annu Rev Biochem 89:283–308. https://doi.org/10.1146/annurev-biochem-062917-012708

    Article  CAS  PubMed  Google Scholar 

  15. Kopp F, Mendell JT (2018) Functional classification and experimental dissection of long noncoding RNAs. Cell 172:393–407. https://doi.org/10.1016/j.cell.2018.01.011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Chen S, Dong Z, Cheng M, Zhao Y, Wang M, Sai N, Wang X, Liu H et al (2017) Homocysteine exaggerates microglia activation and neuroinflammation through microglia localized STAT3 overactivation following ischemic stroke. J Neuroinflammation 14:187. https://doi.org/10.1186/s12974-017-0963-x

  17. Xanthos DN, Sandkühler J (2014) Neurogenic neuroinflammation: inflammatory CNS reactions in response to neuronal activity. Nat Rev Neurosci 15:43–53. https://doi.org/10.1038/nrn3617

    Article  CAS  PubMed  Google Scholar 

  18. Lyman M, Lloyd DG, Ji X, Vizcaychipi MP, Ma D (2014) Neuroinflammation: the role and consequences. Neurosci Res 79:1–12. https://doi.org/10.1016/j.neures.2013.10.004

    Article  CAS  PubMed  Google Scholar 

  19. Shabab T, Khanabdali R, Moghadamtousi SZ, Kadir HA, Mohan G (2017) Neuroinflammation pathways: a general review. Int J Neurosci 127:624–633. https://doi.org/10.1080/00207454.2016.1212854

    Article  CAS  PubMed  Google Scholar 

  20. Das S, Basu A (2008) Inflammation: a new candidate in modulating adult neurogenesis. J Neurosci Res 86:1199–1208. https://doi.org/10.1002/jnr.21585

    Article  CAS  PubMed  Google Scholar 

  21. Tandon PN (2017) The enigma of neuroinflammation. Neurol India 65:703–705. https://doi.org/10.4103/neuroindia.NI_517_17

    Article  PubMed  Google Scholar 

  22. Brown CM, Mulcahey TA, Filipek NC, Wise PM (2010) Production of proinflammatory cytokines and chemokines during neuroinflammation: novel roles for estrogen receptors α and β. Endocrinology 151:4916–4925. https://doi.org/10.1210/en.2010-0371

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Mittal M, Siddiqui MR, Tran K, Reddy SP, Malik AB (2014) Reactive oxygen species in inflammation and tissue injury. Antioxid Redox Signal 20:1126–1167. https://doi.org/10.1089/ars.2012.5149

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Ransohoff RM (2016) How neuroinflammation contributes to neurodegeneration. Science 353:777–783. https://doi.org/10.1126/science.aag2590

    Article  CAS  PubMed  Google Scholar 

  25. Ransohoff RM, Perry VH (2009) Microglial physiology: unique stimuli, specialized responses. Annu Rev Immunol 27:119–145. https://doi.org/10.1146/annurev.immunol.021908.132528

    Article  CAS  PubMed  Google Scholar 

  26. Hanisch U-K, Kettenmann H (2007) Microglia: active sensor and versatile effector cells in the normal and pathologic brain. Nat Neurosci 10:1387–1394. https://doi.org/10.1038/nn1997

    Article  CAS  PubMed  Google Scholar 

  27. DiSabato DJ, Quan N, Godbout JP (2016) Neuroinflammation: the devil is in the details. J Neurochem 139(Suppl 2):136–153. https://doi.org/10.1111/jnc.13607

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Kempuraj D, Thangavel R, Natteru PA et al (2016) Neuroinflammation induces neurodegeneration. J Neurol Neurosurg Spine 1:1003

    PubMed  PubMed Central  Google Scholar 

  29. Guo Y, Hong W, Wang X, Zhang P, Körner H, Tu J, Wei W (2019) MicroRNAs in microglia: how do microRNAs affect activation, inflammation, polarization of microglia and mediate the interaction between microglia and glioma? Front Mol Neurosci 12:125. https://doi.org/10.3389/fnmol.2019.00125

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Slota JA, Booth SA (2019) MicroRNAs in neuroinflammation: implications in disease pathogenesis, biomarker discovery and therapeutic applications. Non-Coding RNA 5:35. https://doi.org/10.3390/ncrna5020035

    Article  CAS  PubMed Central  Google Scholar 

  31. Li R, Zhu H, Luo Y (2016) understanding the functions of long non-coding RNAs through their higher-order structures. Int J Mol Sci 17. https://doi.org/10.3390/ijms17050702

  32. Shree B, Sharma V (2018) Linc'ing' RNA to DNA repair (2018). Proc Indian Natn Sci Acad 84(2):521–529. https://doi.org/10.6943/ptinsa/2018/49332

    Article  Google Scholar 

  33. Ulitsky I, Bartel DP (2013) lincRNAs: genomics, evolution, and mechanisms. Cell 154:26–46. https://doi.org/10.1016/j.cell.2013.06.020

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Salmena L, Poliseno L, Tay Y et al (2011) A ceRNA hypothesis: the Rosetta Stone of a hidden RNA language? Cell 146:353–358. https://doi.org/10.1016/j.cell.2011.07.014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Cerase A, Pintacuda G, Tattermusch A, Avner P (2015) Xist localization and function: new insights from multiple levels. Genome Biol 16:166. https://doi.org/10.1186/s13059-015-0733-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Rinn JL, Kertesz M, Wang JK et al (2007) Functional demarcation of active and silent chromatin domains in human HOX loci by noncoding RNAs. Cell 129:1311–1323. https://doi.org/10.1016/j.cell.2007.05.022

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Carpenter S, Fitzgerald KA (2015) Transcription of inflammatory genes: long noncoding RNA and beyond. J Interferon Cytokine Res Off J Int Soc Interferon Cytokine Res 35:79–88. https://doi.org/10.1089/jir.2014.0120

    Article  CAS  Google Scholar 

  38. Peng X, Gralinski L, Armour CD et al (2010) Unique signatures of long noncoding RNA expression in response to virus infection and altered innate immune signaling. mBio:1. https://doi.org/10.1128/mBio.00206-10

  39. Carpenter S, Aiello D, Atianand MK et al (2013) A long noncoding RNA mediates both activation and repression of immune response genes. Science 341:789–792. https://doi.org/10.1126/science.1240925

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Carpenter S, Fitzgerald KA (2018) Cytokines and Long noncoding RNAs. Cold Spring Harb Perspect Biol 10:a028589. https://doi.org/10.1101/cshperspect.a028589

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Wen Y, Yu Y, Fu X (2017) LncRNA Gm4419 contributes to OGD/R injury of cerebral microglial cells via IκB phosphorylation and NF-κB activation. Biochem Biophys Res Commun 487:923–929. https://doi.org/10.1016/j.bbrc.2017.05.005

    Article  CAS  PubMed  Google Scholar 

  42. Sun D, Yu Z, Fang X et al (2017) LncRNA GAS5 inhibits microglial M2 polarization and exacerbates demyelination. EMBO Rep 18:1801–1816. https://doi.org/10.15252/embr.201643668

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Xue Z, Zhang Z, Liu H et al (2019) lincRNA-Cox2 regulates NLRP3 inflammasome and autophagy mediated neuroinflammation. Cell Death Differ 26:130–145. https://doi.org/10.1038/s41418-018-0105-8

    Article  CAS  PubMed  Google Scholar 

  44. Ye Y, He X, Lu F et al (2018) A lincRNA-p21/miR-181 family feedback loop regulates microglial activation during systemic LPS- and MPTP- induced neuroinflammation. Cell Death Dis 9:803. https://doi.org/10.1038/s41419-018-0821-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Gelders G, Baekelandt V, Van der Perren A (2018) linking neuroinflammation and neurodegeneration in parkinson’s disease. J Immunol Res 2018:1–12. https://doi.org/10.1155/2018/4784268

    Article  CAS  Google Scholar 

  46. Guzman-Martinez L, Maccioni RB, Andrade V et al (2019) Neuroinflammation as a Common Feature of Neurodegenerative Disorders. Front Pharmacol 10:1008. https://doi.org/10.3389/fphar.2019.01008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Tian L, Ma L, Kaarela T, Li Z (2012) Neuroimmune crosstalk in the central nervous system and its significance for neurological diseases. J Neuroinflammation 9:155. https://doi.org/10.1186/1742-2094-9-155

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Liberman AC, Trias E, da Silva CL et al (2018) Neuroimmune and Inflammatory Signals in Complex Disorders of the Central Nervous System. Neuroimmunomodulation 25:246–270. https://doi.org/10.1159/000494761

    Article  CAS  PubMed  Google Scholar 

  49. Ramesh G, MacLean AG, Philipp MT (2013) Cytokines and chemokines at the crossroads of neuroinflammation, neurodegeneration, and neuropathic pain. Mediators Inflamm 2013:480739. https://doi.org/10.1155/2013/480739

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Leyns CEG, Holtzman DM (2017) Glial contributions to neurodegeneration in tauopathies. Mol Neurodegener 12:50. https://doi.org/10.1186/s13024-017-0192-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Faghihi MA, Modarresi F, Khalil AM et al (2008) Expression of a noncoding RNA is elevated in Alzheimer’s disease and drives rapid feed-forward regulation of beta-secretase. Nat Med 14:723–730. https://doi.org/10.1038/nm1784

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Faghihi MA, Zhang M, Huang J et al (2010) Evidence for natural antisense transcript-mediated inhibition of microRNA function. Genome Biol 11:R56. https://doi.org/10.1186/gb-2010-11-5-r56

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Zagrebelsky M, Korte M (2014) Form follows function: BDNF and its involvement in sculpting the function and structure of synapses. Neuropharmacology 76 Pt C:628–638. https://doi.org/10.1016/j.neuropharm.2013.05.029

    Article  CAS  PubMed  Google Scholar 

  54. Lima Giacobbo B, Doorduin J, Klein HC et al (2019) Brain-derived neurotrophic factor in brain disorders: focus on neuroinflammation. Mol Neurobiol 56:3295–3312. https://doi.org/10.1007/s12035-018-1283-6

    Article  CAS  PubMed  Google Scholar 

  55. O’Bryant SE, Hobson V, Hall JR et al (2009) Brain-derived neurotrophic factor levels in Alzheimer’s disease. J Alzheimers Dis JAD 17:337–341. https://doi.org/10.3233/JAD-2009-1051

    Article  CAS  PubMed  Google Scholar 

  56. Modarresi F, Faghihi MA, Lopez-Toledano MA et al (2012) Inhibition of natural antisense transcripts in vivo results in gene-specific transcriptional upregulation. Nat Biotechnol 30:453–459. https://doi.org/10.1038/nbt.2158

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Massone S, Vassallo I, Fiorino G et al (2011) 17A, a novel non-coding RNA, regulates GABA B alternative splicing and signaling in response to inflammatory stimuli and in Alzheimer disease. Neurobiol Dis 41:308–317. https://doi.org/10.1016/j.nbd.2010.09.019

    Article  CAS  PubMed  Google Scholar 

  58. Massone S, Ciarlo E, Vella S et al (2012) NDM29, a RNA polymerase III-dependent non coding RNA, promotes amyloidogenic processing of APP and amyloid β secretion. Biochim Biophys Acta 1823:1170–1177. https://doi.org/10.1016/j.bbamcr.2012.05.001

    Article  CAS  PubMed  Google Scholar 

  59. Zhou Y, Xu Z, Yu Y et al (2019) Comprehensive analysis of the lncRNA-associated ceRNA network identifies neuroinflammation biomarkers for Alzheimer’s disease. Mol Omics 15:459–469. https://doi.org/10.1039/C9MO00129H

    Article  CAS  PubMed  Google Scholar 

  60. Ma P, Li Y, Zhang W, Fang F, Sun J, Liu M, Li K, Dong L (2019) Long Non-coding RNA MALAT1 inhibits neuron apoptosis and neuroinflammation while stimulates neurite outgrowth and its correlation with MiR-125b mediates PTGS2, CDK5 and FOXQ1 in alzheimer's disease. Current Alzheimer Research 16(7):596–612. https://doi.org/10.2174/1567205016666190725130134

    Article  CAS  PubMed  Google Scholar 

  61. Yi J, Chen B, Yao X et al (2019) Upregulation of the lncRNA MEG3 improves cognitive impairment, alleviates neuronal damage, and inhibits activation of astrocytes in hippocampus tissues in Alzheimer’s disease through inactivating the PI3K/Akt signaling pathway. J Cell Biochem 120:18053–18065. https://doi.org/10.1002/jcb.29108

    Article  CAS  PubMed  Google Scholar 

  62. Zhou B, Li L, Qiu X et al (2020) Long non-coding RNA ANRIL knockdown suppresses apoptosis and pro-inflammatory cytokines while enhancing neurite outgrowth via binding microRNA-125a in a cellular model of Alzheimer’s disease. Mol Med Rep 22:1489–1497. https://doi.org/10.3892/mmr.2020.11203

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Tang L, Liu L, Li G et al (2019) Expression Profiles of Long Noncoding RNAs in Intranasal LPS-Mediated Alzheimer’s Disease Model in Mice. BioMed Res Int 2019:1–14. https://doi.org/10.1155/2019/9642589

    Article  CAS  Google Scholar 

  64. Wang Q, Liu Y, Zhou J (2015) Neuroinflammation in Parkinson’s disease and its potential as therapeutic target. Transl Neurodegener 4:19. https://doi.org/10.1186/s40035-015-0042-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Chen Y, Lian Y, Ma Y et al (2018) LncRNA SNHG1 promotes α-synuclein aggregation and toxicity by targeting miR-15b-5p to activate SIAH1 in human neuroblastoma SH-SY5Y cells. NeuroToxicology 68:212–221. https://doi.org/10.1016/j.neuro.2017.12.001

    Article  CAS  PubMed  Google Scholar 

  66. Cao B, Wang T, Qu Q et al (2018) Long Noncoding RNA SNHG1 Promotes Neuroinflammation in Parkinson’s Disease via Regulating miR-7/NLRP3 Pathway. Neuroscience 388:118–127. https://doi.org/10.1016/j.neuroscience.2018.07.019

    Article  CAS  PubMed  Google Scholar 

  67. Xu W, Zhang L, Geng Y et al (2020) Long noncoding RNA GAS5 promotes microglial inflammatory response in Parkinson’s disease by regulating NLRP3 pathway through sponging miR-223-3p. Int Immunopharmacol 85:106614. https://doi.org/10.1016/j.intimp.2020.106614

    Article  CAS  PubMed  Google Scholar 

  68. Yu S, Liu X, Yu D, et al (2020) Downregulation of long non-coding RNA SNHG7 protects against inflammation and apoptosis in Parkinson’s disease model by targeting miR-425-5p/TRAF5/NF-κB axis. In Review

  69. Cai L, Tu L, Li T et al (2019) Downregulation of lncRNA UCA1 ameliorates the damage of dopaminergic neurons, reduces oxidative stress and inflammation in Parkinson’s disease through the inhibition of the PI3K/Akt signaling pathway. Int Immunopharmacol 75:105734. https://doi.org/10.1016/j.intimp.2019.105734

    Article  CAS  PubMed  Google Scholar 

  70. Yuan D, Wang Q, Ding N et al (2019) LncRNA MALAT1 aggravates MPP-induced neuronal injury by regulating miR-212 in SH-SY5Y cells. RSC Adv 9:690–698. https://doi.org/10.1039/C8RA09260E

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Fan Y, Li J, Yang Q et al (2019) Dysregulated Long Non-coding RNAs in Parkinson’s Disease Contribute to the Apoptosis of Human Neuroblastoma Cells. Front Neurosci 13:1320. https://doi.org/10.3389/fnins.2019.01320

    Article  PubMed  PubMed Central  Google Scholar 

  72. Cai L-J, Tu L, Huang X-M et al (2020) LncRNA MALAT1 facilitates inflammasome activation via epigenetic suppression of Nrf2 in Parkinson’s disease. Mol Brain 13:130. https://doi.org/10.1186/s13041-020-00656-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Liu R, Li F, Zhao W (2020) Long noncoding RNA NEAT1 knockdown inhibits MPP+-induced apoptosis, in?ammation and cytotoxicity in SK-N-SH cells by regulating miR-212-5p/RAB3IP axis. Neurosci Lett 731:135060. https://doi.org/10.1016/j.neulet.2020.135060

    Article  CAS  PubMed  Google Scholar 

  74. Han Y, Kang C, Kang M et al (2019) Long non-coding RNA Mirt2 prevents TNF-α-triggered inflammation via the repression of microRNA-101. Int Immunopharmacol 76:105878. https://doi.org/10.1016/j.intimp.2019.105878

    Article  CAS  PubMed  Google Scholar 

  75. Wootla B, Eriguchi M, Rodriguez M (2012) Is multiple sclerosis an autoimmune disease? Autoimmune Dis 2012:969657. https://doi.org/10.1155/2012/969657

    Article  PubMed  PubMed Central  Google Scholar 

  76. Franco R, Fernández-Suárez D (2015) Alternatively activated microglia and macrophages in the central nervous system. Prog Neurobiol 131:65–86. https://doi.org/10.1016/j.pneurobio.2015.05.003

    Article  CAS  PubMed  Google Scholar 

  77. Yue P, Jing L, Zhao X et al (2019) Down-regulation of taurine-up-regulated gene 1 attenuates inflammation by sponging miR-9-5p via targeting NF-κB1/p50 in multiple sclerosis. Life Sci 233:116731. https://doi.org/10.1016/j.lfs.2019.116731

    Article  CAS  PubMed  Google Scholar 

  78. Masoumi F, Ghorbani S, Talebi F et al (2019) Malat1 long noncoding RNA regulates inflammation and leukocyte differentiation in experimental autoimmune encephalomyelitis. J Neuroimmunol 328:50–59. https://doi.org/10.1016/j.jneuroim.2018.11.013

    Article  CAS  PubMed  Google Scholar 

  79. Fenoglio C, Oldoni E, Serpente M et al (2018) LncRNAs expression profile in peripheral blood mononuclear cells from multiple sclerosis patients. J Neuroimmunol 324:129–135. https://doi.org/10.1016/j.jneuroim.2018.08.008

    Article  CAS  PubMed  Google Scholar 

  80. Liu X, Zhang Q, Wang W et al (2018) Analysis of long noncoding RNA and mRNA expression profiles in IL-9-activated astrocytes and EAE mice. Cell Physiol Biochem 45:1986–1998. https://doi.org/10.1159/000487975

    Article  CAS  PubMed  Google Scholar 

  81. Schirmer L, Velmeshev D, Holmqvist S et al (2019) Neuronal vulnerability and multilineage diversity in multiple sclerosis. Nature 573:75–82. https://doi.org/10.1038/s41586-019-1404-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Wang L, Gutmann DH, Roos RP (2011) Astrocyte loss of mutant SOD1 delays ALS disease onset and progression in G85R transgenic mice. Hum Mol Genet 20:286–293. https://doi.org/10.1093/hmg/ddq463

    Article  CAS  PubMed  Google Scholar 

  83. Corcia P, Tauber C, Vercoullie J et al (2012) Molecular imaging of microglial activation in amyotrophic lateral sclerosis. PLoS ONE 7:e52941. https://doi.org/10.1371/journal.pone.0052941

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Brites D, Vaz AR (2014) Microglia centered pathogenesis in ALS: insights in cell interconnectivity. Front Cell Neurosci 8:117. https://doi.org/10.3389/fncel.2014.00117

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Gagliardi S, Zucca S, Pandini C et al (2018) Long non-coding and coding RNAs characterization in peripheral blood mononuclear cells and spinal cord from amyotrophic lateral sclerosis patients. Sci Rep 8:2378. https://doi.org/10.1038/s41598-018-20679-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Bede P, Bokde ALW, Byrne S et al (2012) Spinal cord markers in ALS: diagnostic and biomarker considerations. Amyotroph Lateral Scler Off Publ World Fed Neurol Res Group Mot Neuron Dis 13:407–415. https://doi.org/10.3109/17482968.2011.649760

    Article  Google Scholar 

  87. Zucca S, Gagliardi S, Pandini C et al (2019) RNA-Seq profiling in peripheral blood mononuclear cells of amyotrophic lateral sclerosis patients and controls. Sci Data 6:190006. https://doi.org/10.1038/sdata.2019.6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Bright F, Werry EL, Dobson-Stone C et al (2019) Neuroinflammation in frontotemporal dementia. Nat Rev Neurol 15:540–555. https://doi.org/10.1038/s41582-019-0231-z

    Article  PubMed  Google Scholar 

  89. Trageser KJ, Smith C, Herman FJ et al (2019) Mechanisms of immune activation by c9orf72-expansions in amyotrophic lateral sclerosis and frontotemporal dementia. Front Neurosci 13:1298. https://doi.org/10.3389/fnins.2019.01298

    Article  PubMed  PubMed Central  Google Scholar 

  90. Galimberti D, Bonsi R, Fenoglio C et al (2015) Inflammatory molecules in frontotemporal dementia: Cerebrospinal fluid signature of progranulin mutation carriers. Brain Behav Immun 49:182–187. https://doi.org/10.1016/j.bbi.2015.05.006

    Article  CAS  PubMed  Google Scholar 

  91. Galimberti D, Scarpini E (2012) Genetics of frontotemporal lobar degeneration. Front Neurol 3. https://doi.org/10.3389/fneur.2012.00052

  92. Lall D, Baloh RH (2017) Microglia and C9orf72 in neuroinflammation and ALS and frontotemporal dementia. J Clin Invest 127:3250–3258. https://doi.org/10.1172/JCI90607

    Article  PubMed  PubMed Central  Google Scholar 

  93. DeJesus-Hernandez M, Mackenzie IR, Boeve BF et al (2011) Expanded GGGGCC hexanucleotide repeat in noncoding region of C9ORF72 Causes chromosome 9p-linked FTD and ALS. Neuron 72:245–256. https://doi.org/10.1016/j.neuron.2011.09.011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Renton AE, Majounie E, Waite A et al (2011) A hexanucleotide repeat expansion in C9ORF72 Is the cause of chromosome 9p21-linked ALS-FTD. Neuron 72:257–268. https://doi.org/10.1016/j.neuron.2011.09.010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Bevan-Jones WR, Cope TE, Jones PS et al (2020) Neuroinflammation and protein aggregation co-localize across the frontotemporal dementia spectrum. Brain 143:1010–1026. https://doi.org/10.1093/brain/awaa033

    Article  PubMed  PubMed Central  Google Scholar 

  96. Tollervey JR, Curk T, Rogelj B et al (2011) Characterizing the RNA targets and position-dependent splicing regulation by TDP-43. Nat Neurosci 14:452–458. https://doi.org/10.1038/nn.2778

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Nishimoto Y, Nakagawa S, Hirose T et al (2013) The long non-coding RNA nuclear-enriched abundant transcript 1_2 induces paraspeckle formation in the motor neuron during the early phase of amyotrophic lateral sclerosis. Mol Brain 6:31. https://doi.org/10.1186/1756-6606-6-31

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Lagier-Tourenne C, Polymenidou M, Hutt KR et al (2012) Divergent roles of ALS-linked proteins FUS/TLS and TDP-43 intersect in processing long premRNAs. Nat Neurosci 15:1488–1497. https://doi.org/10.1038/nn.3230

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Zhang L, Wang H (2019) Long non-coding RNA in CNS injuries: a new target for therapeutic intervention. Mol Ther - Nucleic Acids 17:754–766. https://doi.org/10.1016/j.omtn.2019.07.013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Jayaraj RL, Azimullah S, Beiram R et al (2019) Neuroinflammation: friend and foe for ischemic stroke. J Neuroinflammation 16:142. https://doi.org/10.1186/s12974-019-1516-2

    Article  PubMed  PubMed Central  Google Scholar 

  101. Dykstra-Aiello C, Jickling GC, Ander BP et al (2016) Altered expression of long noncoding rnas in blood after ischemic stroke and proximity to putative stroke risk loci. Stroke 47:2896–2903. https://doi.org/10.1161/STROKEAHA.116.013869

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Wang S-W, Liu Z, Shi Z-S (2018) Non-Ccoding RNA in acute ischemic stroke: mechanisms, biomarkers and therapeutic targets. Cell Transplant 27:1763–1777. https://doi.org/10.1177/0963689718806818

    Article  PubMed  PubMed Central  Google Scholar 

  103. Bao M-H, Szeto V, Yang BB et al (2018) Long non-coding RNAs in ischemic stroke. Cell Death Dis 9:281. https://doi.org/10.1038/s41419-018-0282-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Wang J, Cao B, Han D et al (2017) Long non-coding RNA H19 induces cerebral ischemia reperfusion injury via activation of autophagy. Aging Dis 8:71–84. https://doi.org/10.14336/AD.2016.0530

    Article  PubMed  PubMed Central  Google Scholar 

  105. Wang J, Zhao H, Fan Z et al (2017) Long noncoding RNA H19 promotes neuroinflammation in ischemic stroke by driving histone deacetylase 1-dependent M1 microglial polarization. Stroke 48:2211–2221. https://doi.org/10.1161/STROKEAHA.117.017387

    Article  CAS  PubMed  Google Scholar 

  106. Han C-L, Ge M, Liu Y-P et al (2018) LncRNA H19 contributes to hippocampal glial cell activation via JAK/STAT signaling in a rat model of temporal lobe epilepsy. J Neuroinflammation 15:103. https://doi.org/10.1186/s12974-018-1139-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Zhang X, Tang X, Liu K et al (2017) Long noncoding RNA Malat1 regulates cerebrovascular pathologies in ischemic stroke. J Neurosci Off J Soc Neurosci 37:1797–1806. https://doi.org/10.1523/JNEUROSCI.3389-16.2017

    Article  CAS  Google Scholar 

  108. Zang Y, Zhou X, Wang Q et al (2018) LncRNA FIRRE/NF-kB feedback loop contributes to OGD/R injury of cerebral microglial cells. Biochem Biophys Res Commun 501:131–138. https://doi.org/10.1016/j.bbrc.2018.04.194

    Article  CAS  PubMed  Google Scholar 

  109. Wang Y, Luo Y, Yao Y et al (2020) Silencing the lncRNA Maclpil in pro-inflammatory macrophages attenuates acute experimental ischemic stroke via LCP1 in mice. J Cereb Blood Flow Metab Off J Int Soc Cereb Blood Flow Metab 40:747–759. https://doi.org/10.1177/0271678X19836118

    Article  CAS  Google Scholar 

  110. Chen J-X, Wang Y-P, Zhang X et al (2020) lncRNA Mtss1 promotes inflammatory responses and secondary brain injury after intracerebral hemorrhage by targeting miR-709 in mice. Brain Res Bull 162:20–29. https://doi.org/10.1016/j.brainresbull.2020.04.017

    Article  CAS  PubMed  Google Scholar 

  111. Mehta SL, Kim T, Vemuganti R (2015) Long noncoding RNA FosDT Promotes ischemic brain injury by interacting with REST-associated chromatin-modifying proteins. J Neurosci Off J Soc Neurosci 35:16443–16449. https://doi.org/10.1523/JNEUROSCI.2943-15.2015

    Article  CAS  Google Scholar 

  112. Peng J, Wu Y, Tian X et al (2017) High-throughput sequencing and Co-expression network analysis of lncRNAs and mRNAs in early brain injury following experimental subarachnoid haemorrhage. Sci Rep 7:46577. https://doi.org/10.1038/srep46577

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Long F-Q, Su Q-J, Zhou J-X et al (2018) LncRNA SNHG12 ameliorates brain microvascular endothelial cell injury by targeting miR-199a. Neural Regen Res 13:1919–1926. https://doi.org/10.4103/1673-5374.238717

    Article  PubMed  PubMed Central  Google Scholar 

  114. Zhang J, Dong B, Hao J et al (2019) LncRNA Snhg3 contributes to dysfunction of cerebral microvascular cells in intracerebral hemorrhage rats by activating the TWEAK/Fn14/STAT3 pathway. Life Sci 237:116929. https://doi.org/10.1016/j.lfs.2019.116929

    Article  CAS  PubMed  Google Scholar 

  115. Zhong Y, Yu C, Qin W (2019) LncRNA SNHG14 promotes inflammatory response induced by cerebral ischemia/reperfusion injury through regulating miR-136-5p /ROCK1. Cancer Gene Ther 26:234–247. https://doi.org/10.1038/s41417-018-0067-5

    Article  CAS  PubMed  Google Scholar 

  116. Xu Q, Deng F, Xing Z et al (2016) Long non-coding RNA C2dat1 regulates CaMKIIδ expression to promote neuronal survival through the NF-κB signaling pathway following cerebral ischemia. Cell Death Dis 7:e2173. https://doi.org/10.1038/cddis.2016.57

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Deng Y, Chen D, Wang L, et al (2019) Silencing of Long Noncoding RNA Nespas Aggravates Microglial Cell Death and Neuroinflammation in Ischemic Stroke. Stroke 50:1850–1858. https://doi.org/10.1161/STROKEAHA.118.023376

  118. Wang H, Liao S, Li H et al (2019) Long non-coding RNA TUG1 Sponges Mir-145a-5p to regulate microglial polarization after oxygen-glucose deprivation. Front Mol Neurosci 12:215. https://doi.org/10.3389/fnmol.2019.00215

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Cao D-W, Liu M-M, Duan R et al (2020) The lncRNA Malat1 functions as a ceRNA to contribute to berberine-mediated inhibition of HMGB1 by sponging miR-181c-5p in poststroke inflammation. Acta Pharmacol Sin 41:22–33. https://doi.org/10.1038/s41401-019-0284-y

    Article  CAS  PubMed  Google Scholar 

  120. Sun X, Wang Z, Wu Q et al (2019) LncRNA RMST activates TAK1-mediated NF-κB signaling and promotes activation of microglial cells via competitively binding with hnRNPK. IUBMB Life 71:1785–1793. https://doi.org/10.1002/iub.2125

    Article  CAS  PubMed  Google Scholar 

  121. Li P, Li Y, Dai Y et al (2020) The LncRNA H19/miR-1-3p/CCL2 axis modulates lipopolysaccharide (LPS) stimulation-induced normal human astrocyte proliferation and activation. Cytokine 131:155106. https://doi.org/10.1016/j.cyto.2020.155106

    Article  CAS  PubMed  Google Scholar 

  122. Wang M, Jiang Y-M, Xia L-Y et al (2018) LncRNA NKILA upregulation mediates oxygen glucose deprivation/re-oxygenation-induced neuronal cell death by inhibiting NF-κB signaling. Biochem Biophys Res Commun 503:2524–2530. https://doi.org/10.1016/j.bbrc.2018.07.010

    Article  CAS  PubMed  Google Scholar 

  123. Wan P, Su W, Zhang Y et al (2020) LncRNA H19 initiates microglial pyroptosis and neuronal death in retinal ischemia/reperfusion injury. Cell Death Differ 27:176–191. https://doi.org/10.1038/s41418-019-0351-4

    Article  CAS  PubMed  Google Scholar 

  124. Xu L, Zhang Z, Xie T et al (2016) Inhibition of BDNF-AS Provides Neuroprotection for Retinal Ganglion Cells against Ischemic Injury. PloS One 11:e0164941. https://doi.org/10.1371/journal.pone.0164941

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Wang L-Q, Zhou H-J (2018) LncRNA MALAT1 promotes high glucose-induced inflammatory response of microglial cells via provoking MyD88/IRAK1/TRAF6 signaling. Sci Rep 8:8346. https://doi.org/10.1038/s41598-018-26421-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Zhang B, Wang D, Ji T-F et al (2017) Overexpression of lncRNA ANRIL up-regulates VEGF expression and promotes angiogenesis of diabetes mellitus combined with cerebral infarction by activating NF-κB signaling pathway in a rat model. Oncotarget 8:17347–17359. https://doi.org/10.18632/oncotarget.14468

    Article  PubMed  Google Scholar 

  127. Wang C-F, Zhao C-C, Weng W-J et al (2017) Alteration in long non-coding RNA expression after traumatic brain injury in rats. J Neurotrauma 34:2100–2108. https://doi.org/10.1089/neu.2016.4642

    Article  PubMed  Google Scholar 

  128. Yu Y, Cao F, Ran Q, Wang F (2017) Long non-coding RNA Gm4419 promotes trauma-induced astrocyte apoptosis by targeting tumor necrosis factor α. Biochem Biophys Res Commun 491:478–485 https://doi.org/10.1016/j.bbrc.2017.07.021

  129. Patel NA, Moss LD, Lee J-Y et al (2018) Long noncoding RNA MALAT1 in exosomes drives regenerative function and modulates inflammation-linked networks following traumatic brain injury. J Neuroinflammation 15:204. https://doi.org/10.1186/s12974-018-1240-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Yi M, Dai X, Li Q et al (2019) Downregulated lncRNA CRNDE contributes to the enhancement of nerve repair after traumatic brain injury in rats. Cell Cycle Georget Tex 18:2332–2343. https://doi.org/10.1080/15384101.2019.1647024

    Article  CAS  Google Scholar 

  131. Cheng S, Zhang Y, Chen S, Zhou Y (2020) LncRNA HOTAIR Participates in Microglia Activation and Inflammatory Factor Release by Regulating the Ubiquitination of MYD88 in Traumatic Brain Injury. J Mol Neurosci MN. https://doi.org/10.1007/s12031-020-01623-7

  132. Jia J, Zhang M, Li Q et al (2018) Long noncoding ribonucleic acid NKILA induces the endoplasmic reticulum stress/autophagy pathway and inhibits the nuclear factor-k-gene binding pathway in rats after intracerebral hemorrhage. J Cell Physiol 233:8839–8849. https://doi.org/10.1002/jcp.26798

    Article  CAS  PubMed  Google Scholar 

  133. Gao M, Fu J, Wang Y (2020) The lncRNA FAL1 protects against hypoxia-reoxygenation- induced brain endothelial damages through regulating PAK1. J Bioenerg Biomembr 52:17–25. https://doi.org/10.1007/s10863-019-09819-2

    Article  CAS  PubMed  Google Scholar 

  134. Zhang X, Zhu X-L, Ji B-Y et al (2019) LncRNA-1810034E14Rik reduces microglia activation in experimental ischemic stroke. J Neuroinflammation 16:75. https://doi.org/10.1186/s12974-019-1464-x

    Article  PubMed  PubMed Central  Google Scholar 

  135. Zheng B, Liu H, Wang R et al (2015) Expression signatures of long non-coding RNAs in early brain injury following experimental subarachnoid hemorrhage. Mol Med Rep 12:967–973. https://doi.org/10.3892/mmr.2015.3474

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Shao H-F, Li Z-Z, Zheng X-F et al (2019) Research on the correlation of changes in plasma lncRNA MEG3 with change in inflammatory factors and prognosis in patients with traumatic brain injury. Eur Rev Med Pharmacol Sci 23:4341–4347. https://doi.org/10.26355/eurrev_201905_17940

    Article  PubMed  Google Scholar 

  137. Ji R-R, Xu Z-Z, Gao Y-J (2014) Emerging targets in neuroinflammation-driven chronic pain. Nat Rev Drug Discov 13:533–548. https://doi.org/10.1038/nrd4334

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Zhou Z, Han B, Jin H, et al (2020) Changes in long non-coding RNA transcriptomic profiles after ischemia-reperfusion injury in rat spinal cord. PeerJ 8:e8293. https://doi.org/10.7717/peerj.8293

  139. Jia H, Ma H, Li Z et al (2019) Downregulation of LncRNA TUG1 inhibited TLR4 signaling pathway-mediated inflammatory damage after spinal cord ischemia reperfusion in rats via suppressing TRIL expression. J Neuropathol Exp Neurol 78:268–282. https://doi.org/10.1093/jnen/nly126

    Article  CAS  PubMed  Google Scholar 

  140. Zhou H-J, Wang L-Q, Wang D-B et al (2018) Long noncoding RNA MALAT1 contributes to inflammatory response of microglia following spinal cord injury via the modulation of a miR-199b/IKKβ/NF-κB signaling pathway. Am J Physiol Cell Physiol 315:C52–C61. https://doi.org/10.1152/ajpcell.00278.2017

    Article  CAS  PubMed  Google Scholar 

  141. Zhou J, Li Z, Wu T et al (2020) LncGBP9/miR-34a axis drives macrophages toward a phenotype conducive for spinal cord injury repair via STAT1/STAT6 and SOCS3. J Neuroinflammation 17:134. https://doi.org/10.1186/s12974-020-01805-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Shao M, Jin M, Xu S et al (2020) Exosomes from long noncoding RNA-Gm37494-ADSCs repair spinal cord injury via shifting microglial M1/M2 polarization. Inflammation 43:1536–1547. https://doi.org/10.1007/s10753-020-01230-z

    Article  CAS  PubMed  Google Scholar 

  143. Li H, Xu Y, Wang G et al (2019) Long non-coding RNA Mirt2 relieves lipopolysaccharide-induced injury in PC12 cells by suppressing miR-429. J Physiol Biochem 75:403–413. https://doi.org/10.1007/s13105-019-00691-7

    Article  CAS  PubMed  Google Scholar 

  144. Zhu S, Zhou Z, Li Z et al (2019) Suppression of LINC00707 alleviates lipopolysaccharide-induced inflammation and apoptosis in PC-12 cells by regulated miR-30a-5p/Neurod 1. Biosci Biotechnol Biochem 83:2049–2056. https://doi.org/10.1080/09168451.2019.1637245

    Article  CAS  PubMed  Google Scholar 

  145. Jiang B-C, Sun W-X, He L-N et al (2015) Identification of IncRNA expression profile in the spinal cord of mice following spinal nerve ligation-induced neuropathic pain. Mol Pain 11:s12990-015–0047. https://doi.org/10.1186/s12990-015-0047-9

  146. Hu J-Z, Rong Z-J, Li M et al (2019) Silencing of lncRNA PKIA-AS1 attenuates spinal nerve ligation-induced neuropathic pain through epigenetic downregulation of CDK6 expression. Front Cell Neurosci 13:50. https://doi.org/10.3389/fncel.2019.00050

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Pan X, Shen C, Huang Y et al (2020) Loss of SNHG4 attenuated spinal nerve ligation-triggered neuropathic pain through sponging miR-423-5p. Mediators Inflamm 2020:2094948. https://doi.org/10.1155/2020/2094948

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Wu J, Wang C, Ding H (2020) LncRNA MALAT1 promotes neuropathic pain progression through the miR-154-5p/AQP9 axis in CCI rat models. Mol Med Rep 21:291–303. https://doi.org/10.3892/mmr.2019.10829

    Article  CAS  PubMed  Google Scholar 

  149. Pang H, Ren Y, Li H et al (2020) LncRNAs linc00311 and AK141205 are identified as new regulators in STAT3-mediated neuropathic pain in bCCI rats. Eur J Pharmacol 868:172880. https://doi.org/10.1016/j.ejphar.2019.172880

    Article  CAS  PubMed  Google Scholar 

  150. Yan X-T, Lu J-M, Wang Y et al (2018) XIST accelerates neuropathic pain progression through regulation of miR-150 and ZEB1 in CCI rat models. J Cell Physiol 233:6098–6106. https://doi.org/10.1002/jcp.26453

    Article  CAS  PubMed  Google Scholar 

  151. Wei M, Li L, Zhang Y et al (2018) LncRNA X inactive specific transcript contributes to neuropathic pain development by sponging miR-154-5p via inducing toll-like receptor 5 in CCI rat models. J Cell Biochem. https://doi.org/10.1002/jcb.27088

  152. Zhao Y, Li S, Xia N et al (2018) Effects of XIST/miR-137 axis on neuropathic pain by targeting TNFAIP1 in a rat model. J Cell Physiol 233:4307–4316. https://doi.org/10.1002/jcp.26254

    Article  CAS  PubMed  Google Scholar 

  153. Jin H, Du X-J, Zhao Y, Xia D-L (2018) XIST/miR-544 axis induces neuropathic pain by activating STAT3 in a rat model. J Cell Physiol 233:5847–5855. https://doi.org/10.1002/jcp.26376

    Article  CAS  PubMed  Google Scholar 

  154. Xia L-X, Ke C, Lu J-M (2018) NEAT1 contributes to neuropathic pain development through targeting miR-381/HMGB1 axis in CCI rat models. J Cell Physiol 233:7103–7111. https://doi.org/10.1002/jcp.26526

    Article  CAS  PubMed  Google Scholar 

  155. Shen F, Zheng H, Zhou L et al (2019) LINC00657 expedites neuropathic pain development by modulating miR-136/ZEB1 axis in a rat model. J Cell Biochem 120:1000–1010. https://doi.org/10.1002/jcb.27466

    Article  CAS  PubMed  Google Scholar 

  156. Zhang D, Mou J-Y, Wang F et al (2019) CRNDE enhances neuropathic pain via modulating miR-136/IL6R axis in CCI rat models. J Cell Physiol 234:22234–22241. https://doi.org/10.1002/jcp.28790

    Article  CAS  PubMed  Google Scholar 

  157. Chen Z-L, Liu J-Y, Wang F, Jing X (2019) Suppression of MALAT1 ameliorates chronic constriction injury-induced neuropathic pain in rats via modulating miR-206 and ZEB2. J Cell Physiol. https://doi.org/10.1002/jcp.28213

  158. Xu M, Yan Y, Zhu M et al (2020) Effects of long non-coding RNA Gm14461 on pain transmission in trigeminal neuralgia. J Inflamm Lond Engl 17:1. https://doi.org/10.1186/s12950-019-0231-1

    Article  CAS  Google Scholar 

  159. Sun W, Ma M, Yu H, Yu H (2018) Inhibition of lncRNA X inactivate-specific transcript ameliorates inflammatory pain by suppressing satellite glial cell activation and inflammation by acting as a sponge of miR-146a to inhibit Nav 1.7. J Cell Biochem 119:9888–9898. https://doi.org/10.1002/jcb.27310

    Article  CAS  PubMed  Google Scholar 

  160. Liu Y, Feng L, Ren S et al (2020) Inhibition of lncRNA DILC attenuates neuropathic pain via the SOCS3/JAK2/STAT3 pathway. Biosci Rep 40. https://doi.org/10.1042/BSR20194486

  161. Xia X, Niu H, Ma Y et al (2020) LncRNA CCAT1 protects astrocytes against OGD/R-induced damage by targeting the miR-218/NFAT5-signaling axis. Cell Mol Neurobiol. https://doi.org/10.1007/s10571-020-00824-3

  162. Yu Y, Zhu M, Zhao Y et al (2018) Overexpression of TUSC7 inhibits the inflammation caused by microglia activation via regulating miR-449a/PPAR-γ. Biochem Biophys Res Commun 503:1020–1026. https://doi.org/10.1016/j.bbrc.2018.06.111

    Article  CAS  PubMed  Google Scholar 

  163. Li J-W, Kuang Y, Chen L, Wang J-F (2018) LncRNA ZNF667-AS1 inhibits inflammatory response and promotes recovery of spinal cord injury via suppressing JAK-STAT pathway. Eur Rev Med Pharmacol Sci 22:7614–7620. https://doi.org/10.26355/eurrev_201811_16375

    Article  PubMed  Google Scholar 

  164. Peng C, Zhang C, Su Z, Lin D (2019) DGCR5 attenuates neuropathic pain through sponging miR-330-3p and regulating PDCD4 in CCI rat models. J Cell Physiol 234:7292–7300. https://doi.org/10.1002/jcp.27487

    Article  CAS  PubMed  Google Scholar 

  165. Zheng H, Hu S, Cao J et al (2019) Long non-coding RNA TUG1 alleviates LPS-induced injury of PC-12 cells by down-regulating microRNA-127. Exp Mol Pathol 110:104287. https://doi.org/10.1016/j.yexmp.2019.104287

    Article  CAS  PubMed  Google Scholar 

  166. Mariani MM, Kielian T (2009) Microglia in infectious diseases of the central nervous system. J Neuroimmune Pharmacol 4:448–461. https://doi.org/10.1007/s11481-009-9170-6

    Article  PubMed  PubMed Central  Google Scholar 

  167. Yang R, Huang F, Fu J et al (2016) Differential transcription profiles of long non-coding RNAs in primary human brain microvascular endothelial cells in response to meningitic Escherichia coli. Sci Rep 6:38903. https://doi.org/10.1038/srep38903

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Sun W, Pei L, Liang Z (2017) mRNA and long non-coding RNA expression profiles in rats reveal inflammatory features in sepsis-associated encephalopathy. Neurochem Res 42:3199–3219. https://doi.org/10.1007/s11064-017-2357-y

    Article  CAS  PubMed  Google Scholar 

  169. Chen Y, Zhang Y, Ye G et al (2020) Knockdown of lncRNA PCAI protects against cognitive decline induced by hippocampal neuroinflammation via regulating SUZ12. Life Sci 253:117626. https://doi.org/10.1016/j.lfs.2020.117626

    Article  CAS  PubMed  Google Scholar 

  170. Wang P (2019) The opening of pandora’s box: an emerging role of long noncoding RNA in viral infections. Front Immunol 9:3138. https://doi.org/10.3389/fimmu.2018.03138

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Meng X-Y, Luo Y, Anwar MN et al (2017) Long non-coding RNAs: Emerging and versatile regulators in host-virus interactions. Front Immunol 8:1663. https://doi.org/10.3389/fimmu.2017.01663

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Heaton RK, Clifford DB, Franklin DR et al (2010) HIV-associated neurocognitive disorders persist in the era of potent antiretroviral therapy: CHARTER Study. Neurology 75:2087–2096. https://doi.org/10.1212/WNL.0b013e318200d727

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Zhou F, Liu X, Zuo D et al (2018) HIV-1 Nef-induced lncRNA AK006025 regulates CXCL9/10/11 cluster gene expression in astrocytes through interaction with CBP/P300. J Neuroinflammation 15:303. https://doi.org/10.1186/s12974-018-1343-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. Ghosh D, Basu A (2009) Japanese encephalitis-a pathological and clinical perspective. PLoS Negl Trop Dis 3:e437. https://doi.org/10.1371/journal.pntd.0000437

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Ghoshal A, Das S, Ghosh S et al (2007) Proinflammatory mediators released by activated microglia induces neuronal death in Japanese encephalitis. Glia 55:483–496. https://doi.org/10.1002/glia.20474

    Article  PubMed  Google Scholar 

  176. Li Y, Zhang H, Zhu B et al (2017) microarray analysis identifies the potential role of long non-coding RNA in regulating neuroinflammation during Japanese encephalitis virus infection. Front Immunol 8:1237. https://doi.org/10.3389/fimmu.2017.01237

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  177. Zhao P, Liu S, Zhong Z et al (2018) Analysis of expression profiles of long noncoding RNAs and mRNAs in brains of mice infected by rabies virus by RNA sequencing. Sci Rep 8:11858. https://doi.org/10.1038/s41598-018-30359-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  178. Ji S, Zhu M, Zhang J et al (2019) Microarray analysis of lncRNA expression in rabies virus infected human neuroblastoma cells. Infect Genet Evol 67:88–100. https://doi.org/10.1016/j.meegid.2018.10.027

    Article  CAS  PubMed  Google Scholar 

  179. Shih R-H, Wang C-Y, Yang C-M (2015) NF-kappaB Signaling Pathways in Neurological Inflammation: A Mini Review. Front Mol Neurosci 8:77. https://doi.org/10.3389/fnmol.2015.00077

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  180. Nabavi SM, Ahmed T, Nawaz M et al (2019) Targeting STATs in neuroinflammation: The road less traveled! Pharmacol Res 141:73–84. https://doi.org/10.1016/j.phrs.2018.12.004

    Article  CAS  PubMed  Google Scholar 

  181. Yan Z, Gibson SA, Buckley JA et al (2018) Role of the JAK/STAT signaling pathway in regulation of innate immunity in neuroinflammatory diseases. Clin Immunol 189:4–13. https://doi.org/10.1016/j.clim.2016.09.014

    Article  CAS  PubMed  Google Scholar 

  182. Danan C, Manickavel S, Hafner M (2016) PAR-CLIP: A method for transcriptome-wide identification of rna binding protein interaction sites. Methods Mol Biol Clifton NJ 1358:153–173. https://doi.org/10.1007/978-1-4939-3067-8_10

    Article  CAS  Google Scholar 

  183. Ule J, Hwang H-W, Darnell RB (2018) The future of cross-linking and immunoprecipitation (CLIP). Cold Spring Harb Perspect Biol 10. https://doi.org/10.1101/cshperspect.a032243

  184. Khorkova O, Wahlestedt C (2017) Oligonucleotide therapies for disorders of the nervous system. Nat Biotechnol 35:249–263. https://doi.org/10.1038/nbt.3784

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  185. Wurster CD, Ludolph AC (2018) Antisense oligonucleotides in neurological disorders. Ther Adv Neurol Disord 11:1756286418776932. https://doi.org/10.1177/1756286418776932

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

Figure 1 was created with BioRender.com. This work is supported by extramural grants from the Government of India, DBT-BT/PR27371/MED/122/122/2017 to VS and AB; DST Grant No. DST-SERB ECR/2017/001953 and DBT-RLS 102/IFD/SAN/3499/2016-17 to VS; OPERA award from BITS Pilani to VS. BS was supported by a scholarship from BITS Pilani and ICMR SRF. Swati acknowledges DST, New Delhi, for providing fellowship (DST/INSPIRE Fellowship/2019/IF190343).

Author information

Authors and Affiliations

Authors

Contributions

VS and AB conceived and designed the manuscript. ST, BS, SM, S, AB, and VS wrote the manuscript. All authors read and approved the final version of the manuscript.

Corresponding authors

Correspondence to Anirban Basu or Vivek Sharma.

Ethics declarations

Competing Interests

The authors declare that they have no conflict of interest.

Ethics Approval and Consent to Participate

Not applicable

Consent for Publication

Not applicable.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tripathi, S., Shree, B., Mohapatra, S. et al. The Expanding Regulatory Mechanisms and Cellular Functions of Long Non-coding RNAs (lncRNAs) in Neuroinflammation. Mol Neurobiol 58, 2916–2939 (2021). https://doi.org/10.1007/s12035-020-02268-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-020-02268-8

Keywords

Navigation