Skip to main content

Advertisement

Log in

Distinct Neurotoxic Effects of Extracellular Tau Species in Primary Neuronal-Glial Cultures

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Recent data from various experimental models support the link between extracellular tau and neurodegeneration; however, the exact mechanisms by which extracellular tau or its modified forms or aggregates cause neuronal death remain unclear. We have previously shown that exogenously applied monomers and oligomers of the longest tau isoform (2N4R) at micromolar concentrations induced microglial phagocytosis of stressed-but-viable neurons in vitro. In this study, we investigated whether extracellular phosphorylated tau2N4R (p-tau2N4R), isoform 1N4R (tau1N4R) and K18 peptide can induce neuronal death or loss in primary neuronal-glial cell cultures. We found that p-tau2N4R at 30 nM concentration induced loss of viable neurons; however, 700 nM p-tau2N4R caused necrosis of both neurons and microglia, and this neuronal death was partially glial cell-dependent. We also found that extracellular tau1N4R oligomers, but not monomers, at 3 μM concentration caused neuronal death in mixed cell cultures: self-assembly tau1N4R dimers-tetramers induced neuronal necrosis and apoptosis, whereas Aβ-promoted tau1N4R oligomers caused glial cell-dependent loss of neurons without signs of increased cell death. Monomeric and pre-aggregated tau peptide containing 4R repeats (K18) had no effect in mixed cultures, suggesting that tau neurotoxicity might be dependent on N-terminal part of the protein. Taken together, our results show that extracellular p-tau2N4R is the most toxic form among investigated tau species inducing loss of neurons at low nanomolar concentrations and that neurotoxicity of tau1N4R is dependent on its aggregation state.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Availability of Data and Materials

The data that support the findings of this study are available from the corresponding author upon request.

Abbreviations

Aβ:

Amyloid-β

1–42 :

Amyloid-β 1 to 42 amino acid peptide

AD:

Alzheimer’s disease

Ara-C:

Cytosine β- D–arabinofuranoside

BSA:

Bovine serum albumin

CGC:

Cerebellar granule cells

CSF:

Cerebrospinal fluid

DIV:

Days in vitro

DMEM:

Dulbecco’s Modified Eagle Medium

GSK-3β:

Glycogen synthase kinase-3β

HEPES:

(4-(2-Hydroxyethyl)-1-piperazineethanesulfonic acid)

EDTA:

Ethylenediaminetetraacetic acid

ERK:

Extracellular signal-regulated kinases

ISF:

Interstitial fluid

MAPT:

Microtubule-associated protein tau

MAPK:

Mitogen-activated protein kinases

NMDA:

N-methyl-D-aspartate

NFT:

Neurofibrillary tangles

PHF:

Paired helical filaments

PI:

Propidium iodide

PVDF:

Polyvinylidene fluoride

tau:

Tubulin associated unit

tau1N4R :

Recombinant full-length tau 1N4R

tau2N4R :

Recombinant full-length tau 2N4R

p-tau:

Phosphorylated tau

p-tau2N4R :

GSK-3β-phosphorylated recombinant full-length tau 2N4R

SDS:

Sodium dodecyl sulfate

SDS-PAGE:

Sodium dodecyl sulfate–polyacrylamide gel electrophoresis

LDS:

Lithium dodecyl sulfate

References

  1. Iqbal K, Liu F, Gong C-X, Grundke-Iqbal I (2010) Tau in Alzheimer disease and related tauopathies. Curr Alzheimer Res 7:656–664. https://doi.org/10.2174/156720510793611592

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Laurent C, Buée L, Blum D (2018) Tau and neuroinflammation: what impact for Alzheimer’s disease and tauopathies? Biom J 41:21–33

    Google Scholar 

  3. Chong FP, Ng KY, Koh RY, Chye SM (2018) Tau proteins and tauopathies in Alzheimer’s disease. Cell Mol Neurobiol 38:965–980

    Article  CAS  Google Scholar 

  4. Braak H, Alafuzoff I, Arzberger T, Kretzschmar H, del Tredici K (2006) Staging of Alzheimer disease-associated neurofibrillary pathology using paraffin sections and immunocytochemistry. Acta Neuropathol 112:389–404. https://doi.org/10.1007/s00401-006-0127-z

    Article  PubMed  PubMed Central  Google Scholar 

  5. Schöll M, Maass A, Mattsson N, Ashton NJ, Blennow K, Zetterberg H, Jagust W (2019) Biomarkers for tau pathology. Mol Cell Neurosci 97:18–33. https://doi.org/10.1016/J.MCN.2018.12.001

    Article  PubMed  PubMed Central  Google Scholar 

  6. Yang CC, Chiu MJ, Chen TF, Chang HL, Liu BH, Yang SY (2018) Assay of plasma phosphorylated tau protein (threonine 181) and total tau protein in early-stage Alzheimer’s disease. J Alzheimers Dis 61:1323–1332. https://doi.org/10.3233/JAD-170810

    Article  CAS  PubMed  Google Scholar 

  7. Buerger K, Ewers M, Pirttila T, Zinkowski R, Alafuzoff I, Teipel SJ, DeBernardis J, Kerkman D et al (2006) CSF phosphorylated tau protein correlates with neocortical neurofibrillary pathology in Alzheimer’s disease. Brain 129:3035–3041. https://doi.org/10.1093/brain/awl269

    Article  PubMed  Google Scholar 

  8. Kim W, Lee S, Jung C, Ahmed A, Lee G, Hall GF (2010) Interneuronal transfer of human tau between lamprey central neurons in situ. J Alzheimers Dis 19:647–664. https://doi.org/10.3233/JAD-2010-1273

    Article  CAS  PubMed  Google Scholar 

  9. Pernègre C, Duquette A, Leclerc N (2019) Tau secretion: good and bad for neurons. Front Neurosci 13:649. https://doi.org/10.3389/fnins.2019.00649

    Article  PubMed  PubMed Central  Google Scholar 

  10. Thomann PA, Kaiser E, Schönknecht P, Pantel J, Essig M, Schröder J (2009) Association of total tau and phosphorylated tau 181 protein levels in cerebrospinal fluid with cerebral atrophy in mild cognitive impairment and Alzheimer disease. J Psychiatry Neurosci 34:136–142

    PubMed  PubMed Central  Google Scholar 

  11. Hu YY, He SS, Wang X, Duan QH, Grundke-Iqbal I, Iqbal K, Wang J (2002) Levels of nonphosphorylated and phosphorylated tau in cerebrospinal fluid of Alzheimer’s disease patients : an ultrasensitive bienzyme-substrate-recycle enzyme-linked immunosorbent assay. Am J Pathol 160:1269–1278. https://doi.org/10.1016/S0002-9440(10)62554-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Jankeviciute S, Psemeneckiene G, Morkuniene R et al (2019) Cerebrospinal fluids from Alzheimer’s disease patients exhibit neurotoxic effects on neuronal cell cultures. Eur J Neurosci EJN:14389. https://doi.org/10.1111/ejn.14389

  13. Bateman RJ, Xiong C, Benzinger TLS, Fagan AM, Goate A, Fox NC, Marcus DS, Cairns NJ et al (2012) Clinical and biomarker changes in dominantly inherited Alzheimer’s disease. N Engl J Med 367:795–804. https://doi.org/10.1056/NEJMoa1202753

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Llorens F, Villar-Piqué A, Candelise N et al (2019) Tau protein as a biological fluid biomarker in neurodegenerative dementias. In: Cognitive Disorders. IntechOpen. https://doi.org/10.5772/intechopen.73528

  15. Takeda S, Commins C, DeVos SL et al (2016) Seed-competent high-molecular-weight tau species accumulates in the cerebrospinal fluid of Alzheimer’s disease mouse model and human patients. Ann Neurol 80:355–367. https://doi.org/10.1002/ana.24716

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Meredith JE, Sankaranarayanan S, Guss V et al (2013) Characterization of novel CSF tau and ptau biomarkers for Alzheimer’s disease. PLoS One 8:e76523. https://doi.org/10.1371/journal.pone.0076523

    Article  CAS  PubMed  Google Scholar 

  17. Barthélemy NR, Gabelle A, Hirtz C, Fenaille F, Sergeant N, Schraen-Maschke S, Vialaret J, Buée L et al (2016) Differential mass spectrometry profiles of tau protein in the cerebrospinal fluid of patients with Alzheimer’s disease, progressive supranuclear palsy, and dementia with lewy bodies. J Alzheimers Dis 51:1033–1043. https://doi.org/10.3233/JAD-150962

    Article  CAS  PubMed  Google Scholar 

  18. Zemlan F, Rosenberg WS, Luebbe PA, Campbell TA, Dean GE, Weiner NE, Cohen JA, Rudick RA et al (1999) Quantification of axonal damage in traumatic brain injury. J Neurochem 72:741–750. https://doi.org/10.1046/j.1471-4159.1999.0720741.x

    Article  CAS  PubMed  Google Scholar 

  19. Luk C, Compta Y, Magdalinou N, Martí MJ, Hondhamuni G, Zetterberg H, Blennow K, Constantinescu R et al (2012) Development and assessment of sensitive immuno-PCR assays for the quantification of cerebrospinal fluid three- and four-repeat tau isoforms in tauopathies. J Neurochem 123:396–405. https://doi.org/10.1111/j.1471-4159.2012.07911.x

    Article  CAS  PubMed  Google Scholar 

  20. Mori H, Hosoda K, Matsubara E, Nakamoto T, Furiya Y, Endoh R, Usami M, Shoji M et al (1995) Tau in cerebrospinal fluids: establishment of the sandwich ELISA with antibody specific to the repeat sequence in tau. Neurosci Lett 186:181–183. https://doi.org/10.1016/0304-3940(95)11291-4

    Article  CAS  PubMed  Google Scholar 

  21. Russell CL, Mitra V, Hansson K, Blennow K, Gobom J, Zetterberg H, Hiltunen M, Ward M et al (2016) Comprehensive quantitative profiling of tau and phosphorylated tau peptides in cerebrospinal fluid by mass spectrometry provides new biomarker candidates. J Alzheimers Dis 55:303–313. https://doi.org/10.3233/JAD-160633

    Article  CAS  Google Scholar 

  22. Mudher A, Colin M, Dujardin S, Medina M, Dewachter I, Alavi Naini SM, Mandelkow EM, Mandelkow E et al (2017) What is the evidence that tau pathology spreads through prion-like propagation? Acta Neuropathol Commun 5:99

    Article  Google Scholar 

  23. Plouffe V, Mohamed N-V, Rivest-McGraw J, Bertrand J, Lauzon M, Leclerc N (2012) Hyperphosphorylation and cleavage at D421 enhance tau secretion. PLoS One 7:e36873. https://doi.org/10.1371/journal.pone.0036873

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Wauters M, Wattiez R, Ris L (2016) Internalization of the extracellular full-length tau inside Neuro2A and cortical cells is enhanced by phosphorylation. Biomolecules 6:36. https://doi.org/10.3390/biom6030036

    Article  CAS  PubMed Central  Google Scholar 

  25. Fá M, Puzzo D, Piacentini R, Staniszewski A, Zhang H, Baltrons MA, Li Puma DD, Chatterjee I et al (2016) Extracellular tau oligomers produce an immediate impairment of LTP and memory. Sci Rep 6:19393. https://doi.org/10.1038/srep19393

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Swanson E, Breckenridge L, McMahon L, Som S, McConnell I, Bloom GS (2017) Extracellular tau oligomers induce invasion of endogenous tau into the somatodendritic compartment and axonal transport dysfunction. J Alzheimers Dis 58:803–820. https://doi.org/10.3233/JAD-170168

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Evans LD, Wassmer T, Fraser G, Smith J, Perkinton M, Billinton A, Livesey FJ (2018) Extracellular monomeric and aggregated tau efficiently enter human neurons through overlapping but distinct pathways. Cell Rep 22:3612–3624. https://doi.org/10.1016/j.celrep.2018.03.021

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Michel CH, Kumar S, Pinotsi D, Tunnacliffe A, St. George-Hyslop P, Mandelkow E, Mandelkow EM, Kaminski CF et al (2014) Extracellular monomeric tau protein is sufficient to initiate the spread of tau protein pathology. J Biol Chem 289:956–967. https://doi.org/10.1074/jbc.M113.515445

    Article  CAS  PubMed  Google Scholar 

  29. Guzman-Martinez L, Maccioni RB, Andrade V, Navarrete LP, Pastor MG, Ramos-Escobar N (2019) Neuroinflammation as a common feature of neurodegenerative disorders. Front Pharmacol 10:1008. https://doi.org/10.3389/fphar.2019.01008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Bolós M, Llorens-Martín M, Jurado-Arjona J, Hernández F, Rábano A, Avila J (2015) Direct evidence of internalization of tau by microglia in vitro and in vivo. J Alzheimers Dis 50:77–87. https://doi.org/10.3233/JAD-150704

    Article  CAS  Google Scholar 

  31. Asai H, Ikezu S, Tsunoda S, Medalla M, Luebke J, Haydar T, Wolozin B, Butovsky O et al (2015) Depletion of microglia and inhibition of exosome synthesis halt tau propagation. Nat Neurosci 18:1584–1593. https://doi.org/10.1038/nn.4132

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Guix FX, Corbett GT, Cha DJ et al (2018) Detection of aggregation-competent tau in neuron-derived extracellular vesicles. Int J Mol Sci 19(3):E663. https://doi.org/10.3390/ijms19030663

    Article  CAS  PubMed  Google Scholar 

  33. Hopp SC, Lin Y, Oakley D, Roe AD, DeVos SL, Hanlon D, Hyman BT (2018) The role of microglia in processing and spreading of bioactive tau seeds in Alzheimer’s disease. J Neuroinflammation 15(1):269. https://doi.org/10.1186/s12974-018-1309-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Kovac A, Zilka N, Kazmerova Z, Cente M, Zilkova M, Novak M (2011) Misfolded truncated protein τ induces innate immune response via MAPK pathway. J Immunol 187:2732–2739. https://doi.org/10.4049/jimmunol.1100216

    Article  CAS  PubMed  Google Scholar 

  35. Sjögren M, Davidsson P, Tullberg M, Minthon L, Wallin A, Wikkelso C, Granérus AK, Vanderstichele H et al (2001) Both total and phosphorylated tau are increased in Alzheimer’s disease. J Neurol Neurosurg Psychiatry 70:624–630. https://doi.org/10.1136/jnnp.70.5.624

    Article  PubMed  PubMed Central  Google Scholar 

  36. Hassan-Abdi R, Brenet A, Bennis M, Yanicostas C, Soussi-Yanicostas N (2019) Neurons expressing pathological tau protein trigger dramatic changes in microglial morphology and dynamics. Front Neurosci 13:1199. https://doi.org/10.3389/fnins.2019.01199

    Article  PubMed  PubMed Central  Google Scholar 

  37. Pampuscenko K, Morkuniene R, Sneideris T, Smirnovas V, Budvytyte R, Valincius G, Brown GC, Borutaite V (2019) Extracellular tau induces microglial phagocytosis of living neurons in cell cultures. J Neurochem 154:316–329. https://doi.org/10.1111/jnc.14940

    Article  CAS  PubMed  Google Scholar 

  38. Brelstaff J, Tolkovsky AM, Ghetti B et al (2018) Living neurons with tau filaments aberrantly expose phosphatidylserine and are phagocytosed by microglia. Cell Rep 24:1939–1948.e4. https://doi.org/10.1016/j.celrep.2018.07.072

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Goedert M, Jakes R (1990) Expression of separate isoforms of human tau protein: correlation with the tau pattern in brain and effects on tubulin polymerization. EMBO J 9:4225–4230

    Article  CAS  Google Scholar 

  40. Bal-Price A, Brown GC (2001) Inflammatory neurodegeneration mediated by nitric oxide from activated glia-inhibiting neuronal respiration, causing glutamate release and excitotoxicity. J Neurosci 21:6480–6491

    Article  CAS  Google Scholar 

  41. Lasagna-Reeves CA, Castillo-Carranza DL, Guerrero-Muñoz MJ et al (2010) Preparation and characterization of neurotoxic tau oligomers. Biochemistry 49:10039–10041. https://doi.org/10.1021/bi1016233

    Article  CAS  PubMed  Google Scholar 

  42. Cizas P, Budvytyte R, Morkuniene R, Moldovan R, Broccio M, Lösche M, Niaura G, Valincius G et al (2010) Size-dependent neurotoxicity of β-amyloid oligomers. Arch Biochem Biophys 496:84–92. https://doi.org/10.1016/j.abb.2010.02.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Sanchez-Mejias E, Navarro V, Jimenez S, Sanchez-Mico M, Sanchez-Varo R, Nuñez-Diaz C, Trujillo-Estrada L, Davila JC et al (2016) Soluble phospho-tau from Alzheimer’s disease hippocampus drives microglial degeneration. Acta Neuropathol 132:897–916. https://doi.org/10.1007/s00401-016-1630-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Yamada K, Holth JK, Liao F, Stewart FR, Mahan TE, Jiang H, Cirrito JR, Patel TK et al (2014) Neuronal activity regulates extracellular tau in vivo. J Exp Med 211:387–393. https://doi.org/10.1084/jem.20131685

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Yamada K, Cirrito JR, Stewart FR, Jiang H, Finn MB, Holmes BB, Binder LI, Mandelkow EM et al (2011) In vivo microdialysis reveals age-dependent decrease of brain interstitial fluid tau levels in P301S human tau transgenic mice. J Neurosci 31:13110–13117. https://doi.org/10.1523/JNEUROSCI.2569-11.2011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Reynolds MR, Berry RW, Binder LI (2005) Site-specific nitration differentially influences τ assembly in vitro. Biochemistry 44:13997–14009. https://doi.org/10.1021/bi051028w

    Article  CAS  PubMed  Google Scholar 

  47. Gamblin TC, Berry RW, Binder LI (2003) Modeling tau polymerization in vitro: a review and synthesis. Biochemistry 42:15009–15017. https://doi.org/10.1021/bi035722s

    Article  CAS  PubMed  Google Scholar 

  48. Avila J (2010) Intracellular and extracellular tau. Front Neurosci 4:49. https://doi.org/10.3389/fnins.2010.00049

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Khatoon S, Grundke-Iqbal I, Iqbal K (1994) Levels of normal and abnormally phosphorylated tau in different cellular and regional compartments of Alzheimer disease and control brains. FEBS Lett 351:80–84. https://doi.org/10.1016/0014-5793(94)00829-9

    Article  CAS  PubMed  Google Scholar 

  50. Espíndola SL, Damianich A, Alvarez RJ, Sartor M, Belforte JE, Ferrario JE, Gallo JM, Avale ME (2018) Modulation of tau isoforms imbalance precludes tau pathology and cognitive decline in a mouse model of Tauopathy. Cell Rep 23:709–715. https://doi.org/10.1016/j.celrep.2018.03.079

    Article  CAS  PubMed  Google Scholar 

  51. Espinoza M, de Silva R, Dickson DW, Davies P (2008) Differential incorporation of tau isoforms in Alzheimer’s disease. J Alzheimers Dis 14:1–16. https://doi.org/10.3233/JAD-2008-14101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Arai T, Ikeda K, Akiyama H, Shikamoto Y, Tsuchiya K, Yagishita S, Beach T, Rogers J et al (2001) Distinct isoforms of tau aggregated in neurons and glial cells in brains of patients with Pick’s disease, corticobasal degeneration and progressive supranuclear palsy. Acta Neuropathol 101:167–173. https://doi.org/10.1007/s004010000283

    Article  CAS  PubMed  Google Scholar 

  53. de Silva R, Lashley T, Strand C, Shiarli AM, Shi J, Tian J, Bailey KL, Davies P et al (2006) An immunohistochemical study of cases of sporadic and inherited frontotemporal lobar degeneration using 3R- and 4R-specific tau monoclonal antibodies. Acta Neuropathol 111:329–340. https://doi.org/10.1007/s00401-006-0048-x

    Article  PubMed  Google Scholar 

  54. Wu JW, Herman M, Liu L, Simoes S, Acker CM, Figueroa H, Steinberg JI, Margittai M et al (2013) Small Misfolded tau species are internalized via bulk endocytosis and anterogradely and retrogradely transported in neurons. J Biol Chem 288:1856–1870. https://doi.org/10.1074/jbc.M112.394528

    Article  CAS  PubMed  Google Scholar 

  55. Tian H, Davidowitz E, Lopez P, Emadi S, Moe J, Sierks M (2013) Trimeric tau is toxic to human neuronal cells at low nanomolar concentrations. Int J Cell Biol 2013:1–9. https://doi.org/10.1155/2013/260787

    Article  CAS  Google Scholar 

  56. Usenovic M, Niroomand S, Drolet RE, Yao L, Gaspar RC, Hatcher NG, Schachter J, Renger JJ et al (2015) Internalized tau oligomers cause neurodegeneration by inducing accumulation of pathogenic tau in human neurons derived from induced pluripotent stem cells. J Neurosci 35:14234–14250. https://doi.org/10.1523/JNEUROSCI.1523-15.2015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Lasagna-Reeves CA, Sengupta U, Castillo-Carranza D, Gerson JE, Guerrero-Munoz M, Troncoso JC, Jackson GR, Kayed R (2014) The formation of tau pore-like structures is prevalent and cell specific: possible implications for the disease phenotypes. Acta Neuropathol Commun 2:56. https://doi.org/10.1186/2051-5960-2-56

    Article  PubMed  PubMed Central  Google Scholar 

  58. Morales I, Jiménez JM, Mancilla M, Maccioni RB (2013) Tau oligomers and fibrils induce activation of microglial cells. J Alzheimers Dis 37:849–856. https://doi.org/10.3233/JAD-131843

    Article  CAS  PubMed  Google Scholar 

  59. Perea JR, Ávila J, Bolós M (2018) Dephosphorylated rather than hyperphosphorylated tau triggers a pro-inflammatory profile in microglia through the p38 MAPK pathway. Exp Neurol 310:14–21. https://doi.org/10.1016/j.expneurol.2018.08.007

    Article  CAS  PubMed  Google Scholar 

  60. Sasaki A, Kawarabayashi T, Murakami T, Matsubara E, Ikeda M, Hagiwara H, Westaway D, George-Hyslop PS et al (2008) Microglial activation in brain lesions with tau deposits: comparison of human tauopathies and tau transgenic mice TgTauP301L. Brain Res 1214:159–168. https://doi.org/10.1016/j.brainres.2008.02.084

    Article  CAS  PubMed  Google Scholar 

  61. Atlante A, Amadoro G, Bobba A, de Bari L, Corsetti V, Pappalardo G, Marra E, Calissano P et al (2008) A peptide containing residues 26–44 of tau protein impairs mitochondrial oxidative phosphorylation acting at the level of the adenine nucleotide translocator. Biochim Biophys Acta Bioenerg 1777:1289–1300. https://doi.org/10.1016/j.bbabio.2008.07.004

    Article  CAS  Google Scholar 

  62. Amadoro G, Ciotti MT, Costanzi M, Cestari V, Calissano P, Canu N (2006) NMDA receptor mediates tau-induced neurotoxicity by calpain and ERK/MAPK activation. Proc Natl Acad Sci U S A 103:2892–2897. https://doi.org/10.1073/pnas.0511065103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Cicognola C, Brinkmalm G, Wahlgren J, Portelius E, Gobom J, Cullen NC, Hansson O, Parnetti L et al (2019) Novel tau fragments in cerebrospinal fluid: relation to tangle pathology and cognitive decline in Alzheimer’s disease. Acta Neuropathol 137:279–296. https://doi.org/10.1007/s00401-018-1948-2

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by the Research Council of Lithuania, Bilateral Exchange Project Joint Research grant S-LJB-18-2 INFLAMTAU.

Author information

Authors and Affiliations

Authors

Contributions

KP carried out experiments on cell cultures, analysed and wrote the manuscript. LK and VS performed expression and purification of recombinant tau protein. RM planned the experiments, analysed data and wrote the manuscript. TT analysed data and wrote the manuscript. VB initiated, planned and supervised the study, wrote the manuscript. All authors reviewed the final manuscript.

Corresponding author

Correspondence to Katryna Pampuscenko.

Ethics declarations

Conflict of Interest

Authors declare that they have no conflict of interest.

Ethics Approval

Approved by Lithuanian State Food and Veterinary Service, ethical approval No. B6(1.9)-855.

Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Code Availability (Software Application or Custom Code)

Not applicable.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pampuscenko, K., Morkuniene, R., Krasauskas, L. et al. Distinct Neurotoxic Effects of Extracellular Tau Species in Primary Neuronal-Glial Cultures. Mol Neurobiol 58, 658–667 (2021). https://doi.org/10.1007/s12035-020-02150-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-020-02150-7

Keywords

Navigation