Skip to main content

Advertisement

Log in

Differential Age-Dependent Mitochondrial Dysfunction, Oxidative Stress, and Apoptosis Induced by Neonatal Hypoxia-Ischemia in the Immature Rat Brain

  • Original Article
  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Neonatal hypoxia-ischemia (HI) is among the main causes of mortality and morbidity in newborns. Experimental studies show that the immature rat brain is less susceptible to HI injury, suggesting that changes that occur during the first days of life drastically alter its susceptibility. Among the main developmental changes observed is the mitochondrial function, namely, the tricarboxylic acid (TCA) cycle and respiratory complex (RC) activities. Therefore, in the present study, we investigated the influence of neonatal HI on mitochondrial functions, redox homeostasis, and cell damage at different postnatal ages in the hippocampus of neonate rats. For this purpose, animals were divided into four groups: sham postnatal day 3 (ShP3), HIP3, ShP11, and HIP11. We initially observed increased apoptosis in the HIP11 group only, indicating a higher susceptibility of these animals to brain injury. Mitochondrial damage, as determined by flow cytometry showing mitochondrial swelling and loss of mitochondrial membrane potential, was also demonstrated only in the HIP11 group. This was consistent with the decreased mitochondrial oxygen consumption, reduced TCA cycle enzymes, and RC activities and induction of oxidative stress in this group of animals. Considering that HIP3 and the sham animals showed no alteration of mitochondrial functions, redox homeostasis, and showed no apoptosis, our data suggest an age-dependent vulnerability of the hippocampus to hypoxia-ischemia. The present results highlight age-dependent metabolic differences in the brain of neonate rats submitted to HI indicating that different treatments might be needed for HI newborns with different gestational ages.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. Laptook AR, Shankaran S, Tyson JE, Munoz B, Bell EF, Goldberg RN, Parikh NA, Ambalavanan N et al (2017) Effect of therapeutic hypothermia initiated after 6 hours of age on death or disability among newborns with hypoxic-ischemic encephalopathy a randomized clinical trial. JAMA - J Am Med Assoc 318:1550–1560. https://doi.org/10.1001/jama.2017.14972

    Article  Google Scholar 

  2. Volpe JJ (2009) Brain injury in premature infants: a complex amalgam of destructive and developmental disturbances. Lancet Neurol 8:110–124

    Article  Google Scholar 

  3. Jacobs SE, Berg M, Hunt R et al (2013) Cooling for newborns with hypoxic ischaemic encephalopathy. Cochrane Database Syst Rev 2013(1):CD003311

    PubMed Central  Google Scholar 

  4. Rice JE, Vannucci RC, Brierley JB (1981) The influence of immaturity on hypoxic-ischemic brain damage in the rat. Ann Neurol 9:131–141. https://doi.org/10.1002/ana.410090206

    Article  PubMed  Google Scholar 

  5. Semple BD, Blomgren K, Gimlin K, Ferriero DM, Noble-Haeusslein LJ (2013) Brain development in rodents and humans: Identifying benchmarks of maturation and vulnerability to injury across species. Prog Neurobiol 106–107:1–16. https://doi.org/10.1016/j.pneurobio.2013.04.001

    Article  PubMed  Google Scholar 

  6. Sizonenko SV, Kiss JZ, Inder T, Gluckman PD, Williams CE (2005) Distinctive neuropathologic alterations in the deep layers of the parietal cortex after moderate ischemic-hypoxic injury in the P3 immature rat brain. Pediatr Res 57:865–872. https://doi.org/10.1203/01.PDR.0000157673.36848.67

    Article  CAS  PubMed  Google Scholar 

  7. Sanches EF, Arteni N, Nicola F, Aristimunha D, Netto CA (2015) Sexual dimorphism and brain lateralization impact behavioral and histological outcomes following hypoxia-ischemia in P3 and P7 rats. Neuroscience 290:581–593. https://doi.org/10.1016/j.neuroscience.2014.12.074

    Article  CAS  PubMed  Google Scholar 

  8. Patel SD, Pierce L, Ciardiello A, Hutton A, Paskewitz S, Aronowitz E, Voss HU, Moore H et al (2015) Therapeutic hypothermia and hypoxia-ischemia in the term-equivalent neonatal rat: characterization of a translational preclinical model. Pediatr Res 78:264–271. https://doi.org/10.1038/pr.2015.100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Shi Y, Zhao JN, Liu L, Hu ZX, Tang SF, Chen L, Jin RB (2012) Changes of positron emission tomography in newborn infants at different gestational ages, and neonatal hypoxic-ischemic encephalopathy. Pediatr Neurol 46:116–123. https://doi.org/10.1016/j.pediatrneurol.2011.11.005

    Article  PubMed  Google Scholar 

  10. Thorngren-jerneck K, Ohlsson T, Sandell A et al (2001) Cerebral glucose metabolism measured by positron emission tomography in term newborn infants with hypoxic ischemic encephalopathy. Pediatr Res 49:495–501

    Article  CAS  Google Scholar 

  11. Odorcyk FK, Duran-Carabali LE, Rocha DS, Sanches EF, Martini AP, Venturin GT, Greggio S, da Costa JC et al (2020) Differential glucose and beta-hydroxybutyrate metabolism confers an intrinsic neuroprotection to the immature brain in a rat model of neonatal hypoxia ischemia. Exp Neurol 330:113317. https://doi.org/10.1016/j.expneurol.2020.113317

    Article  CAS  PubMed  Google Scholar 

  12. Brekke E, Berger HR, Widerøe M, Sonnewald U, Morken TS (2017) Glucose and intermediary metabolism and astrocyte–neuron interactions following neonatal hypoxia–ischemia in rat. Neurochem Res 42:115–132. https://doi.org/10.1007/s11064-016-2149-9

    Article  CAS  PubMed  Google Scholar 

  13. Davidson JO, Wassink G, van den Heuij LG, Bennet L, Gunn AJ (2015) Therapeutic hypothermia for neonatal hypoxic-ischemic encephalopathy - where to from here? Front Neurol 6. https://doi.org/10.3389/fneur.2015.00198

  14. Li S, Liu W, Zhang Y et al (2014) The role of TNF-α, IL-6, IL-10, and GDNF in neuronal apoptosis in neonatal rat with hypoxic-ischemic encephalopathy. Eur Rev Med Pharmacol Sci 18:905–909

    PubMed  Google Scholar 

  15. Odorcyk FK, Kolling J, Sanches EF, Wyse ATS, Netto CA (2017) Experimental neonatal hypoxia ischemia causes long lasting changes of oxidative stress parameters in the hippocampus and the spleen. J Perinat Med 46:1–7. https://doi.org/10.1515/jpm-2017-0070

    Article  CAS  Google Scholar 

  16. Liu F, McCullough LD (2013) Inflammatory responses in hypoxic ischemic encephalopathy. Acta Pharmacol Sin 34:1121–1130. https://doi.org/10.1038/aps.2013.89

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Alexander M, Garbus H, Smith AL, Rosenkrantz TS, Fitch RH (2014) Behavioral and histological outcomes following neonatal HI injury in a preterm (P3) and term (P7) rodent model. Behav Brain Res 259:85–96. https://doi.org/10.1016/j.bbr.2013.10.038

    Article  CAS  PubMed  Google Scholar 

  18. Brekke E, Morken TS, Sonnewald U (2015) Glucose metabolism and astrocyte-neuron interactions in the neonatal brain. Neurochem Int 82:33–41. https://doi.org/10.1016/j.neuint.2015.02.002

    Article  CAS  PubMed  Google Scholar 

  19. Baquer NZ, Hothersall JS, McLean P, Greenbaum AL (1977) Aspects of carbohydrate metabolism in developing brain. Dev Med Child Neurol 19(1):81–104. https://doi.org/10.1111/j.1469-8749.1977.tb08027.x

  20. Booth RFG, Patel TB, Clark JB (1980) The development of enzymes of energy metabolism in the brain of a precocial (guinea pig) and non-precocial (rat) species. J Neurochem 34:17–25. https://doi.org/10.1111/j.1471-4159.1980.tb04616.x

    Article  CAS  PubMed  Google Scholar 

  21. Baer AG, Bourdon AK, Price JM, Campagna SR, Jacobson DA, Baghdoyan HA, Lydic R Ph.D. (2020) Isoflurane anesthesia disrupts the cortical metabolome. J Neurophysiol. https://doi.org/10.1152/jn.00375.2020

  22. Zhao D-A, Bi L-Y, Huang Q et al (2016) Isoflurane provides neuroprotection in neonatal hypoxic ischemic brain injury by suppressing apoptosis. Braz J Anesthesiol. https://doi.org/10.1016/j.bjane.2015.04.008

  23. Durán-Carabali LE, Sanches EF, Reichert L, Netto CA (2019) Enriched experience during pregnancy and lactation protects against motor impairments induced by neonatal hypoxia-ischemia. Behav Brain Res 367:189–193. https://doi.org/10.1016/j.bbr.2019.03.048

    Article  PubMed  Google Scholar 

  24. Lima KG, Krause GC, da Silva EFG, Xavier LL, Martins LAM, Alice LM, da Luz LB, Gassen RB et al (2018) Octyl gallate reduces ATP levels and Ki67 expression leading HepG2 cells to cell cycle arrest and mitochondria-mediated apoptosis. Toxicol in Vitro 48:11–25. https://doi.org/10.1016/j.tiv.2017.12.017

    Article  CAS  PubMed  Google Scholar 

  25. Srere PA (1969) Citrate synthase. [EC 4.1.3.7. Citrate oxaloacetate-lyase (CoA-acetylating)]. Methods Enzymol 13:3–11. https://doi.org/10.1016/0076-6879(69)13005-0

    Article  CAS  Google Scholar 

  26. Kitto G (1969) Intra- and extramitochondrial malate dehydrogenases from chicken and tuna heart. Methods Enzymol. https://doi.org/10.1016/0076-6879(69)13023-2

  27. Fischer JC, Ruitenbeek W, Berden JA, Trijbels JMF, Veerkamp JH, Stadhouders AM, Sengers RCA, Janssen AJM (1985) Differential investigation of the capacity of succinate oxidation in human skeletal muscle. Clin Chim Acta 153:23–36. https://doi.org/10.1016/0009-8981(85)90135-4

    Article  CAS  PubMed  Google Scholar 

  28. Rustin P, Chretien D, Bourgeron T, Gérard B, Rötig A, Saudubray JM, Munnich A (1994) Biochemical and molecular investigations in respiratory chain deficiencies. Clin Chim Acta 228:35–51. https://doi.org/10.1016/0009-8981(94)90055-8

    Article  CAS  PubMed  Google Scholar 

  29. Gnaiger E (2009) Capacity of oxidative phosphorylation in human skeletal muscle. New perspectives of mitochondrial physiology. Int J Biochem Cell Biol 41:1837–1845. https://doi.org/10.1016/j.biocel.2009.03.013

    Article  CAS  PubMed  Google Scholar 

  30. Cecatto C, Godoy K dos S, da Silva JC et al (2016) Disturbance of mitochondrial functions provoked by the major long-chain 3-hydroxylated fatty acids accumulating in MTP and LCHAD deficiencies in skeletal muscle. Toxicol in Vitro 36:1–9. https://doi.org/10.1016/j.tiv.2016.06.007

    Article  CAS  PubMed  Google Scholar 

  31. Makrecka-Kuka M, Krumschnabel G, Gnaiger E (2015) High-resolution respirometry for simultaneous measurement of oxygen and hydrogen peroxide fluxes in permeabilized cells, tissue homogenate and isolated mitochondria. Biomolecules. 5:1319–1338. https://doi.org/10.3390/biom5031319

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Yagi K (1998) Simple procedure for specific assay of lipid hydroperoxides in serum or plasma. Methods Mol Biol. https://doi.org/10.1385/0-89603-472-0:107

  33. Ribeiro RT, Zanatta Â, Amaral AU, Leipnitz G, de Oliveira FH, Seminotti B, Wajner M (2018) Experimental evidence that in vivo intracerebral administration of L-2-hydroxyglutaric acid to neonatal rats provokes disruption of redox status and Histopathological abnormalities in the brain. Neurotox Res 33:681–692. https://doi.org/10.1007/s12640-018-9874-6

    Article  CAS  PubMed  Google Scholar 

  34. LeBel CP, Bondy SC (1990) Sensitive and rapid quantitation of oxygen reactive species formation in rat synaptosomes. Neurochem Int 17:435–440. https://doi.org/10.1016/0197-0186(90)90025-O

    Article  CAS  PubMed  Google Scholar 

  35. Browne RW, Armstrong D (1998) Reduced glutathione and glutathione disulfide. Methods Mol Biol. https://doi.org/10.1385/0-89603-472-0:347

  36. Wendel A (1981) Glutathione peroxidase. Methods Enzymol. https://doi.org/10.1016/S0076-6879(81)77046-0

  37. Marklund S, Marklund G (1974) Involvement of the superoxide anion radical in the autoxidation of pyrogallol and a convenient assay for superoxide dismutase. Eur J Biochem 47:469–474. https://doi.org/10.1111/j.1432-1033.1974.tb03714.x

    Article  CAS  Google Scholar 

  38. Lowry OH, Rosenbrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the folin. J Biol Chem 30:361–362. https://doi.org/10.1016/0304-3894(92)87011-4

    Article  Google Scholar 

  39. Cardoso GMF, Pletsch JT, Parmeggiani B, Grings M, Glanzel NM, Bobermin LD, Amaral AU, Wajner M et al (2017) Bioenergetics dysfunction, mitochondrial permeability transition pore opening and lipid peroxidation induced by hydrogen sulfide as relevant pathomechanisms underlying the neurological dysfunction characteristic of ethylmalonic encephalopathy. Biochim Biophys Acta Mol basis Dis 1863:2192–2201. https://doi.org/10.1016/j.bbadis.2017.06.007

    Article  CAS  PubMed  Google Scholar 

  40. Odorcyk FK, Nicola F, Duran-Carabali LE, Figueiró F, Kolling J, Vizuete A, Konrath EL, Gonçalves CA et al (2017) Galantamine administration reduces reactive astrogliosis and upregulates the anti-oxidant enzyme catalase in rats submitted to neonatal hypoxia ischemia. Int J Dev Neurosci 62:15–24. https://doi.org/10.1016/j.ijdevneu.2017.07.006

    Article  CAS  PubMed  Google Scholar 

  41. Li SJ, Liu W, Wang JL, Zhang Y, Zhao DJ, Li YY (2014) The role of TNF-α, IL-6, IL-10, and GDNF in neuronal apoptosis in neonatal rat with hypoxic-ischemic encephalopathy. Eur Rev Med Pharmacol Sci 18(6):905–9

  42. Huang Z, Liu J, Cheung PY, Chen C (2009) Long-term cognitive impairment and myelination deficiency in a rat model of perinatal hypoxic-ischemic brain injury. Brain Res 1301:100–109. https://doi.org/10.1016/j.brainres.2009.09.006

    Article  CAS  PubMed  Google Scholar 

  43. Gregson NA, Williams PL (1969) A comparative study of BRAIN and liver mitochondria from new-born and adult rats. J Neurochem 16:617–626. https://doi.org/10.1111/j.1471-4159.1969.tb06861.x

    Article  CAS  PubMed  Google Scholar 

  44. Hagberg H, Mallard C, Rousset CI, Thornton C (2014) Mitochondria: hub of injury responses in the developing brain. Lancet Neurol 13:217–232

    Article  CAS  Google Scholar 

  45. Garcia JH, Lossinsky AS, Kauffman FC, Conger KA (1978) Neuronal ischemic injury: light microscopy, ultrastructure and biochemistry. Acta Neuropathol 43:85–95. https://doi.org/10.1007/BF00685002

    Article  CAS  PubMed  Google Scholar 

  46. Li J, Yu W, Li XT, Qi SH, Li B (2014) The effects of propofol on mitochondrial dysfunction following focal cerebral ischemia-reperfusion in rats. Neuropharmacology. 77:358–368. https://doi.org/10.1016/j.neuropharm.2013.08.029

    Article  CAS  PubMed  Google Scholar 

  47. Sanderson TH, Reynolds CA, Kumar R et al (2013) Molecular mechanisms of ischemia-reperfusion injury in brain: pivotal role of the mitochondrial membrane potential in reactive oxygen species generation. Mol Neurobiol 47:9–23

    Article  CAS  Google Scholar 

  48. Benjelloun N, Joly LM, Palmier B, Plotkine M, Charriaut-Marlangue C (2003) Apoptotic mitochondrial pathway in neurones and astrocytes after neonatal hypoxia-ischaemia in the rat brain. Neuropathol Appl Neurobiol 29:350–360. https://doi.org/10.1046/j.1365-2990.2003.00467.x

    Article  CAS  PubMed  Google Scholar 

  49. de-Souza-Ferreira E, Rios-Neto IM, Martins EL, Galina A (2019) Mitochondria-coupled glucose phosphorylation develops after birth to modulate H2O2 release and calcium handling in rat brain. J Neurochem 149:624–640. https://doi.org/10.1111/jnc.14705

    Article  CAS  PubMed  Google Scholar 

  50. Globus MY, Alonso O, Dietrich WD et al (1995) Glutamate release and free radical production following brain Injury: Effects of Posttraumatic Hypothermia. J Neurochem. https://doi.org/10.1046/j.1471-4159.1995.65041704.x

  51. Rao R, Trivedi S, Vesoulis Z, Liao SM, Smyser CD, Mathur AM (2017) Safety and short-term outcomes of therapeutic hypothermia in preterm neonates 34-35 weeks gestational age with hypoxic-ischemic encephalopathy. J Pediatr 183:37–42. https://doi.org/10.1016/j.jpeds.2016.11.019

    Article  PubMed  Google Scholar 

  52. Herrera TI, Edwards L, Malcolm WF, Smith PB, Fisher KA, Pizoli C, Gustafson KE, Goldstein RF et al (2018) Outcomes of preterm infants treated with hypothermia for hypoxic-ischemic encephalopathy. Early Hum Dev 125:1–7. https://doi.org/10.1016/j.earlhumdev.2018.08.003

    Article  PubMed  Google Scholar 

  53. Dranka BP, Hill BG, Darley-Usmar VM (2010) Mitochondrial reserve capacity in endothelial cells: The impact of nitric oxide and reactive oxygen species. Free Radic Biol Med 48:905–914. https://doi.org/10.1016/j.freeradbiomed.2010.01.015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Nannelli G, Terzuoli E, Giorgio V, Donnini S, Lupetti P, Giachetti A, Bernardi P, Ziche M (2018) ALDH2 activity reduces mitochondrial oxygen reserve capacity in endothelial cells and induces senescence properties. Oxidative Med Cell Longev 2018:1–13. https://doi.org/10.1155/2018/9765027

    Article  CAS  Google Scholar 

  55. Mavelli I, Rigo A, Federico R, Ciriolo MR, Rotilio G (1982) Superoxide dismutase, glutathione peroxidase and catalase in developing rat brain. Biochem J 204:535–540. https://doi.org/10.1042/bj2040535

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Weis SN, Schunck RVA, Pettenuzzo LF, Krolow R, Matté C, Manfredini V, Peralba MCR, Vargas CR et al (2011) Early biochemical effects after unilateral hypoxia-ischemia in the immature rat brain. Int J Dev Neurosci 29:115–120. https://doi.org/10.1016/j.ijdevneu.2010.12.005

    Article  CAS  PubMed  Google Scholar 

  57. Netto CA, Sanches E, Odorcyk FK, Duran-Carabali LE, Weis SN (2017) Sex-dependent consequences of neonatal brain hypoxia-ischemia in the rat. J Neurosci Res 95:409–421

    Article  CAS  Google Scholar 

Download references

Funding

This study was supported by research grants from the Conselho Nacional de Desenvolvimento Científico e Tecnologico (CNPq), and Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES).

Author information

Authors and Affiliations

Authors

Contributions

FKO conceived and directed the project, analyzed data, interpreted results, and wrote the manuscript. RTR, ACR, and MW performed respirometry and oxidative stress analysis. NSCP and CD aided in the Western blot techniques. LEDC assisted with all experiments. CAN directed the project and co-wrote the manuscript. All authors reviewed and edited the manuscript.

Corresponding author

Correspondence to Felipe Kawa Odorcyk.

Ethics declarations

Conflict of Interest

The authors declare that they do not have conflicts of interest.

Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Odorcyk, F.K., Ribeiro, R.T., Roginski, A.C. et al. Differential Age-Dependent Mitochondrial Dysfunction, Oxidative Stress, and Apoptosis Induced by Neonatal Hypoxia-Ischemia in the Immature Rat Brain. Mol Neurobiol 58, 2297–2308 (2021). https://doi.org/10.1007/s12035-020-02261-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-020-02261-1

Keywords

Navigation