Skip to main content
Log in

Celecoxib-Dependent Neuroprotection in a Rat Model of Transient Middle Cerebral Artery Occlusion (tMCAO) Involves Modifications in Unfolded Protein Response (UPR) and Proteasome

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Stroke is one of the main causes of death and disability worldwide. Ischemic stroke results in unfolded/misfolded protein accumulation in endoplasmic reticulum (ER), a condition known as ER stress. We hypothesized that previously reported neuroprotection of celecoxib, a selective inhibitor of cyclooxygenase-2, in transient middle cerebral artery occlusion (tMCAO) model, relies on the ER stress decrease. To probe this hypothesis, Sprague-Dawley rats were subjected to 1 h of tMCAO and treated with celecoxib or vehicle 1 and 24 h after ischemia. Protein and mRNA levels of the main hallmarks of ER stress, unfolded protein response (UPR) activation, UPR-induced cell death, and ubiquitin proteasome system (UPS) and autophagy, the main protein degradation pathways, were measured at 12 and 48 h of reperfusion. Celecoxib treatment decreased polyubiquitinated protein load and ER stress marker expression such as glucose-related protein 78 (GRP78), C/EBP (CCAAT/enhancer-binding protein) homologous protein (CHOP), and caspase 12 after 48 h of reperfusion. Regarding the UPR activation, celecoxib promoted inositol-requiring enzyme 1 (IRE1) pathway instead of double-stranded RNA-activated protein kinase-like ER kinase (PERK) pathway. Furthermore, celecoxib treatment increased proteasome catalytic subunits transcript levels and decreased p62 protein levels, while the microtubule-associated protein 1 light chain 3 (LC3B) II/I ratio remained unchanged. Thus, the ability of celecoxib treatment on reducing the ER stress correlates with the enhancement of IRE1-UPR pathway and UPS degradation. These data support the ability of anti-inflammatory therapy in modulating ER stress and reveal the IRE1 pathway as a promising therapeutic target in stroke therapy.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

Ab:

Antibody

ATF4:

Activating transcription factor 4

ATF6:

Activating transcription factor 6

BAG:

B-cell lymphoma-2-associated athanogene

BSA:

Bovine serum albumin

cH:

Contralateral hemisphere

CHOP:

C/EBP (CCAAT/enhancer-binding protein) homologous protein

COX-2:

Cyclooxygenase-2

DAPI:

4,6-Diamidino-2-phenylindole

eIF2α:

Eukaryotic initiation factor 2 subunit α

ER:

Endoplasmic reticulum

ERAD:

ER-associated degradation

FrPaSS:

Frontoparietal cortex, somatosensory area

GAPDH:

Glyceraldehyde-3-phosphate dehydrogenase

GRP78:

Glucose-related protein 78

i.p:

Intraperitoneally

I/R:

Ischemia/reperfusion

iH:

Injured hemisphere

IRE1:

Inositol-requiring enzyme 1

LC3B:

Microtubule-associated protein 1 light chain 3

MCA:

Middle cerebral artery

ODs:

Optical densities

p62/SQSTM1:

Ubiquitin-binding protein p62/Sequestosome-1

PBS:

50-mm phosphate buffered saline pH 7.4

PERK:

Double-stranded RNA-activated protein kinase-like ER kinase

PFA:

Paraformaldehyde

polyUb:

Polyubiquitinated

Psmβ:

Proteasome β catalytic subunits

RRID:

Research resource identifiers

RT-qPCR:

Real-time quantitative PCR

SDS:

Sodium dodecyl sulfate

TBS-T:

Tris-buffered saline + 0.2% Tween-20

TFI:

Total fluorescence intensity

tMCAO:

Transient middle cerebral artery occlusion

UPR:

Unfolded protein response

UPS:

Ubiquitin proteasome system

XBP1s:

Spliced X-box binding protein 1

References

  1. Bodalia A, Li H, Jackson MJ (2013) Loss of endoplasmic reticulum Ca2+ homeostasis: contribution to neuronal cell death during cerebral ischemia. Acta Pharmacol Sin 34(1):49–59

    Article  CAS  PubMed  Google Scholar 

  2. Paschen W, Mengesdorf T (2005) Endoplasmic reticulum stress response and neurodegeneration. Cell Calcium 38(3–4):409–415

    Article  CAS  PubMed  Google Scholar 

  3. Raghubir R, Nakka VP, Mehta SL (2011) Endoplasmic reticulum stress in brain damage. Methods Enzymol 489:259–275

    Article  CAS  PubMed  Google Scholar 

  4. Chen JH, Kuo HC, Lee KF, Tsai TH (2015) Global proteomic analysis of brain tissues in transient ischemia brain damage in rats. Int J Mol Sci 16(6):11873–11891

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Font-Belmonte E, Ugidos IF, Santos-Galdiano M, González-Rodríguez P, Anuncibay-Soto B, Pérez-Rodríguez D, Gonzalo-Orden JM, Fernández-López A (2019) Post-ischemic salubrinal administration reduces necroptosis in a rat model of global cerebral ischemia. J Neurochem 151(6):777–794

    Article  CAS  PubMed  Google Scholar 

  6. Llorente IL, Burgin TC, Pérez-Rodríguez D, Martínez-Villayandre B, Pérez-García CC, Fernández-López A (2013) Unfolded protein response to global ischemia following 48 h of reperfusion in the rat brain: the effect of age and meloxicam. J Neurochem 127(5):701–710

    Article  CAS  PubMed  Google Scholar 

  7. Zhang L, Wang T, Valle D (2015) Reduced PLP2 expression increases ER-stress-induced neuronal apoptosis and risk for adverse neurological outcomes after hypoxia ischemia injury. Hum Mol Genet 24(25):7221–7226

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Oakes SA, Papa FR (2015) The role of endoplasmic reticulum stress in human pathology. Annu Rev Pathol 10:173–194

    Article  CAS  PubMed  Google Scholar 

  9. Yoshida H (2007) ER stress and diseases. FEBS J 274(3):630–658

    Article  CAS  PubMed  Google Scholar 

  10. Sanderson TH, Gallaway M, Kumar R (2015) Unfolding the unfolded protein response: unique insights into brain ischemia. Int J Mol Sci 16(4):7133–7142

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Sprenkle NT, Sim SG, Sánchez CL, Meares GP (2017) Endoplasmic reticulum stress and inflammation in the central nervous system. Mol Neurodegener 12(1):42

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Walter P, Ron D (2011) The unfolded protein response: from stress pathway to homeostatic regulation. Science. 334(6059):1081–1086

    Article  CAS  PubMed  Google Scholar 

  13. Habib P, Stamm AS, Schulz JB et al (2019) EPO and TMBIM3/GRINA promote the activation of the adaptive arm and counteract the terminal arm of the unfolded protein response after murine transient cerebral ischemia. Int J Mol Sci 20(21):E5421

    Article  PubMed  CAS  Google Scholar 

  14. Kumar R, Krause GS, Yoshida H, Mori K, DeGracia DJ (2003) Dysfunction of the unfolded protein response during global brain ischemia and reperfusion. J Cereb Blood Flow Metab 23(4):462–471

    Article  CAS  PubMed  Google Scholar 

  15. Paschen W, Aufenberg C, Hotop S, Mengesdorf T (2003) Transient cerebral ischemia activates processing of xbp1 messenger RNA indicative of endoplasmic reticulum stress. J Cereb Blood Flow Metab 23(4):449–461

    Article  CAS  PubMed  Google Scholar 

  16. Roussel BD, Kruppa AJ, Miranda E, Crowther DC, Lomas DA, Marciniak SJ (2013) Endoplasmic reticulum dysfunction in neurological disease. Lancet Neurol 12(1):105–118

    Article  CAS  PubMed  Google Scholar 

  17. Hetz C, Saxena S (2017) ER stress and the unfolded protein response in neurodegeneration. Nat Rev Neurol 13(8):477–491

    Article  CAS  PubMed  Google Scholar 

  18. Harding HP, Zhang Y, Zeng H, Novoa I, Lu PD, Calfon M, Sadri N, Yun C et al (2003) An integrated stress response regulates amino acid metabolism and resistance to oxidative stress. Mol Cell 11(3):619–633

    Article  CAS  PubMed  Google Scholar 

  19. Young SK, Wek RC (2016) Upstream open reading frames differentially regulate gene-specific translation in the integrated stress response. J Biol Chem 291(33):16927–16935

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Hetz C, Chevet E, Oakes SA (2015) Proteostasis control by the unfolded protein response. Nat Cell Biol 17(7):829–838

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Xin Q, Ji B, Cheng B, Wang C, Liu H, Chen X, Chen J, Bai B (2014) Endoplasmic reticulum stress in cerebral ischemia. Neurochem Int 68:18–27

    Article  CAS  PubMed  Google Scholar 

  22. Anuncibay-Soto B, Pérez-Rodríguez D, Santos-Galdiano M et al (2018) Salubrinal and robenacoxib treatment after global cerebral ischemia. Exploring the interactions between ER stress and inflammation. Biochem Pharmacol 151:26–37

    Article  CAS  PubMed  Google Scholar 

  23. Galea J, Brough D (2013) The role of inflammation and interleukin-1 in acute cerebrovascular disease. J Inflamm Res 6:121–128

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Shichita T, Ago T, Kamouchi M, Kitazono T, Yoshimura A, Ooboshi H (2012) Novel therapeutic strategies targeting innate immune responses and early inflammation after stroke. J Neurochem 123(2):29–38

    Article  CAS  PubMed  Google Scholar 

  25. Ugidos IF, Santos-Galdiano M, Pérez-Rodríguez D et al (1859) Neuroprotective effect of 2-hydroxy arachidonic acid in a rat model of transient middle cerebral artery occlusion. Biochim Biophys Acta 2017:1648–1656

    Google Scholar 

  26. Santos-Galdiano M, Pérez-Rodríguez D, Anuncibay-Soto B, Font-Belmonte E, Ugidos IF, Pérez-García CC, Fernández-López A (2018) Celecoxib treatment improves neurologic deficit and reduces selective neuronal loss and glial response in rats after transient middle cerebral artery occlusion. J Pharmacol Exp Ther 367(3):528–542

    Article  CAS  PubMed  Google Scholar 

  27. Groenendyk J, Paskevicius T, Urra H, Viricel C, Wang K, Barakat K, Hetz C, Kurgan L et al (2018) Cyclosporine A binding to COX-2 reveals a novel signaling pathway that activates the IRE1α unfolded protein response sensor. Sci Rep 8(1):16678

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. Pintado C, Macías S, Domínguez-Martín H, Castaño A, Ruano D (2017) Neuroinflammation alters cellular proteostasis by producing endoplasmic reticulum stress, autophagy activation and disrupting ERAD activation. Sci Rep 7(1):8100

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. Maeng HJ, Song JH, Kim GT, Song YJ, Lee K, Kim JY, Park TS (2017) Celecoxib-mediated activation of endoplasmic reticulum stress induces de novo ceramide biosynthesis and apoptosis in hepatoma HepG2 cells mobilization. BMB Rep 50(3):144–149

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Kim B, Kim J, Kim YS (2017) Celecoxib induces cell death on non-small cell lung cancer cells through endoplasmic reticulum stress. Ant Cell Biol 50(4):293–300

    Article  Google Scholar 

  31. Pyrko P, Kardosh A, Liu YT, Soriano N, Xiong W, Chow RH, Uddin J, Petasis NA et al (2007) Calcium-activated endoplasmic reticulum stress as a major component of tumor cell death induced by 2,5-dimethyl-celecoxib, a non-coxib analogue of celecoxib. Mol Cancer Ther 6(4):1262–1275

    Article  CAS  PubMed  Google Scholar 

  32. Pyrko P, Kardosh A, Schönthal AH (2008) Celecoxib transiently inhibits cellular protein synthesis. Biochem Pharmacol 75(2):395–404

    Article  CAS  PubMed  Google Scholar 

  33. Chu K, Jeong SW, Jung KH, Han SY, Lee ST, Kim M, Roh JK (2004) Celecoxib induces functional recovery after intracerebral hemorrhage with reduction of brain edema and perihematomal cell death. J Cereb Blood Flow Metab 24(8):926–933

    Article  CAS  PubMed  Google Scholar 

  34. López-Villodres JA, De La Cruz JP, Muñoz-Marin J et al (2012) Cytoprotective effect of nonsteroidal antiinflammatory drugs in rat brain slices subjected to reoxygenation after oxygen-glucose deprivation. Eur J Pharm Sci 45(5):624–631

    Article  PubMed  CAS  Google Scholar 

  35. Sinn DI, Lee ST, Chu K, Jung KH, Song EC, Kim JM, Park DK, Kim M et al (2007) Combined neuroprotective effects of celecoxib and memantine in experimental intracerebral hemorrhage. Neurosci Lett 411(3):238–242

    Article  CAS  PubMed  Google Scholar 

  36. Paxinos G, Watson C (1986) The rat brain in stereotaxic coordinates. Academic Press, San Diego

    Google Scholar 

  37. Carmichael ST (2005) Rodent models of focal stroke: size, mechanism, and purpose. NeuroRx. 2(3):396–409

    Article  PubMed  PubMed Central  Google Scholar 

  38. Heit JJ, Wintermark M (2016) Perfusion computed tomography for the evaluation of acute ischemic stroke: strengths and pitfalls. Stroke. 47(4):1153–1158

    Article  PubMed  Google Scholar 

  39. Benedek A, Móricz K, Jurányi Z, Gigler G, Lévay G, Hársing LG Jr, Mátyus P, Szénási G et al (2006) Use of TTC staining for the evaluation of tissue injury in the early phases of reperfusion after focal cerebral ischemia in rats. Brain Res 1116(1):159–165

    Article  CAS  PubMed  Google Scholar 

  40. Taylor S, Wakem M, Dijkman G, Alsarraj M, Nguyen M (2016) A practical approach to RT-qPCR—Publishing data that conform to the MIQE guidelines. Methods. 50(4):S1–S5

    Article  CAS  Google Scholar 

  41. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(−Delta Delta C(T)) method. Methods. 25(4):402–408

    Article  CAS  PubMed  Google Scholar 

  42. Schönthal AH (2012) Endoplasmic reticulum stress: its role in disease and novel prospects for therapy. Scientifica. 2012:857516

  43. Nishitoh H (2012) CHOP is a multifunctional transcription factor in the ER stress response. J Biochem 151(3):217–219

    Article  CAS  PubMed  Google Scholar 

  44. Szegezdi E, Fitzgerald U, Samali A (2003) Caspase-12 and ER-stress-mediated apoptosis: the story so far. Ann N Y Acad Sci 1010:186–194

    Article  CAS  PubMed  Google Scholar 

  45. Liu X, Yamashita T, Shang J, Shi X, Morihara R, Huang Y, Sato K, Takemoto M et al (2018) Molecular switching from ubiquitin-proteasome to autophagy pathways in mice stroke model. J Cereb Blood Flow Metab 40(1):214–224

    Article  PubMed  PubMed Central  Google Scholar 

  46. Lüders J, Demand J, Höhfeld J (2000) The ubiquitin-related BAG1 provides a link between the molecular chaperones Hsc70/Hsp70 and the proteasome. J Biol Chem 275(7):4613–4617

    Article  PubMed  Google Scholar 

  47. Carra S, Seguin SJ, Lambert H, Landry J (2008) HspB8 chaperone activity toward poly(Q)-containing proteins depends on its association with Bag3, a stimulator of macroautophagy. J Biol Chem 283(3):1437–1444

    Article  CAS  PubMed  Google Scholar 

  48. Gamerdinger M, Kaya AM, Wolfrum U, Clement AM, Behl C (2011) BAG3 mediates chaperone-based aggresome-targeting and selective autophagy of misfolded proteins. EMBO Rep 12(2):149–156

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Katsuragi Y, Ichimura Y, Komatsu M (2015) p62/SQSTM1 functions as a signaling hub and an autophagy adaptor. FEBS J 282(24):4672–4678

    Article  CAS  PubMed  Google Scholar 

  50. Lippai M, Lőw P (2014) The role of the selective adaptor p62 and ubiquitin-like proteins in autophagy. Biomed Res Int 2014:832704

    Article  PubMed  PubMed Central  Google Scholar 

  51. Yang Z, Klionsky DJ (2010) Mammalian autophagy: core molecular machinery and signaling regulation. Curr Opin Cell Biol 22(2):124–131

    Article  CAS  PubMed  Google Scholar 

  52. Althausen S, Mengesdorf T, Mies G, Oláh L, Nairn AC, Proud CG, Paschen W (2001) Changes in the phosphorylation of initiation factor eIF-2α, elongation factor eEF-2 and p70 S6 kinase after transient focal cerebral ischaemia in mice. J Neurochem 78(4):779–787

    Article  CAS  PubMed  Google Scholar 

  53. Mengesdorf T, Proud CG, Mies G, Paschen W (2002) Mechanisms underlaying suppression of protein synthesis induced by transient focal cerebral ischemia in mouse brain. Exp Neurol 177(2):538–546

    Article  CAS  PubMed  Google Scholar 

  54. Nakka VP, Gusain A, Raghubir R (2009) Endoplasmic reticulum stress plays critical role in brain damage after cerebral ischemia/reperfusion in rats. Neurotox Res 17(2):189–202

    Article  Google Scholar 

  55. Ibuki T, Yamasaki Y, Mizuguchi H, Sokabe M (2012) Protective effects of XBP1 against oxygen and glucose deprivation/reoxygenation injury in rat primary hippocampal neurons. Neurosci Lett 518(1):45–48

    Article  CAS  PubMed  Google Scholar 

  56. Chakrabarti A, Chen AW, Varner JD (2011) A review of the mammalian unfolded protein response. Biotechnol Bioeng 108(12):2777–2793

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Yan W, Frank CL, Korth MJ, Sopher BL, Novoa I, Ron D, Katze MG (2002) Control of PERK eIF2alpha kinase activity by the endoplasmic reticulum stress-induced molecular chaperone P58IPK. Proc Natl Acad Sci U S A 99(25):15920–15925

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Rissanen A, Sivenius J, Jolkkonen J (2006) Prolonged bihemispheric alterations in unfolded protein response related gene expression after experimental stroke. Brain Res 1087(1):60–66

    Article  CAS  PubMed  Google Scholar 

  59. Ge P, Luo Y, Liu CL, Hu B (2007) Protein aggregation and proteasome dysfunction after brain ischemia. Stroke. 38(12):3230–3236

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Ji CH, Kwon YT (2017) Crosstalk and interplay between the ubiquitin-proteasome system and autophagy. Mol Cell 40(7):441–449

    CAS  Google Scholar 

  61. Houck SA, Cyr DM (2012) Mechanisms for quality control of misfolded transmembrane proteins. Biochim Biophys Acta 1818(4):1108–1114

    Article  CAS  PubMed  Google Scholar 

  62. Keller JN, Huang FF, Zhu H, Yu J, Ho YS, Kindy TS (2000) Oxidative stress-associated impairment of proteasome activity during ischemia-reperfusion injury. J Cereb Blood Flow Metab 20(10):1467–1473

    Article  CAS  PubMed  Google Scholar 

  63. Gavilán MP, Castaño A, Torres M, Portavella M, Caballero C, Jiménez S, García-Martínez A, Parrado J et al (2009) Age-related increase in the immunoproteasome content in rat hippocampus: molecular and functional aspects. J Neurochem 108(1):260–272

    Article  PubMed  CAS  Google Scholar 

  64. Jäger S, Groll M, Huber R, Wolf DH, Heinemeyer W (1999) Proteasome beta-type subunits: unequal roles of propeptides in core particle maturation and a hierarchy of active site function. J Mol Biol 291(4):997–1013

    Article  PubMed  Google Scholar 

  65. Kermer P, Digicaylioglu MH, Kaul M et al (2003) BAG1 over-expression in brain protects against stroke. Brain Pathol 13(4):495–506

    Article  CAS  PubMed  Google Scholar 

  66. Aveic S, Pigazzi M, Basso G (2011) BAG1: the guardian of anti-apoptotic proteins in acute myeloid leukemia. PLoS One 6(10):e26097

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Gennaro VJ, Wedegaertner H, McMaon SB (2019) Interaction between the BAG1S isoform and HSP70 mediates the stability of anti-apoptotic proteins and the survival of osteosarcoma cells expressing oncogenic MYC. BMC Cancer 19(1):258

    Article  PubMed  PubMed Central  Google Scholar 

  68. Liman J, Ganesan S, Dohm CP, Krajewski S, Reed JC, Bähr M, Wouters FS, Kermer P (2005) Interaction of BAG1 and Hsp70 mediates neuroprotectivity and increases chaperone activity. Mol Cell Biol 25(9):3715–3725

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Lee AH, Iwakoshi NN, Anderson KC, Glimcher LH (2003) Proteasome inhibitors disrupt the unfolded protein response in myeloma cells. Proc Natl Acad Sci U S A 100(17):9946–9951

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Seibenhener ML, Babu JR, Geetha T, Wong HC, Krishna NR, Wooten MW (2004) Sequestosome 1/p62 is a polyubiquitin chain binding protein involved in ubiquitin proteasome degradation. Mol Cell Biol 24(18):8055–8068

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Cohen-Kaplan V, Ciechanover A, Livneh I (2016) P62 at the crossroad of the ubiquitin-proteasome system and autophagy. Oncotarget. 7(51):83833–83834

    Article  PubMed  PubMed Central  Google Scholar 

  72. Liu WJ, Ye L, Huang WF, Guo LJ, Xu ZG, Wu HL, Yang C, Liu HF (2016) p62 links the autophagy pathway and the ubiqutin-proteasome system upon ubiquitinated protein degradation. Cell Mol Biol Lett 21(1):29

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  73. Thompson HG, Harris JW, Wold BJ, Lin F, Brody JP (2003) p62 overexpression in breast tumors and regulation by prostate-derived Ets factor in breast cancer cells. Oncogene. 22(15):2322–2333

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This study was supported by MINECO and FEDER Funds (RTC2015-4094-1); by Junta de Castilla y León (LE025P17); and by Neural Therapies S.L (NT-Dev-01). Paloma Gonzalez-Rodriguez and Irene F Ugidos were granted from Junta de Castilla y Leon (EDU/529/2017 and EDU/310/2015 respectively). Enrique Font-Belmonte was supported by a grant from the Universidad de Leon. Neural Therapies SL also granted Marıa Santos-Galdiano and Berta Anuncibay-Soto.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Diego Pérez-Rodríguez or Arsenio Fernández-López.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Santos-Galdiano, M., González-Rodríguez, P., Font-Belmonte, E. et al. Celecoxib-Dependent Neuroprotection in a Rat Model of Transient Middle Cerebral Artery Occlusion (tMCAO) Involves Modifications in Unfolded Protein Response (UPR) and Proteasome. Mol Neurobiol 58, 1404–1417 (2021). https://doi.org/10.1007/s12035-020-02202-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-020-02202-y

Keywords

Navigation