Skip to main content

Role of Cellular Prion Protein in the Amyloid-β Oligomer Pathophysiology of Alzheimer’s Disease

  • Chapter
  • First Online:
Prions and Diseases

Abstract

Alzheimer’s disease (AD) is the most common form of dementia affecting millions worldwide. The primary histopathological features of AD are amyloid-beta (Aβ) plaques and neurofibrillary tangles. Aβ oligomers (Aβo) are believed to be essential mediators of the synaptotoxicity and cell death that are characteristic of this illness. For decades, the exact mechanism for how Aβ exerted its toxic effect remained unknown. Recently, it has been shown that the cellular Prion Protein (PrPC) acts as a high-affinity binding partner for Aβo. Moreover, it has been demonstrated that PrPC is necessary for memory loss, impaired long-term potentiation, and neuronal dysfunction in transgenic mouse models of AD. Antagonizing PrPC in AD mouse models has also been shown to reverse memory deficits, so targeting PrPC is a potential avenue for treatment. This chapter will review the evidence connecting PrPC to Aβo pathophysiology.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • (1997) Consensus recommendations for the postmortem diagnosis of Alzheimer’s disease. The National Institute on Aging, and Reagan Institute Working Group on Diagnostic Criteria for the Neuropathological Assessment of Alzheimer’s Disease. Neurobiol Aging 18(4 Suppl):S1–S2

    Google Scholar 

  • Alzheimer A et al (1995) An english translation of Alzheimer’s 1907 paper, “Uber eine eigenartige Erkankung der Hirnrinde”. Clin Anat 8(6):429–431

    Article  PubMed  CAS  Google Scholar 

  • Balducci C et al (2010) Synthetic amyloid- oligomers impair long-term memory independently of cellular prion protein. Proc Natl Acad Sci USA 107(5):2295–2300

    Article  PubMed  CAS  Google Scholar 

  • Barry AE et al (2011) Alzheimer’s disease brain-derived amyloid-mediated inhibition of ltp in vivo is prevented by immunotargeting cellular prion protein. J Neurosci 31(20):7259–7263

    Article  PubMed  CAS  Google Scholar 

  • Baumann F et al (2007) Lethal recessive myelin toxicity of prion protein lacking its central domain. EMBO J 26(2):538–547

    Article  PubMed  CAS  Google Scholar 

  • Brookmeyer R et al (2007) Forecasting the global burden of Alzheimer’s disease. Alzheimers Dement 3(3):186–191

    Article  PubMed  Google Scholar 

  • Calella AM et al (2010) Prion protein and Abeta-related synaptic toxicity impairment. EMBO Mol Med 2(8):306–314

    Article  PubMed  CAS  Google Scholar 

  • Chapman PF et al (1999) Impaired synaptic plasticity and learning in aged amyloid precursor protein transgenic mice. Nat Neurosci 2(3):271–276

    Article  PubMed  CAS  Google Scholar 

  • Chen G et al (2000) A learning deficit related to age and beta-amyloid plaques in a mouse model of Alzheimer’s disease. Nature 408(6815):975–979

    Article  PubMed  CAS  Google Scholar 

  • Chen S, Yadav SP, Surewicz WK (2010) Interaction between human prion protein and amyloid-{beta} (A{beta}) oligomers: role of N-terminal residues. J Biol Chem 285(34):26377–26383

    Article  PubMed  CAS  Google Scholar 

  • Chung E et al (2010) Anti-PrPC monoclonal antibody infusion as a novel treatment for cognitive deficits in an Alzheimer’s disease model mouse. BMC Neurosci 11(1):130

    Article  PubMed  Google Scholar 

  • Cirrito JR et al (2003) In vivo assessment of brain interstitial fluid with microdialysis reveals plaque-associated changes in amyloid-beta metabolism and half-life. J Neurosci 23(26):8844–8853

    PubMed  CAS  Google Scholar 

  • Cisse M et al (2011a) Ablation of cellular prion protein does not ameliorate abnormal neural network activity or cognitive dysfunction in the J20 line of human amyloid precursor protein transgenic mice. J Neurosci 31(29):10427–10431

    Article  PubMed  CAS  Google Scholar 

  • Cisse M et al (2011b) Reversing EphB2 depletion rescues cognitive functions in Alzheimer model. Nature 469(7328):47–52

    Article  PubMed  CAS  Google Scholar 

  • Citron M et al (1992) Mutation of the beta-amyloid precursor protein in familial Alzheimer’s disease increases beta-protein production. Nature 360(6405):672–674

    Article  PubMed  CAS  Google Scholar 

  • Cummings JL (2004) Alzheimer’s disease. N Engl J Med 351(1):56–67

    Article  PubMed  CAS  Google Scholar 

  • DeMattos RB et al (2004) ApoE and clusterin cooperatively suppress Abeta levels and deposition: evidence that ApoE regulates extracellular abeta metabolism in vivo. Neuron 41(2):193–202

    Article  PubMed  CAS  Google Scholar 

  • Dermaut B et al (2003) PRNP Val129 homozygosity increases risk for early-onset Alzheimer’s disease. Ann Neurol 53(3):409–412

    Article  PubMed  CAS  Google Scholar 

  • Freir DB et al (2011) Interaction between prion protein and toxic amyloid β assemblies can be therapeutically targeted at multiple sites. Nat Commun 2:336

    Article  PubMed  Google Scholar 

  • Gacia M et al (2006) Prion protein gene M129 allele is a risk factor for Alzheimer’s disease. J Neural Transm 113(11):1747–1751

    Article  PubMed  CAS  Google Scholar 

  • Gimbel DA et al (2010) Memory impairment in transgenic alzheimer mice requires cellular prion protein. J Neurosci 30(18):6367–6374

    Article  PubMed  CAS  Google Scholar 

  • Glenner GG, Wong CW (1984) Alzheimer’s disease and Down’s syndrome: sharing of a unique cerebrovascular amyloid fibril protein. Biochem Biophys Res Commun 122(3):1131–1135

    Article  PubMed  CAS  Google Scholar 

  • Golanska E et al (2004) Polymorphisms within the prion (PrP) and prion-like protein (Doppel) genes in AD. Neurology 62(2):313–315

    Article  PubMed  CAS  Google Scholar 

  • Goldgaber D et al (1987) Characterization and chromosomal localization of a cDNA encoding brain amyloid of Alzheimer’s disease. Science 235(4791):877–880

    Article  PubMed  CAS  Google Scholar 

  • Gunther EC, Strittmatter SM (2009) β-amyloid oligomers and cellular prion protein in Alzheimer’s disease. J Mol Med 88(4):331–338

    Article  PubMed  Google Scholar 

  • Hardy J, Selkoe DJ (2002) The amyloid hypothesis of Alzheimer’s disease: progress and problems on the road to therapeutics. Science 297(5580):353–356

    Article  PubMed  CAS  Google Scholar 

  • Harris JA et al (2010) Many neuronal and behavioral impairments in transgenic mouse models of Alzheimer’s disease are independent of caspase cleavage of the amyloid precursor protein. J Neurosci 30(1):372–381

    Article  PubMed  CAS  Google Scholar 

  • Heister D et al (2011) Predicting MCI outcome with clinically available MRI and CSF biomarkers. Neurology 77(17):1619–1628

    Article  PubMed  CAS  Google Scholar 

  • Helzner EP et al (2008) Survival in Alzheimer disease: a multiethnic, population-based study of incident cases. Neurology 71(19):1489–1495

    Article  PubMed  CAS  Google Scholar 

  • Jack CR Jr et al (2010) Hypothetical model of dynamic biomarkers of the Alzheimer’s pathological cascade. Lancet Neurol 9(1):119–128

    Article  PubMed  CAS  Google Scholar 

  • Josephs KA et al (2008) Beta-amyloid burden is not associated with rates of brain atrophy. Ann Neurol 63(2):204–212

    Article  PubMed  Google Scholar 

  • Katzman R (1986) Alzheimer’s disease. N Engl J Med 314(15):964–973

    Article  PubMed  CAS  Google Scholar 

  • Kessels HW et al (2010) The prion protein as a receptor for amyloid-beta. Nature 466(7308):E3–E4, discussion E4–E5

    Article  PubMed  CAS  Google Scholar 

  • Kim J, Basak JM, Holtzman DM (2009) The role of apolipoprotein E in Alzheimer’s disease. Neuron 63(3):287–303

    Article  PubMed  CAS  Google Scholar 

  • Kosik KS, Joachim CL, Selkoe DJ (1986) Microtubule-associated protein tau (tau) is a major antigenic component of paired helical filaments in Alzheimer disease. Proc Natl Acad Sci USA 83(11):4044–4048

    Article  PubMed  CAS  Google Scholar 

  • Laurén J et al (2009) Cellular prion protein mediates impairment of synaptic plasticity by amyloid-β oligomers. Nature 457(7233):1128–1132

    Article  PubMed  Google Scholar 

  • Lesne S et al (2006) A specific amyloid-beta protein assembly in the brain impairs memory. Nature 440(7082):352–357

    Article  PubMed  CAS  Google Scholar 

  • Li H et al (2008) Candidate single-nucleotide polymorphisms from a genomewide association study of Alzheimer disease. Arch Neurol 65(1):45–53

    Article  PubMed  Google Scholar 

  • Liu Y et al (2008) Amyloid pathology is associated with progressive monoaminergic neurodegeneration in a transgenic mouse model of Alzheimer’s disease. J Neurosci 28(51):13805–13814

    Article  PubMed  CAS  Google Scholar 

  • Masters CL et al (1985) Amyloid plaque core protein in Alzheimer disease and Down syndrome. Proc Natl Acad Sci USA 82(12):4245–4249

    Article  PubMed  CAS  Google Scholar 

  • McKhann GM et al (2011) The diagnosis of dementia due to Alzheimer’s disease: recommendations from the National Institute on aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimers Dement 7(3):263–269

    Article  PubMed  Google Scholar 

  • Meek PD, McKeithan K, Schumock GT (1998) Economic considerations in Alzheimer’s disease. Pharmacotherapy 18(2 Pt 2):68–73, discussion 79–82

    PubMed  CAS  Google Scholar 

  • Mills J, Reiner PB (1999) Regulation of amyloid precursor protein cleavage. J Neurochem 72(2):443–460

    Article  PubMed  CAS  Google Scholar 

  • Minkeviciene R et al (2009) Amyloid beta-induced neuronal hyperexcitability triggers progressive epilepsy. J Neurosci 29(11):3453–3462

    Article  PubMed  CAS  Google Scholar 

  • Morris RG et al (1986) Selective impairment of learning and blockade of long-term potentiation by an N-methyl-d-aspartate receptor antagonist, AP5. Nature 319(6056):774–776

    Article  PubMed  CAS  Google Scholar 

  • Palop JJ et al (2007) Aberrant excitatory neuronal activity and compensatory remodeling of inhibitory hippocampal circuits in mouse models of Alzheimer’s disease. Neuron 55(5):697–711

    Article  PubMed  CAS  Google Scholar 

  • Petersen RC et al (2010) Alzheimer’s Disease Neuroimaging Initiative (ADNI): clinical characterization. Neurology 74(3):201–209

    Article  PubMed  Google Scholar 

  • Prasher VP et al (1998) Molecular mapping of Alzheimer-type dementia in Down’s syndrome. Ann Neurol 43(3):380–383

    Article  PubMed  CAS  Google Scholar 

  • Prince M et al (2009) Alzheimer’s disease international world alzheimer report 2009. In: International AsD (ed) pp 1–96

    Google Scholar 

  • Redish AD, Touretzky DS (1998) The role of the hippocampus in solving the Morris water maze. Neural Comput 10(1):73–111

    Article  PubMed  CAS  Google Scholar 

  • Riemenschneider M et al (2004) Prion protein codon 129 polymorphism and risk of Alzheimer disease. Neurology 63(2):364–366

    Article  PubMed  CAS  Google Scholar 

  • Roberson ED et al (2011) Amyloid-beta/Fyn-induced synaptic, network, and cognitive impairments depend on tau levels in multiple mouse models of Alzheimer’s disease. J Neurosci 31(2):700–711

    Article  PubMed  CAS  Google Scholar 

  • Selkoe DJ, Schenk D (2003) Alzheimer’s disease: molecular understanding predicts amyloid-based therapeutics. Annu Rev Pharmacol Toxicol 43:545–584

    Article  PubMed  CAS  Google Scholar 

  • Shankar GM et al (2008) Amyloid-beta protein dimers isolated directly from Alzheimer’s brains impair synaptic plasticity and memory. Nat Med 14(8):837–842

    Article  PubMed  CAS  Google Scholar 

  • Shaw LM et al (2009) Cerebrospinal fluid biomarker signature in Alzheimer’s disease neuroimaging initiative subjects. Ann Neurol 65(4):403–413

    Article  PubMed  CAS  Google Scholar 

  • Sperling RA et al (2011) Toward defining the preclinical stages of Alzheimer’s disease: recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimers Dement 7(3):280–292

    Article  PubMed  Google Scholar 

  • Terry RD et al (1991) Physical basis of cognitive alterations in Alzheimer’s disease: synapse loss is the major correlate of cognitive impairment. Ann Neurol 30(4):572–580

    Article  PubMed  CAS  Google Scholar 

  • Thies W, Bleiler L (2011) 2011 Alzheimer’s disease facts and figures. Alzheimers Dement 7(2):208–244

    Article  PubMed  Google Scholar 

  • Walsh DM, Selkoe DJ (2007) A? Oligomers ? a decade of discovery. J Neurochem 101(5):1172–1184

    Article  PubMed  CAS  Google Scholar 

  • Walsh DM et al (2002) Naturally secreted oligomers of amyloid beta protein potently inhibit hippocampal long-term potentiation in vivo. Nature 416(6880):535–539

    Article  PubMed  CAS  Google Scholar 

  • Wang HY et al (2000) Beta-Amyloid(1–42) binds to alpha7 nicotinic acetylcholine receptor with high affinity. Implications for Alzheimer’s disease pathology. J Biol Chem 275(8):5626–5632

    Article  PubMed  CAS  Google Scholar 

  • Wang HW et al (2002) Soluble oligomers of beta amyloid (1–42) inhibit long-term potentiation but not long-term depression in rat dentate gyrus. Brain Res 924(2):133–140

    Article  PubMed  CAS  Google Scholar 

  • Wisniewski T, Ghiso J, Frangione B (1991) Peptides homologous to the amyloid protein of Alzheimer’s disease containing a glutamine for glutamic acid substitution have accelerated amyloid fibril formation. Biochem Biophys Res Commun 179(3):1247–1254

    Article  PubMed  CAS  Google Scholar 

  • Yan SD et al (1996) RAGE and amyloid-beta peptide neurotoxicity in Alzheimer’s disease. Nature 382(6593):685–691

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephen M. Strittmatter M.D., Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Kaufman, A.C., Strittmatter, S.M. (2013). Role of Cellular Prion Protein in the Amyloid-β Oligomer Pathophysiology of Alzheimer’s Disease. In: Zou, WQ., Gambetti, P. (eds) Prions and Diseases. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-5305-5_3

Download citation

Publish with us

Policies and ethics