Skip to main content

Advertisement

Log in

Increased Oxidative Stress Toxicity and Lowered Antioxidant Defenses in Temporal Lobe Epilepsy and Mesial Temporal Sclerosis: Associations with Psychiatric Comorbidities

  • Original Article
  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Oxidative stress toxicity (OSTOX), as well as lowered antioxidant defenses (ANTIOX), plays a role in temporal lobe epilepsy (TLE). Nevertheless, the associations between OSTOX/ANTIOX and psychiatric comorbidities in TLE are largely unknown. Thus, this study examines plasma malondialdehyde (MDA), lipid hydroperoxides (LOOH), advanced oxidation protein products (AOPP), nitric oxide metabolites (NOx), total radical-trapping antioxidant parameter (TRAP), and sulfhydryl (-SH) groups in depression due to TLE (n = 25); anxiety disorders due to TLE (n = 27); psychotic disorder due to TLE (n = 25); “pure TLE” (n = 27); and healthy controls (n = 40). TLE and mesial temporal sclerosis (MTS) were characterized by significant increases in OSTOX (MDA, AOPP, LOOH) and lowered ANTIOX (-SH groups, TRAP). The discrimination of pure TLE from controls yielded a significant area under the ROC curve for MDA (0.999), AOPP (0.851), -SH groups (0.899), and the OSTOX/ANTIOX ratio (0.996). Seizure frequency is significantly associated with increased MDA and lowered LOOH and NOx levels. Increased MDA was associated with the severity of depressive and physiosomatic symptoms, while increased AOPP levels predicted suicidal ideation. Depression and anxiety disorders co-occurring with TLE showed significantly lower MDA levels than TLE without any comorbidities. The psychotic and negative symptoms of TLE are associated with increased MDA levels and excitation with increased LOOH and lowered TRAP levels. These results indicate that oxidative stress toxicity especially protein oxidation and aldehyde formation coupled with lowered -SH groups plays a key role in the pathophysiology of TLE/MTS. Increased aldehyde formation also impacts psychopathology and psychosis, as well as negative and depressive symptoms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Abbreviations

TLE:

Temporal lobe epilepsy

MTS:

Mesial temporal sclerosis

GAD:

Generalized anxiety disorder

AEDs:

Antiepileptic drugs

ROS:

Reactive oxygen species

RNS:

Reactive nitrogen species

NO:

Nitric oxide

MDA:

Malondialdehyde

4-HNE:

4-Hydroxynonenal

-SH:

Sulfhydryl

AOPP:

Advanced oxidation protein products

TRAP:

Total radical-trapping antioxidant parameter

LOOH:

Lipid hydroperoxides

MRI:

Magnetic resonance imaging

HAM-D:

Hamilton Depression Rating Scale

HAM-A:

Hamilton Anxiety Rating Scale

BPRS:

Brief Psychiatric Rating Scale

BMI:

Body mass index

NOx :

NO metabolites

OSTOX:

Oxidative stress toxicity index

ANTIOX:

Antioxidant activities index

GLM:

General linear model

FDR:

False discovery rate

ROC:

Receiver operating characteristics

AUC ROC:

Area under the ROC curve

References

  1. Téllez-Zenteno JF, Hernández-Ronquillo L (2012) A review of the epidemiology of temporal lobe epilepsy. Epilepsy Res Treat 2012:630853–630855. https://doi.org/10.1155/2012/630853

    Article  PubMed  Google Scholar 

  2. Hauser WA, Kurland LT (1975) The epidemiology of epilepsy in Rochester, Minnesota, 1935 through 1967. Epilepsia 16(1):1–66. https://doi.org/10.1111/j.1528-1157.1975.tb04721.x

    Article  CAS  PubMed  Google Scholar 

  3. Brodie MJ, Zuberi SM, Scheffer IE, Fisher RS (2018) The 2017 ILAE classification of seizure types and the epilepsies: what do people with epilepsy and their caregivers need to know? Epileptic Disord 20(2):77–87. https://doi.org/10.1684/epd.2018.0957

    Article  PubMed  Google Scholar 

  4. (NINDS) NIoNDaS (2016) The epilepsies and seizures: hope through research. U.S. National Institutes of Health (NIH). Accessed 18 Jan 2020

  5. Tassi L, Meroni A, Deleo F, Villani F, Mai R, Russo GL, Colombo N, Avanzini G et al (2009) Temporal lobe epilepsy: neuropathological and clinical correlations in 243 surgically treated patients. Epileptic Disord 11(4):281–292. https://doi.org/10.1684/epd.2009.0279

    Article  PubMed  Google Scholar 

  6. Blumcke I, Thom M, Wiestler OD (2002) Ammon's horn sclerosis: a maldevelopmental disorder associated with temporal lobe epilepsy. Brain Pathol 12(2):199–211

    PubMed  Google Scholar 

  7. Blümcke I, Thom M, Aronica E, Armstrong DD, Vinters HV, Palmini A, Jacques TS, Avanzini G et al (2011) The clinicopathologic spectrum of focal cortical dysplasias: a consensus classification proposed by an ad hoc Task Force of the ILAE Diagnostic Methods Commission. Epilepsia 52(1):158–174. https://doi.org/10.1111/j.1528-1167.2010.02777.x

    Article  PubMed  Google Scholar 

  8. Bragatti JA, Torres CM, Londero RG, Martin KC, Souza AC, Hidalgo MP, Chaves ML, Bianchin MM (2011) Prevalence of psychiatric comorbidities in temporal lobe epilepsy in a Southern Brazilian population. Arq Neuropsiquiatr 69(2a):159–165. https://doi.org/10.1590/s0004-282x2011000200003

    Article  PubMed  Google Scholar 

  9. Beletsky V, Mirsattari SM (2012) Epilepsy, mental health disorder, or both? Epilepsy Res Treat 2012:163731–163713. https://doi.org/10.1155/2012/163731

    Article  PubMed  Google Scholar 

  10. de Oliveira GN, Kummer A, Salgado JV, Portela EJ, Sousa-Pereira SR, David AS, Teixeira AL (2010) Psychiatric disorders in temporal lobe epilepsy: an overview from a tertiary service in Brazil. Seizure 19(8):479–484. https://doi.org/10.1016/j.seizure.2010.07.004

    Article  PubMed  Google Scholar 

  11. Johnson EK, Jones JE, Seidenberg M, Hermann BP (2004) The relative impact of anxiety, depression, and clinical seizure features on health-related quality of life in epilepsy. Epilepsia 45(5):544–550. https://doi.org/10.1111/j.0013-9580.2004.47003.x

    Article  PubMed  Google Scholar 

  12. Aguiar CC, Almeida AB, Araujo PV, de Abreu RN, Chaves EM, do Vale OC, Macedo DS, Woods DJ et al (2012) Oxidative stress and epilepsy: literature review. Oxidative Med Cell Longev 2012:795259–795212. https://doi.org/10.1155/2012/795259

    Article  CAS  Google Scholar 

  13. Sudha K, Rao AV, Rao A (2001) Oxidative stress and antioxidants in epilepsy. Clin Chim Acta 303(1–2):19–24. https://doi.org/10.1016/s0009-8981(00)00337-5

    Article  CAS  PubMed  Google Scholar 

  14. Waldbaum S, Patel M (2010) Mitochondria, oxidative stress, and temporal lobe epilepsy. Epilepsy Res 88(1):23–45. https://doi.org/10.1016/j.eplepsyres.2009.09.020

    Article  CAS  PubMed  Google Scholar 

  15. Puttachary S, Sharma S, Stark S, Thippeswamy T (2015) Seizure-induced oxidative stress in temporal lobe epilepsy. Biomed Res Int 2015:745613–745620. https://doi.org/10.1155/2015/745613

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Chuang YC, Chen S, Lin T-K, Liou C, Chang W, Chan SHH, Chang A (2007) Upregulation of nitric oxide synthase II contributes to apoptotic cell death in the hippocampal CA3 subfield via a cytochrome c/caspase-3 signaling cascade following induction of experimental temporal lobe status epilepticus in the rat. Neuropharmacology 52:1263–1273. https://doi.org/10.1016/j.neuropharm.2007.01.010

    Article  CAS  PubMed  Google Scholar 

  17. Chuang Y-C, Chen S-D, Liou C-W, Lin T-K, Chang W-N, Chan SHH, Chang A (2008) Contribution of nitric oxide, superoxide anion, and peroxynitrite to activation of mitochondrial apoptotic signaling in hippocampal CA3 subfield following experimental temporal lobe status epilepticus. Epilepsia 50:731–746. https://doi.org/10.1111/j.1528-1167.2008.01778.x

    Article  CAS  PubMed  Google Scholar 

  18. Pecorelli A, Natrella F, Belmonte G, Miracco C, Cervellati F, Ciccoli L, Mariottini A, Rocchi R et al (2015) NADPH oxidase activation and 4-hydroxy-2-nonenal/aquaporin-4 adducts as possible new players in oxidative neuronal damage presents in drug-resistant epilepsy. Biochim Biophys Acta 1852(3):507–519. https://doi.org/10.1016/j.bbadis.2014.11.016

    Article  CAS  PubMed  Google Scholar 

  19. Lopez J, Gonzalez ME, Lorigados L, Morales L, Riveron G, Bauza JY (2007) Oxidative stress markers in surgically treated patients with refractory epilepsy. Clin Biochem 40(5–6):292–298. https://doi.org/10.1016/j.clinbiochem.2006.11.019

    Article  CAS  PubMed  Google Scholar 

  20. Ho YH, Lin YT, Wu CW, Chao YM, Chang AY, Chan JY (2015) Peripheral inflammation increases seizure susceptibility via the induction of neuroinflammation and oxidative stress in the hippocampus. J Biomed Sci 22:46. https://doi.org/10.1186/s12929-015-0157-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Lorigados Pedre L, Gallardo JM, Morales Chacón LM, Vega García A, Flores-Mendoza M, Neri-Gómez T, Estupiñán Díaz B, Cruz-Xenes RM et al (2018) Oxidative stress in patients with drug resistant partial complex seizure. Behav Sci (Basel) 8(6):59. https://doi.org/10.3390/bs8060059

    Article  Google Scholar 

  22. Ben-Menachem E, Kyllerman M, Marklund S (2000) Superoxide dismutase and glutathione peroxidase function in progressive myoclonus epilepsies. Epilepsy Res 40(1):33–39. https://doi.org/10.1016/s0920-1211(00)00096-6

    Article  CAS  PubMed  Google Scholar 

  23. Menon B, Ramalingam K, Kumar RV (2014) Low plasma antioxidant status in patients with epilepsy and the role of antiepileptic drugs on oxidative stress. Ann Indian Acad Neurol 17(4):398–404. https://doi.org/10.4103/0972-2327.144008

    Article  PubMed  PubMed Central  Google Scholar 

  24. Arhan E, Serdaroglu A, Ozturk B, Ozturk HS, Ozcelik A, Kurt N, Kutsal E, Sevinc N (2011) Effects of epilepsy and antiepileptic drugs on nitric oxide, lipid peroxidation and xanthine oxidase system in children with idiopathic epilepsy. Seizure 20(2):138–142. https://doi.org/10.1016/j.seizure.2010.11.003

    Article  PubMed  Google Scholar 

  25. Maes M, Galecki P, Chang YS, Berk M (2011) A review on the oxidative and nitrosative stress (O&NS) pathways in major depression and their possible contribution to the (neuro)degenerative processes in that illness. Prog Neuro-Psychopharmacol Biol Psychiatry 35(3):676–692. https://doi.org/10.1016/j.pnpbp.2010.05.004

    Article  CAS  Google Scholar 

  26. Maes M, Landucci Bonifacio K, Morelli NR, Vargas HO, Barbosa DS, Carvalho AF, Nunes SOV (2019) Major differences in Neurooxidative and Neuronitrosative stress pathways between major depressive disorder and types I and II bipolar disorder. Mol Neurobiol 56(1):141–156. https://doi.org/10.1007/s12035-018-1051-7

    Article  CAS  PubMed  Google Scholar 

  27. Maes M, Bonifacio KL, Morelli NR, Vargas HO, Moreira EG, St Stoyanov D, Barbosa DS, Carvalho AF et al (2018) Generalized anxiety disorder (GAD) and comorbid major depression with GAD are characterized by enhanced nitro-oxidative stress, increased lipid peroxidation, and lowered lipid-associated antioxidant defenses. Neurotox Res 34(3):489–510. https://doi.org/10.1007/s12640-018-9906-2

    Article  CAS  PubMed  Google Scholar 

  28. Boll KM, Noto C, Bonifácio KL, Bortolasci CC, Gadelha A, Bressan RA, Barbosa DS, Maes M et al (2017) Oxidative and nitrosative stress biomarkers in chronic schizophrenia. Psychiatry Res 253:43–48. https://doi.org/10.1016/j.psychres.2017.03.038

    Article  CAS  PubMed  Google Scholar 

  29. Fraguas D, Díaz-Caneja CM, Rodríguez-Quiroga A, Arango C (2017) Oxidative stress and inflammation in early onset first episode psychosis: a systematic review and meta-analysis. Int J Neuropsychopharmacol 20(6):435–444. https://doi.org/10.1093/ijnp/pyx015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Noto C, Ota VK, Santoro ML, Ortiz BB, Rizzo LB, Higuchi CH, Cordeiro Q, Belangero SI et al (2015) Effects of depression on the cytokine profile in drug naive first-episode psychosis. Schizophr Res 164(1–3):53–58. https://doi.org/10.1016/j.schres.2015.01.026

    Article  PubMed  Google Scholar 

  31. Maes M, Matsumoto A, Michelin A, De L, Semeão O, Solmi M, Carvalho A, Kanchanatawan B (2020) Lowered antioxidant defenses and increased oxidative toxicity are hallmarks of deficit schizophrenia: neurocognitive and symptom correlates. Research Gate Preprint. https://doi.org/10.13140/RG.2.2.23185.79209

  32. Blumer D, Montouris G, Davies K (2004) The interictal dysphoric disorder: recognition, pathogenesis, and treatment of the major psychiatric disorder of epilepsy. Epilepsy Behav 5(6):826–840. https://doi.org/10.1016/j.yebeh.2004.08.003

    Article  PubMed  Google Scholar 

  33. Kanchanatawan B, Limothai C, Srikijvilaikul T, Maes M (2014) Clinical predictors of 2-year outcome of resective epilepsy surgery in adults with refractory epilepsy: a cohort study. BMJ Open 4(4):e004852–e004852. https://doi.org/10.1136/bmjopen-2014-004852

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Hamilton M (1959) The assessment of anxiety states by rating. Br J Med Psychol 32(1):50–55. https://doi.org/10.1111/j.2044-8341.1959.tb00467.x

    Article  CAS  PubMed  Google Scholar 

  35. Hamilton M (1960) A rating scale for depression. J Neurol Neurosurg Psychiatry 23:56–62. https://doi.org/10.1136/jnnp.23.1.56

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Overall JE, Gorham DR (1962) The Brief Psychiatric Rating Scale. Psychol Rep 10(3):799–812. https://doi.org/10.2466/pr0.1962.10.3.799

    Article  Google Scholar 

  37. Heatherton TF, Kozlowski LT, Frecker RC, Fagerstrom KO (1991) The Fagerstrom test for nicotine dependence: a revision of the Fagerstrom tolerance questionnaire. Br J Addict 86(9):1119–1127. https://doi.org/10.1111/j.1360-0443.1991.tb01879.x

    Article  CAS  PubMed  Google Scholar 

  38. Bastos AS, Loureiro AP, de Oliveira TF, Corbi SC, Caminaga RM, Junior CR, Orrico SR (2012) Quantitation of malondialdehyde in gingival crevicular fluid by a high-performance liquid chromatography-based method. Anal Biochem 423(1):141–146. https://doi.org/10.1016/j.ab.2012.01.016

    Article  CAS  PubMed  Google Scholar 

  39. Hanasand M, Omdal R, Norheim KB, Gøransson LG, Brede C, Jonsson G (2012) Improved detection of advanced oxidation protein products in plasma. Clin Chim Acta 413(9):901–906

    Article  CAS  PubMed  Google Scholar 

  40. Witko-Sarsat V, Friedlander M, Capeillere-Blandin C, Nguyen-Khoa T, Nguyen AT, Zingraff J, Jungers P, Descamps-Latscha B (1996) Advanced oxidation protein products as a novel marker of oxidative stress in uremia. Kidney Int 49(5):1304–1313. https://doi.org/10.1038/ki.1996.186

    Article  CAS  PubMed  Google Scholar 

  41. Gonzalez Flecha B, Llesuy S, Boveris A (1991) Hydroperoxide-initiated chemiluminescence: an assay for oxidative stress in biopsies of heart, liver, and muscle. Free Radic Biol Med 10(2):93–100

    Article  CAS  PubMed  Google Scholar 

  42. Panis C, Herrera ACSA, Victorino VJ, Campos FC, Freitas LF, De Rossi T, Colado Simão AN, Cecchini AL et al (2012) Oxidative stress and hematological profiles of advanced breast cancer patients subjected to paclitaxel or doxorubicin chemotherapy. Breast Cancer Res Treat 133(1):89–97

    Article  CAS  PubMed  Google Scholar 

  43. Navarro-Gonzálvez JA, García-Benayas C, Arenas J (1998) Semiautomated measurement of nitrate in biological fluids. Clin Chem 44(3):679–681

    Article  PubMed  Google Scholar 

  44. Repetto M, Reides C, Carretero MLG, Costa M, Griemberg G, Llesuy S (1996) Oxidative stress in blood of HIV infected patients. Clin Chim Acta 255(2):107–117

    Article  CAS  PubMed  Google Scholar 

  45. Hu ML (1994) Measurement of protein thiol groups and glutathione in plasma. Methods Enzymol 233:380–385

    Article  CAS  PubMed  Google Scholar 

  46. Taylan E, Resmi H (2010) The analytical performance of a microplatemethod for total sulfhydryl measurement in biological samples. Turk J Biochem 35:275–278

    CAS  Google Scholar 

  47. Benjamini Y, Hochberg Y (1995) Controlling the false discovery rate - a practical and powerful approach to multiple testing. J R Stat Soc Ser B 57:289–300. https://doi.org/10.2307/2346101

    Article  Google Scholar 

  48. Shakeel S, Rehman MU, Tabassum N, Amin U, Mir MUR (2017) Effect of naringenin (a naturally occurring flavanone) against pilocarpine-induced status epilepticus and oxidative stress in mice. Pharmacogn Mag 13(Suppl 1):S154–S160. https://doi.org/10.4103/0973-1296.203977

    Article  PubMed  PubMed Central  Google Scholar 

  49. Hussein AM, Ghalwash M, Magdy K, Abulseoud OA (2016) Beta lactams antibiotic ceftriaxone modulates seizures, oxidative stress and connexin 43 expression in hippocampus of pentylenetetrazole kindled rats. J Epilepsy Res 6(1):8–15. https://doi.org/10.14581/jer.16002

    Article  PubMed  PubMed Central  Google Scholar 

  50. Kiasalari Z, Khalili M, Shafiee S, Roghani M (2016) The effect of vitamin E on learning and memory deficits in intrahippocampal kainate-induced temporal lobe epilepsy in rats. Indian J Pharm 48(1):11–14. https://doi.org/10.4103/0253-7613.174394

    Article  CAS  Google Scholar 

  51. Khamse S, Sadr SS, Roghani M, Hasanzadeh G, Mohammadian M (2015) Rosmarinic acid exerts a neuroprotective effect in the kainate rat model of temporal lobe epilepsy: Underlying mechanisms. Pharm Biol 53(12):1818–1825. https://doi.org/10.3109/13880209.2015.1010738

    Article  CAS  PubMed  Google Scholar 

  52. Dariani S, Baluchnejadmojarad T, Roghani M (2013) Thymoquinone attenuates astrogliosis, neurodegeneration, mossy fiber sprouting, and oxidative stress in a model of temporal lobe epilepsy. J Mol Neurosci 51(3):679–686. https://doi.org/10.1007/s12031-013-0043-3

    Article  CAS  PubMed  Google Scholar 

  53. Peternel S, Pilipović K, Zupan G (2009) Seizure susceptibility and the brain regional sensitivity to oxidative stress in male and female rats in the lithium-pilocarpine model of temporal lobe epilepsy. Prog Neuro-Psychopharmacol Biol Psychiatry 33:456–462. https://doi.org/10.1016/j.pnpbp.2009.01.005

    Article  CAS  Google Scholar 

  54. Tejada J, Costa K, Bertti P, Garcia-Cairasco N (2012) The epilepsies - complex challenges needing complex solutions - Tejada et al 2012

  55. Leutner S, Eckert A, Muller WE (2001) ROS generation, lipid peroxidation and antioxidant enzyme activities in the aging brain. J Neural Transm (Vienna) 108(8–9):955–967. https://doi.org/10.1007/s007020170015

    Article  CAS  Google Scholar 

  56. Grosso S, Longini M, Rodriguez A, Proietti F, Piccini B, Balestri P, Buonocore G (2011) Oxidative stress in children affected by epileptic encephalopathies. J Neurol Sci 300(1–2):103–106. https://doi.org/10.1016/j.jns.2010.09.017

    Article  CAS  PubMed  Google Scholar 

  57. Ercegovac M, Jovic N, Simic T, Beslac-Bumbasirevic L, Sokic D, Djukic T, Savic-Radojevic A, Matic M et al (2010) Byproducts of protein, lipid and DNA oxidative damage and antioxidant enzyme activities in seizure. Seizure 19:205–210. https://doi.org/10.1016/j.seizure.2010.02.002

    Article  PubMed  Google Scholar 

  58. Menon B, Ramalingam K, Kumar RV (2012) Oxidative stress in patients with epilepsy is independent of antiepileptic drugs. Seizure 21(10):780–784. https://doi.org/10.1016/j.seizure.2012.09.003

    Article  PubMed  Google Scholar 

  59. Hamed SA, Abdellah MM, El-Melegy N (2004) Blood levels of trace elements, electrolytes, and oxidative stress/antioxidant systems in epileptic patients. J Pharmacol Sci 96(4):465–473. https://doi.org/10.1254/jphs.fpj04032x

    Article  CAS  PubMed  Google Scholar 

  60. Liu X, Zou H, Slaughter C, Wang X (1997) DFF, a heterodimeric protein that functions downstream of caspase-3 to trigger DNA fragmentation during apoptosis. Cell 89(2):175–184. https://doi.org/10.1016/s0092-8674(00)80197-x

    Article  CAS  PubMed  Google Scholar 

  61. Verrotti A, Cerminara C, Domizio S, Mohn A, Franzoni E, Coppola G, Zamponi N, Parisi P et al (2008) Levetiracetam in absence epilepsy. Dev Med Child Neurol 50(11):850–853. https://doi.org/10.1111/j.1469-8749.2008.03099.x

    Article  PubMed  Google Scholar 

  62. Peker E, Oktar S, Ari M, Kozan R, Doğan M, Cagan E, Söğüt S (2009) Nitric oxide, lipid peroxidation, and antioxidant enzyme levels in epileptic children using valproic acid. Brain Res 1297:194–197. https://doi.org/10.1016/j.brainres.2009.08.048

    Article  CAS  PubMed  Google Scholar 

  63. Karabiber H, Yakinci C, Durmaz Y, Temel I, Mehmet N (2004) Serum nitrite and nitrate levels in epileptic children using valproic acid or carbamazepine. Brain and Development 26:15–18. https://doi.org/10.1016/S0387-7604(03)00076-7

    Article  PubMed  Google Scholar 

  64. Arhan E, Kurt ANC, Neselioglu S, Yerel O, Ucar HK, Aydin K, Serdaroglu A (2019) Effects of antiepileptic drugs on dynamic thiol/disulphide homeostasis in children with idiopathic epilepsy. Seizure 65:89–93. https://doi.org/10.1016/j.seizure.2018.12.019

    Article  PubMed  Google Scholar 

  65. Liu CS, Wu HM, Kao SH, Wei YH (1997) Phenytoin-mediated oxidative stress in serum of female epileptics: a possible pathogenesis in the fetal hydantoin syndrome. Hum Exp Toxicol 16(3):177–181. https://doi.org/10.1177/096032719701600308

    Article  CAS  PubMed  Google Scholar 

  66. Levine RL, Williams JA, Stadtman ER, Shacter E (1994) Carbonyl assays for determination of oxidatively modified proteins. Methods Enzymol 233:346–357. https://doi.org/10.1016/s0076-6879(94)33040-9

    Article  CAS  PubMed  Google Scholar 

  67. Yu X, Zhou T, Yu H, Chang L-Y, Wei L-L (2018) Corilagin reduces the frequency of seizures and improves cognitive function in a rat model of chronic epilepsy. Med Sci Monit 24:2832–2840. https://doi.org/10.12659/MSM.906509

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Shekh-Ahmad T, Eckel R, Dayalan Naidu S, Higgins M, Yamamoto M, Dinkova-Kostova AT, Kovac S, Abramov AY et al (2018) KEAP1 inhibition is neuroprotective and suppresses the development of epilepsy. Brain 141(5):1390–1403. https://doi.org/10.1093/brain/awy071

    Article  PubMed  Google Scholar 

  69. Pansani A, Colugnati D, Schoorlemmer G, Sonoda E, Cavalheiro E, Arida R, Scorza F, Cravo S (2011) Repeated amygdala-kindled seizures induce ictal rebound tachycardia in rats. Epilepsy Behav 22:442–449. https://doi.org/10.1016/j.yebeh.2011.07.034

    Article  PubMed  Google Scholar 

  70. Morris JM, Roberts CL, Bowen JR, Patterson JA, Bond DM, Algert CS, Thornton JG, Crowther CA (2016) Immediate delivery compared with expectant management after preterm pre-labour rupture of the membranes close to term (PPROMT trial): a randomised controlled trial. Lancet 387(10017):444–452. https://doi.org/10.1016/s0140-6736(15)00724-2

    Article  PubMed  Google Scholar 

  71. Morris G, Berk M, Klein H, Walder K, Galecki P, Maes M (2017) Nitrosative stress, hypernitrosylation, and autoimmune responses to nitrosylated proteins: new pathways in neuroprogressive disorders including depression and chronic fatigue syndrome. Mol Neurobiol 54(6):4271–4291. https://doi.org/10.1007/s12035-016-9975-2

    Article  CAS  PubMed  Google Scholar 

  72. Morris G, Walder K, Carvalho AF, Tye SJ, Lucas K, Berk M, Maes M (2018) The role of hypernitrosylation in the pathogenesis and pathophysiology of neuroprogressive diseases. Neurosci Biobehav Rev 84:453–469. https://doi.org/10.1016/j.neubiorev.2017.07.017

    Article  CAS  PubMed  Google Scholar 

  73. Maes M, Mihaylova I, Kubera M, Leunis JC, Twisk FN, Geffard M (2012) IgM-mediated autoimmune responses directed against anchorage epitopes are greater in myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) than in major depression. Metab Brain Dis 27(4):415–423. https://doi.org/10.1007/s11011-012-9316-8

    Article  CAS  PubMed  Google Scholar 

  74. Maes M, Twisk FN, Ringel K (2012) Inflammatory and cell-mediated immune biomarkers in myalgic encephalomyelitis/chronic fatigue syndrome and depression: inflammatory markers are higher in myalgic encephalomyelitis/chronic fatigue syndrome than in depression. Psychother Psychosom 81(5):286–295. https://doi.org/10.1159/000336803

    Article  PubMed  Google Scholar 

  75. Anderson G, Berk M, Maes M (2014) Biological phenotypes underpin the physio-somatic symptoms of somatization, depression, and chronic fatigue syndrome. Acta Psychiatr Scand 129(2):83–97. https://doi.org/10.1111/acps.12182

    Article  CAS  PubMed  Google Scholar 

  76. Vargas H, Nunes S, Castro M, Bortolasci C, Barbosa D, Morimoto H, Venugopal K, Dodd S et al (2013) Oxidative stress and lowered total antioxidant status are associated with history of suicide attempts. J Affect Disord 150:923–930. https://doi.org/10.1016/j.jad.2013.05.016

    Article  CAS  PubMed  Google Scholar 

  77. Filho G, Martins D, Lopes A, Brait B, Furlan A, Oliveira C, Marques L, Souza D et al (2018) Oxidative stress in patients with refractory temporal lobe epilepsy and mesial temporal sclerosis: possible association with major depressive disorder? Epilepsy Behav 80:191–196. https://doi.org/10.1016/j.yebeh.2017.12.025

    Article  Google Scholar 

  78. Kallaur AP, Lopes J, Oliveira SR, Simao AN, Reiche EM, de Almeida ER, Morimoto HK, de Pereira WL et al (2016) Immune-inflammatory and oxidative and nitrosative stress biomarkers of depression symptoms in subjects with multiple sclerosis: increased peripheral inflammation but less acute neuroinflammation. Mol Neurobiol 53(8):5191–5202. https://doi.org/10.1007/s12035-015-9443-4

    Article  CAS  PubMed  Google Scholar 

  79. Vesic K, Toncev G, Drakulic S, Borovcanin M (2018) Oxidative stress and neuroinflammation should be both considered in the occurrence of fatigue and depression in multiple sclerosis. Acta Neurol Belg. https://doi.org/10.1007/s13760-018-1015-8

  80. Fang M, Zhong L, Jin X, Cui R, Yang W, Gao S, Lv J, Li B et al (2019) Effect of inflammation on the process of stroke rehabilitation and poststroke depression. Front Psychiatry 10:184–184. https://doi.org/10.3389/fpsyt.2019.00184

    Article  PubMed  PubMed Central  Google Scholar 

  81. Thom M (2014) Review: Hippocampal sclerosis in epilepsy: a neuropathology review. Neuropathol Appl Neurobiol 40(5):520–543. https://doi.org/10.1111/nan.12150

    Article  PubMed  PubMed Central  Google Scholar 

  82. Rowley S, Liang L-P, Fulton R, Shimizu T, Day B, Patel M (2015) Mitochondrial respiration deficits driven by reactive oxygen species in experimental temporal lobe epilepsy. Neurobiol Dis 75:151–158. https://doi.org/10.1016/j.nbd.2014.12.025

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Curia G, Longo D, Biagini G, Jones RS, Avoli M (2008) The pilocarpine model of temporal lobe epilepsy. J Neurosci Methods 172(2):143–157. https://doi.org/10.1016/j.jneumeth.2008.04.019

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Lévesque M, Avoli M, Bernard C (2016) Animal models of temporal lobe epilepsy following systemic chemoconvulsant administration. J Neurosci Methods 260:45–52. https://doi.org/10.1016/j.jneumeth.2015.03.009

    Article  PubMed  Google Scholar 

  85. Dal-Pizzol F, Klamt F, Vianna M, Schröder N, Quevedo J, Benfato M, Moreira JC, Walz R (2000) Lipid peroxidation in hippocampus early and late after status epilepticus induced by pilocarpine or kainic acid in Wistar rats. Neurosci Lett 291:179–182. https://doi.org/10.1016/S0304-3940(00)01409-9

    Article  CAS  PubMed  Google Scholar 

  86. Nunes CS, Maes M, Roomruangwong C, Moraes JB, Bonifacio KL, Vargas HO, Barbosa DS, Anderson G et al (2018) Lowered quality of life in mood disorders is associated with increased neuro-oxidative stress and basal thyroid-stimulating hormone levels and use of anticonvulsant mood stabilizers. J Eval Clin Pract 24(4):869–878. https://doi.org/10.1111/jep.12918

    Article  PubMed  Google Scholar 

Download references

Funding

The study was supported by the Ratchadapisek Research Funds, Faculty of Medicine, Chulalongkorn University (Grant No. RA 57/024).

Author information

Authors and Affiliations

Authors

Contributions

All the contributing authors have participated in the manuscript. BK and MM designed the study. BK and CL recruited patients and completed diagnostic interviews and rating scale measurements. MM carried out the statistical analyses. All authors contributed to interpretation of the data and writing of the manuscript. All authors approved the final version of the manuscript.

Corresponding author

Correspondence to Buranee Kanchanatawan.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Maes, M., Supasitthumrong, T., Limotai, C. et al. Increased Oxidative Stress Toxicity and Lowered Antioxidant Defenses in Temporal Lobe Epilepsy and Mesial Temporal Sclerosis: Associations with Psychiatric Comorbidities. Mol Neurobiol 57, 3334–3348 (2020). https://doi.org/10.1007/s12035-020-01949-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-020-01949-8

Keywords

Navigation