Skip to main content

Advertisement

Log in

Tau Protein as a New Regulator of Cellular Prion Protein Transcription

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Cellular prion protein (PrPC) is largely responsible for transmissible spongiform encephalopathies (TSEs) when it becomes the abnormally processed and protease resistant form PrPSC. Physiological functions of PrPC include protective roles against oxidative stress and excitotoxicity. Relevantly, PrPC downregulates tau levels, whose accumulation and modification are a hallmark in the advance of Alzheimer’s disease (AD). In addition to the accumulation of misfolded proteins, in the initial stages of AD-affected brains display both increased reactive oxygen species (ROS) markers and levels of PrPC. However, the factors responsible for the upregulation of PrPC are unknown. Thus, the aim of this study was to uncover the different molecular actors promoting PrPC overexpression. In order to mimic early stages of AD, we used β-amyloid-derived diffusible ligands (ADDLs) and tau cellular treatments, as well as ROS generation, to elucidate their particular roles in human PRNP promoter activity. In addition, we used specific chemical inhibitors and site-specific mutations of the PRNP promoter sequence to analyze the contribution of the main transcription factors involved in PRNP transcription under the analyzed conditions. Our results revealed that tau is a new modulator of PrPC expression independently of ADDL treatment and ROS levels. Lastly, we discovered that the JNK/c-jun-AP-1 pathway is involved in increased PRNP transcription activity by tau but not in the promoter response to ROS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Martins VR, Linden R, Prado MA, Walz R, Sakamoto AC, Izquierdo I, Brentani RR (2002) Cellular prion protein: on the road for functions. FEBS Lett 512(1–3):25–28

    Article  CAS  PubMed  Google Scholar 

  2. Prusiner SB (1998) Prions. Proc Natl Acad Sci U S A 95(23):13363–13383

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Del Rio JA, Ferrer I, Gavin R (2018) Role of cellular prion protein in interneuronal amyloid transmission. Prog Neurobiol 165-167:87–102

    Article  PubMed  CAS  Google Scholar 

  4. Wulf MA, Senatore A, Aguzzi A (2017) The biological function of the cellular prion protein: an update. BMC Biol 15(1):34

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  5. Gavin R, Lidon L, Ferrer I, Del Rio JA (2020) The quest for cellular prion protein functions in the aged and neurodegenerating brain. Cells 9(3):e591

  6. Vassallo N, Herms J (2003) Cellular prion protein function in copper homeostasis and redox signalling at the synapse. J Neurochem 86(3):538–544

    Article  CAS  PubMed  Google Scholar 

  7. Sakudo A, Lee DC, Saeki K, Nakamura Y, Inoue K, Matsumoto Y, Itohara S, Onodera T (2003) Impairment of superoxide dismutase activation by N-terminally truncated prion protein (PrP) in PrP-deficient neuronal cell line. Biochem Biophys Res Commun 308(3):660–667

    Article  CAS  PubMed  Google Scholar 

  8. White AR, Collins SJ, Maher F, Jobling MF, Stewart LR, Thyer JM, Beyreuther K, Masters CL et al (1999) Prion protein-deficient neurons reveal lower glutathione reductase activity and increased susceptibility to hydrogen peroxide toxicity. Am J Pathol 155(5):1723–1730

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Llorens F, Del Rio JA (2012) Unraveling the neuroprotective mechanisms of PrP (C) in excitotoxicity. Prion 6(3):245–251

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Khosravani H, Zhang Y, Tsutsui S, Hameed S, Altier C, Hamid J, Chen L, Villemaire M et al (2008) Prion protein attenuates excitotoxicity by inhibiting NMDA receptors. J Cell Biol 181(3):551–565

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Lauren J, Gimbel DA, Nygaard HB, Gilbert JW, Strittmatter SM (2009) Cellular prion protein mediates impairment of synaptic plasticity by amyloid-beta oligomers. Nature 457(7233):1128–1132

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Klein WL (2002) Abeta toxicity in Alzheimer’s disease: globular oligomers (ADDLs) as new vaccine and drug targets. Neurochem Int 41(5):345–352

    Article  CAS  PubMed  Google Scholar 

  13. Vergara C, Ordonez-Gutierrez L, Wandosell F, Ferrer I, del Rio JA, Gavin R (2015) Role of PrP(C) expression in tau protein levels and phosphorylation in Alzheimer’s disease evolution. Mol Neurobiol 51(3):1206–1220

    Article  CAS  PubMed  Google Scholar 

  14. Schmitz M, Wulf K, Signore SC, Schulz-Schaeffer WJ, Kermer P, Bahr M, Wouters FS, Zafar S et al (2014) Impact of the cellular prion protein on amyloid-beta and 3PO-tau processing. J Alzheimers Dis: JAD 38(3):551–565

    Article  CAS  PubMed  Google Scholar 

  15. Braak H, Braak E (1991) Neuropathological stageing of Alzheimer-related changes. Acta Neuropathol 82(4):239–259

    Article  CAS  PubMed  Google Scholar 

  16. Buee L, Delacourte A (1999) Comparative biochemistry of tau in progressive supranuclear palsy, corticobasal degeneration, FTDP-17 and Pick’s disease. Brain Pathol 9(4):681–693

    Article  CAS  PubMed  Google Scholar 

  17. Llorens F, Ansoleaga B, Garcia-Esparcia P, Zafar S, Grau-Rivera O, Lopez-Gonzalez I, Blanco R, Carmona M et al (2013) PrP mRNA and protein expression in brain and PrP in CSF in Creutzfeldt-Jakob disease MM1 and VV2. Prion 7(5):383–393

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Puckett C, Concannon P, Casey C, Hood L (1991) Genomic structure of the human prion protein gene. Am J Hum Genet 49(2):320–329

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Lee IY, Westaway D, Smit AF, Wang K, Seto J, Chen L, Acharya C, Ankener M et al (1998) Complete genomic sequence and analysis of the prion protein gene region from three mammalian species. Genome Res 8(10):1022–1037

    Article  CAS  PubMed  Google Scholar 

  20. Wopfner F, Weidenhofer G, Schneider R, von Brunn A, Gilch S, Schwarz TF, Werner T, Schatzl HM (1999) Analysis of 27 mammalian and 9 avian PrPs reveals high conservation of flexible regions of the prion protein. J Mol Biol 289(5):1163–1178

    Article  CAS  PubMed  Google Scholar 

  21. Aguzzi A, Polymenidou M (2004) Mammalian prion biology: one century of evolving concepts. Cell 116(2):313–327

    Article  CAS  PubMed  Google Scholar 

  22. Whitehouse IJ, Jackson C, Turner AJ, Hooper NM (2010) Prion protein is reduced in aging and in sporadic but not in familial Alzheimer’s disease. J Alzheimers Dis : JAD 22(3):1023–1031

    Article  CAS  PubMed  Google Scholar 

  23. Aguzzi A, Sigurdson C, Heikenwaelder M (2008) Molecular mechanisms of prion pathogenesis. Annu Rev Pathol 3:11–40

    Article  CAS  PubMed  Google Scholar 

  24. Mahal SP, Asante EA, Antoniou M, Collinge J (2001) Isolation and functional characterisation of the promoter region of the human prion protein gene. Gene 268(1–2):105–114

    Article  CAS  PubMed  Google Scholar 

  25. Brown DR, Schmidt B, Kretzschmar HA (1997) Effects of oxidative stress on prion protein expression in PC12 cells. Int J Dev Neurosci 15(8):961–972

    Article  CAS  PubMed  Google Scholar 

  26. Qin K, Zhao L, Ash RD, McDonough WF, Zhao RY (2009) ATM-mediated transcriptional elevation of prion in response to copper-induced oxidative stress. J Biol Chem 284(7):4582–4593

    Article  CAS  PubMed  Google Scholar 

  27. Bellingham SA, Coleman LA, Masters CL, Camakaris J, Hill AF (2009) Regulation of prion gene expression by transcription factors SP1 and metal transcription factor-1. J Biol Chem 284(2):1291–1301

    Article  CAS  PubMed  Google Scholar 

  28. Jeong JK, Park SY (2012) Transcriptional regulation of specific protein 1 (SP1) by hypoxia-inducible factor 1 alpha (HIF-1alpha) leads to PRNP expression and neuroprotection from toxic prion peptide. Biochem Biophys Res Commun 429(1–2):93–98

    Article  CAS  PubMed  Google Scholar 

  29. Christen Y (2000) Oxidative stress and Alzheimer disease. Am J Clin Nutr 71(2):621S–629S

    Article  CAS  PubMed  Google Scholar 

  30. Khatoon S, Grundke-Iqbal I, Iqbal K (1992) Brain levels of microtubule-associated protein tau are elevated in Alzheimer’s disease: a radioimmuno-slot-blot assay for nanograms of the protein. J Neurochem 59(2):750–753

    Article  CAS  PubMed  Google Scholar 

  31. Khatoon S, Grundke-Iqbal I, Iqbal K (1994) Levels of normal and abnormally phosphorylated tau in different cellular and regional compartments of Alzheimer disease and control brains. FEBS Lett 351(1):80–84

    Article  CAS  PubMed  Google Scholar 

  32. Saijo E, Scheff SW, Telling GC (2011) Unaltered prion protein expression in Alzheimer disease patients. Prion 5(2):109–116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. McNeill A (2004) A molecular analysis of prion protein expression in Alzheimer’s disease. McGill J Med 8:7–14

    Google Scholar 

  34. Whitehouse IJ, Miners JS, Glennon EB, Kehoe PG, Love S, Kellett KA, Hooper NM (2013) Prion protein is decreased in Alzheimer’s brain and inversely correlates with BACE1 activity, amyloid-beta levels and Braak stage. PLoS One 8(4):e59554

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Dawson HN, Ferreira A, Eyster MV, Ghoshal N, Binder LI, Vitek MP (2001) Inhibition of neuronal maturation in primary hippocampal neurons from tau deficient mice. J Cell Sci 114(Pt 6):1179–1187

    Article  CAS  PubMed  Google Scholar 

  36. Pratt T, Sharp L, Nichols J, Price DJ, Mason JO (2000) Embryonic stem cells and transgenic mice ubiquitously expressing a tau-tagged green fluorescent protein. Dev Biol 228(1):19–28

    Article  CAS  PubMed  Google Scholar 

  37. Yoshiyama Y, Higuchi M, Zhang B, Huang SM, Iwata N, Saido TC, Maeda J, Suhara T et al (2007) Synapse loss and microglial activation precede tangles in a P301S tauopathy mouse model. Neuron 53(3):337–351

    Article  CAS  PubMed  Google Scholar 

  38. Kitchens DL, Snyder EY, Gottlieb DI (1994) FGF and EGF are mitogens for immortalized neural progenitors. J Neurobiol 25(7):797–807

    Article  CAS  PubMed  Google Scholar 

  39. Franklin Pa (2019) The mouse brain in stereotaxic coordinates. 5th edn.

  40. Montejo de Garcini E, de la Luna S, Dominguez JE, Avila J (1994) Overexpression of tau protein in COS-1 cells results in the stabilization of centrosome-independent microtubules and extension of cytoplasmic processes. Mol Cell Biochem 130(2):187–196

    Article  CAS  PubMed  Google Scholar 

  41. Perez M, Valpuesta JM, Medina M, Montejo de Garcini E, Avila J (1996) Polymerization of tau into filaments in the presence of heparin: the minimal sequence required for tau-tau interaction. J Neurochem 67(3):1183–1190

    Article  CAS  PubMed  Google Scholar 

  42. Gomez-Ramos A, Abad X, Lopez Fanarraga M, Bhat R, Zabala JC, Avila J (2004) Expression of an altered form of tau in Sf9 insect cells results in the assembly of polymers resembling Alzheimer’s paired helical filaments. Brain Res 1007(1–2):57–64

    Article  CAS  PubMed  Google Scholar 

  43. Gomez-Ramos A, Diaz-Hernandez M, Cuadros R, Hernandez F, Avila J (2006) Extracellular tau is toxic to neuronal cells. FEBS Lett 580(20):4842–4850

    Article  CAS  PubMed  Google Scholar 

  44. Ren Y, Sahara N (2013) Characteristics of tau oligomers. Front Neurol 4:102

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  45. Abad MA, Enguita M, DeGregorio-Rocasolano N, Ferrer I, Trullas R (2006) Neuronal pentraxin 1 contributes to the neuronal damage evoked by amyloid-beta and is overexpressed in dystrophic neurites in Alzheimer’s brain. J Neurosci 26(49):12735–12747

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227(5259):680–685

    Article  CAS  PubMed  Google Scholar 

  47. Matamoros-Angles A, Gayosso LM, Richaud-Patin Y, di Domenico A, Vergara C, Hervera A, Sousa A, Fernandez-Borges N et al (2017) iPS cell cultures from a Gerstmann-Straussler-Scheinker patient with the Y218N PRNP mutation recapitulate tau pathology. Mol Neurobiol 55(4):3033–3048

  48. Rhee SG (2006) Cell signaling. H2O2, a necessary evil for cell signaling. Science 312(5782):1882–1883

    Article  PubMed  Google Scholar 

  49. Allen B, Ingram E, Takao M, Smith MJ, Jakes R, Virdee K, Yoshida H, Holzer M et al (2002) Abundant tau filaments and nonapoptotic neurodegeneration in transgenic mice expressing human P301S tau protein. J Neurosci 22(21):9340–9351

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Lopez-Gonzalez I, Aso E, Carmona M, Armand-Ugon M, Blanco R, Naudi A, Cabre R, Portero-Otin M et al (2015) Neuroinflammatory gene regulation, mitochondrial function, oxidative stress, and brain lipid modifications with disease progression in tau P301S transgenic mice as a model of frontotemporal lobar degeneration-tau. J Neuropathol Exp Neurol 74(10):975–999

    Article  CAS  PubMed  Google Scholar 

  51. Wu JW, Herman M, Liu L, Simoes S, Acker CM, Figueroa H, Steinberg JI, Margittai M et al (2013) Small misfolded tau species are internalized via bulk endocytosis and anterogradely and retrogradely transported in neurons. J Biol Chem 288(3):1856–1870

    Article  CAS  PubMed  Google Scholar 

  52. Fa M, Puzzo D, Piacentini R, Staniszewski A, Zhang H, Baltrons MA, Li Puma DD, Chatterjee I et al (2016) Extracellular tau oligomers produce an immediate impairment of LTP and memory. Sci Rep 6:19393

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. d’Orange M, Auregan G, Cheramy D, Gaudin-Guerif M, Lieger S, Guillermier M, Stimmer L, Josephine C et al (2018) Potentiating tangle formation reduces acute toxicity of soluble tau species in the rat. Brain J Neurol 141(2):535–549

    Article  Google Scholar 

  54. Wauters M, Wattiez R, Ris L (2016) Internalization of the extracellular full-length tau inside Neuro2A and cortical cells is enhanced by phosphorylation. Biomolecules 6(3):e36

  55. Santpere G, Nieto M, Puig B, Ferrer I (2006) Abnormal Sp1 transcription factor expression in Alzheimer disease and tauopathies. Neurosci Lett 397(1–2):30–34

    Article  CAS  PubMed  Google Scholar 

  56. Kyriakis JM, Banerjee P, Nikolakaki E, Dai T, Rubie EA, Ahmad MF, Avruch J, Woodgett JR (1994) The stress-activated protein kinase subfamily of c-Jun kinases. Nature 369(6476):156–160

    Article  CAS  PubMed  Google Scholar 

  57. Cisse M, Duplan E, Guillot-Sestier MV, Rumigny J, Bauer C, Pages G, Orzechowski HD, Slack BE et al (2011) The extracellular regulated kinase-1 (ERK1) controls regulated alpha-secretase-mediated processing, promoter transactivation, and mRNA levels of the cellular prion protein. J Biol Chem 286(33):29192–29206

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Braak H, Braak E, Bohl J, Bratzke H (1998) Evolution of Alzheimer’s disease related cortical lesions. J Neural Transm Suppl 54:97–106

    Article  CAS  PubMed  Google Scholar 

  59. Karelson E, Bogdanovic N, Garlind A, Winblad B, Zilmer K, Kullisaar T, Vihalemm T, Kairane C et al (2001) The cerebrocortical areas in normal brain aging and in Alzheimer’s disease: noticeable differences in the lipid peroxidation level and in antioxidant defense. Neurochem Res 26(4):353–361

    Article  CAS  PubMed  Google Scholar 

  60. Vincent B, Sunyach C, Orzechowski HD, St George-Hyslop P, Checler F (2009) p53-dependent transcriptional control of cellular prion by presenilins. J Neurosci 29(20):6752–6760

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Wang V, Chuang TC, Hsu YD, Chou WY, Kao MC (2005) Nitric oxide induces prion protein via MEK and p38 MAPK signaling. Biochem Biophys Res Commun 333(1):95–100

    Article  CAS  PubMed  Google Scholar 

  62. Klein HU, McCabe C, Gjoneska E, Sullivan SE, Kaskow BJ, Tang A, Smith RV, Xu J et al (2019) Epigenome-wide study uncovers large-scale changes in histone acetylation driven by tau pathology in aging and Alzheimer’s human brains. Nat Neurosci 22(1):37–46

    Article  CAS  PubMed  Google Scholar 

  63. Varela-Nallar L, Toledo EM, Larrondo LF, Cabral AL, Martins VR, Inestrosa NC (2006) Induction of cellular prion protein gene expression by copper in neurons. Am J Phys Cell Phys 290(1):C271–C281

    CAS  Google Scholar 

  64. Shyu WC, Harn HJ, Saeki K, Kubosaki A, Matsumoto Y, Onodera T, Chen CJ, Hsu YD et al (2002) Molecular modulation of expression of prion protein by heat shock. Mol Neurobiol 26(1):1–12

    Article  CAS  PubMed  Google Scholar 

  65. Ogra Y, Suzuki K, Gong P, Otsuka F, Koizumi S (2001) Negative regulatory role of Sp1 in metal responsive element-mediated transcriptional activation. J Biol Chem 276(19):16534–16539

    Article  CAS  PubMed  Google Scholar 

  66. Saydam N, Georgiev O, Nakano MY, Greber UF, Schaffner W (2001) Nucleo-cytoplasmic trafficking of metal-regulatory transcription factor 1 is regulated by diverse stress signals. J Biol Chem 276(27):25487–25495

    Article  CAS  PubMed  Google Scholar 

  67. Citron BA, Dennis JS, Zeitlin RS, Echeverria V (2008) Transcription factor Sp1 dysregulation in Alzheimer’s disease. J Neurosci Res 86(11):2499–2504

    Article  CAS  PubMed  Google Scholar 

  68. Williams WM, Stadtman ER, Moskovitz J (2004) Ageing and exposure to oxidative stress in vivo differentially affect cellular levels of PrP in mouse cerebral microvessels and brain parenchyma. Neuropathol Appl Neurobiol 30(2):161–168

    Article  CAS  PubMed  Google Scholar 

  69. Dupiereux I, Falisse-Poirrier N, Zorzi W, Watt NT, Thellin O, Zorzi D, Pierard O, Hooper NM et al (2008) Protective effect of prion protein via the N-terminal region in mediating a protective effect on paraquat-induced oxidative injury in neuronal cells. J Neurosci Res 86(3):653–659

    Article  CAS  PubMed  Google Scholar 

  70. Song IS, Chen HH, Aiba I, Hossain A, Liang ZD, Klomp LW, Kuo MT (2008) Transcription factor Sp1 plays an important role in the regulation of copper homeostasis in mammalian cells. Mol Pharmacol 74(3):705–713

    Article  CAS  PubMed  Google Scholar 

  71. Squitti R, Simonelli I, Ventriglia M, Siotto M, Pasqualetti P, Rembach A, Doecke J, Bush AI (2014) Meta-analysis of serum non-ceruloplasmin copper in Alzheimer’s disease. J Alzheimers Dis JAD 38(4):809–822

    Article  CAS  PubMed  Google Scholar 

  72. Avila J, Lucas JJ, Perez M, Hernandez F (2004) Role of tau protein in both physiological and pathological conditions. Physiol Rev 84(2):361–384

    Article  CAS  PubMed  Google Scholar 

  73. Takashima A (2008) Hyperphosphorylated tau is a cause of neuronal dysfunction in tauopathy. J Alzheimers Dis JAD 14(4):371–375

    Article  PubMed  Google Scholar 

  74. Forrest SL, Kril JJ, Stevens CH, Kwok JB, Hallupp M, Kim WS, Huang Y, McGinley CV et al (2018) Retiring the term FTDP-17 as MAPT mutations are genetic forms of sporadic frontotemporal tauopathies. Brain J Neurol 141(2):521–534

    Article  Google Scholar 

  75. Evans LD, Wassmer T, Fraser G, Smith J, Perkinton M, Billinton A, Livesey FJ (2018) Extracellular monomeric and aggregated tau efficiently enter human neurons through overlapping but distinct pathways. Cell Rep 22(13):3612–3624

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Sahara N, Maeda S, Takashima A (2008) Tau oligomerization: a role for tau aggregation intermediates linked to neurodegeneration. Curr Alzheimer Res 5(6):591–598

    Article  CAS  PubMed  Google Scholar 

  77. Lambert MP, Barlow AK, Chromy BA, Edwards C, Freed R, Liosatos M, Morgan TE, Rozovsky I et al (1998) Diffusible, nonfibrillar ligands derived from Abeta1-42 are potent central nervous system neurotoxins. Proc Natl Acad Sci U S A 95(11):6448–6453

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Vilches S, Vergara C, Nicolas O, Sanclimens G, Merino S, Varon S, Acosta GA, Albericio F et al (2013) Neurotoxicity of prion peptides mimicking the central domain of the cellular prion protein. PLoS One 8(8):e70881

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Mondragon-Rodriguez S, Perry G, Luna-Munoz J, Acevedo-Aquino MC, Williams S (2014) Phosphorylation of tau protein at sites Ser(396-404) is one of the earliest events in Alzheimer’s disease and Down syndrome. Neuropathol Appl Neurobiol 40(2):121–135

    Article  CAS  PubMed  Google Scholar 

  80. Sperfeld AD, Collatz MB, Baier H, Palmbach M, Storch A, Schwarz J, Tatsch K, Reske S et al (1999) FTDP-17: an early-onset phenotype with parkinsonism and epileptic seizures caused by a novel mutation. Ann Neurol 46(5):708–715

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We wish to thank Prof. John Collinge (head of the Medical Research Council Prion Unit at University College London, UCL, UK) for providing plasmid pPrPS2.7, Tom Yohannan for editorial advice, and Miriam Segura-Feliu for technical support. We also thank the Core facilities of IBEC for technical help.

Funding

This research was supported by the projects PRPSEM with reference (RTI2018-099773-B-I00) and PRIONET (AGL2017-90665-REDT), the Generalitat de Catalunya (SGR2017-648), CIBERNED (CNED-2018-2), and CERCA Programme/Generalitat de Catalunya to JADR. The project leading to these results also received funding from “la Caixa” Foundation (ID 100010434) under the agreement LCF/PR/HR19/52160007 and María de Maeztu Unit of Excellence (Institute of Neurosciences, University of Barcelona) MDM-2017-0729 (MCINN) to JADR. L.L. is supported by a fellowship from the FPU Programme of MECD (FPU15/02705).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jose A. del Rio or Rosalina Gavín.

Ethics declarations

Competing Interests

The authors declare that they have no competing interests.

Ethics Approval

All experiments were performed under the guidelines and protocols of the Ethical Committee for Animal Experimentation (CEEA) at the University of Barcelona, and the protocol for the use of animals in this study was reviewed and approved by the CEEA at the University of Barcelona (CEEA approval# 276/16).

Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Supplementary Fig. 1

Quantification and statistical processing of changes in PrPC levels by ADDLs or tau. (a-c) Histograms showing the densitometry analysis of PrPC expression in a. Primary cortical cultures from WT mice treated with either ADDL or vehicle alone (n = 4 each case). b. Extracts from hippocampal sections of ADDL-injected mice (n = 5). c. C17.2 culture transfected with mock or human 0N3R tau or 2N4R tau expression plasmids (pSG5, pSGT30, or pSGT43, respectively), (n = 3 each case). d. CTCF values derived from immunofluorescence microphotographs of PrPC expression in tau-GFP mouse (TgTP6.3) cortical cultures. Bars in all cases represent the mean ± SD of different samples analyzed in each case. Asterisks indicate statistical differences between groups and controls considering ****p < 0.0001, ***p < 0.001, **p < 0.01, and *p < 0.05 (t-test). (JPG 2037 kb)

Supplementary Fig. 2

PrPC levels remain constant in tau knockout mice after ADDLs treatment. (a-d) Western blot analysis using total tau antibody (monoclonal Tau5) in parallel with anti-PrPC antibody (monoclonal 6H4) in each case. Actin was used as control loading protein. Primary cortical cultures from WT and Mapt−/− mice at 7 DIV were treated with either ADDL or vehicle alone (n = 2 each case). (JPG 70 kb)

Supplementary Fig. 3

PrPC expression in HEK293 cells. Western blot analysis using anti-PrPC monoclonal antibody (6H4) shows detectable levels of the protein at 2 DIV. (JPG 31 kb)

Supplementary Fig. 4

Functional analysis of the PRNP promoter in HEK293 cells after Bcl-2 transfection. a. Bars represent the mean ± SD of relative light units (RLU) obtained from one experiment performed in triplicate. b. Western blot analysis showing Bcl-2 levels after transfection in HEK293 lysates. Actin was used as control loading protein. (JPG 1925 kb)

Supplementary Fig. 5

Functional analysis of the PRNP promoter in C17.2 cells after H2O2 treatment and tau transfection. a. Bars represent the mean ± SD of relative light units (RLU) standardized to untreated cells (Control) obtained from one experiment performed in triplicate. Groups were compared as follows: H2O2 vs control and tau vs mock transfection. b. Western blot analysis showing the two tau isoforms (tau3R and tau 4R) after 0N3R tau and 2N4R tau transfection in C17.2 lysates. Actin was used as control loading protein. Differences between groups (H2O2 vs control or tau vs mock transfection) were considered statistically significant at ***p < 0.001 and *p < 0.05 (t-test). (JPG 2022 kb)

Supplementary Fig. 6

Direct correlation between the amount of tau derived from P301S mice and PRNP promoter activity. a. Western blot analysis using total tau antibody (Tau5) of mouse brain fractions used in functional analysis of PRNP promoter: soluble brain extracts from 2 and 3 months old P301S mice compared to 9 months old P301S and WT mice. Actin was used as control loading protein. b. Histograms illustrating the promoter activity of HEK293 cells treated with brain extract from 2, 3 and 9 months old P301S mice and compared to untreated cells (Control) from one experiment performed in triplicate. Data are shown as mean ± SD. (JPG 2037 kb)

Supplementary Fig. 7

Recombinant tau variants used to perform functional analysis of PRNP promoter after western blot analysis. Both phosphorylated and non-phosphorylated species were immunoblotted with total tau antibody (Tau5) after oligomeric tau (O-tau/O-ptau) and fibrillary tau (F-tau/F-ptau) formation, respectively. (JPG 80 kb)

Supplementary Fig. 8

Functional analysis of PRNP activity using site-directed mutagenesis of AP-1 and Sp1 binding sites after P301S brain extract treatment. (a, b) Quantitative RLU obtained for each experimental group in full-length PRNP promoter construct (PRNP-pGL2basic) vs AP-1 (a) and Sp1 (b) deleted mutants and from n = 3 experiments performed in triplicate. Data are shown as mean ± SD and differences between groups were considered statistically significant at ***p < 0.001, **p < 0.01, and *p < 0.05 (t-test). (JPG 2155 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lidón, L., Vergara, C., Ferrer, I. et al. Tau Protein as a New Regulator of Cellular Prion Protein Transcription. Mol Neurobiol 57, 4170–4186 (2020). https://doi.org/10.1007/s12035-020-02025-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-020-02025-x

Keywords

Navigation