Skip to main content
Log in

Ferulic Acid Ameliorates MPP+/MPTP-Induced Oxidative Stress via ERK1/2-Dependent Nrf2 Activation: Translational Implications for Parkinson Disease Treatment

  • Original Article
  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Parkinson’s disease (PD) is a neurodegenerative disorder closely associated with oxidative stress. The biochemical and cellular alterations that occur after cell and mouse treatment with the parkinsonism-inducing neurotoxin MPP+/MPTP are remarkably similar to those observed in idiopathic PD. Previously, we showed that ferulic acid (FA) has antioxidant properties and the ability to activate nuclear factor E2–related factor 2 (Nrf2). The present study tested the hypothesis that FA attenuates MPP+/MPTP-induced oxidative stress by regulating crosstalk between sirtuin 2 (SIRT2) and Nrf2 pathways. To test this hypothesis, we performed in vitro and in vivo studies using MPP+/MPTP-challenged SH-SY5Y cells or mice treated with or not with FA. FA marginally inhibited SIRT2 in parallel with α-synuclein at levels of transcription and translation in SH-SY5Y cells challenged with MPP+. Moreover, FA attenuated MPP+-induced oxidative stress, as indicated by reactive oxygen species, lipid hydroperoxides, GSH/GSSG ratio, and NAD+/NADH ratio. Mechanistically, FA strongly upregulated the glutamate cysteine ligase catalytic subunit and heme oxygenase-1 expression at the levels of transcription and translation. Interestingly, FA-mediated extracellular signal–regulated kinases 1 and 2 (ERK1/2) activation contributed to nuclear accumulation of Nrf2 via de novo synthesis, which was validated by the use of dominant negative ERK2. Surprisingly, activation of the ERK1/2 and inhibition of SIRT2 by FA are mediated by independent mechanisms. Furthermore, FA ameliorated motor deficits and oxidative stress in the ventral midbrain in MPTP-treated (25 mg/kg, i.p., daily for 5 days) wild-type mice and α-synuclein knockout mice, but not in Nrf2 knockout mice. Collectively, FA exerts antioxidant effects through ERK1/2-mediated activation of the Nrf2 pathway, and these results may have important translational value for the treatment of PD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

ARE:

Antioxidant response element

DCFH-DA:

2′,7′-Dichlorofluorescein-diacetate

DN:

Dominant negative

ERK:

Extracellular signal–regulated kinases

FA:

Ferulic acid

GCL:

Glutamate cysteine ligase

GSH:

Glutathione

HO-1:

Heme oxygenase-1

KO:

Knockout

LPO:

Lipid hydroperoxides

MAPK:

Mitogen-activated protein kinase

MDA:

Malondialdehyde

MPP+ :

1-Methyl-4-phenylpyridinium

MPTP:

1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine

NADH:

Nicotinamide adenine dinucleotide

NQO1:

NAD(P) H quinone oxidoreductase 1

Nrf2:

Nuclear factor E2-related factor 2

PD:

Parkinson’s disease

ROS:

Reactive oxygen species

shRNA:

Short hairpin RNA

SIRT2:

Sirtuin 2

Trx1:

Thioredoxin 1

WT:

Wild-type

References

  1. Szökő É, Tábi T, Riederer P, Vécsei L, Magyar K (2018) Pharmacological aspects of the neuroprotective effects of irreversible MAO-B inhibitors, selegiline and rasagiline, in Parkinson’s disease. J Neural Transm (Vienna) 125:1735–1749

    Article  CAS  Google Scholar 

  2. Ganguly U, Chakrabarti SS, Kaur U, Mukherjee A, Chakrabarti S (2018) Alpha-synuclein, Proteotoxicity and Parkinson’s disease: search for neuroprotective therapy. Curr Neuropharmacol 16:1086–1097

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Liss B, Striessnig J (2019) The potential of L-type calcium channels as a drug target for neuroprotective therapy in Parkinson’s disease. Annu Rev Pharmacol Toxicol 59:263–289

    Article  CAS  PubMed  Google Scholar 

  4. Lang AE, Melamed E, Poewe W, Rascol O (2013) Trial designs used to study neuroprotective therapy in Parkinson’s disease. Mov Disord 28:86–95

    Article  CAS  PubMed  Google Scholar 

  5. Zhang PL, Chen Y, Zhang CH, Wang YX, Fernandez-Funez P (2018) Genetics of Parkinson's disease and related disorders. J Med Genet 55:73–80

    Article  CAS  PubMed  Google Scholar 

  6. Sharma N, Rao SP, Kalivendi SV (2019) The deglycase activity of DJ-1 mitigates α-synuclein glycation and aggregation in dopaminergic cells: role of oxidative stress mediated downregulation of DJ-1 in Parkinson's disease. Free Radic Biol Med 135:28–37

    Article  CAS  PubMed  Google Scholar 

  7. Choi JH, Jang M, Nah SY, Oh S, Cho IH (2018) Multitarget effects of Korean red ginseng in animal model of Parkinson’s disease: antiapoptosis, antioxidant, antiinflammation, and maintenance of blood-brain barrier integrity. J Ginseng Res 42:379–388

    Article  PubMed  PubMed Central  Google Scholar 

  8. De Lazzari F, Bubacco L, Whitworth AJ, Bisaglia M (2018) Superoxide radical dismutation as new therapeutic strategy in Parkinson’s disease. Aging Dis 9:716–778

    Article  PubMed  PubMed Central  Google Scholar 

  9. Negida A, Menshawy A, El Ashal G, Elfouly Y, Hani Y, Hegazy Y, El Ghonimy S, Fouda S et al (2016) Coenzyme Q10 for patients with Parkinson's disease: a systematic review and meta-analysis. CNS Neurol Disord Drug Targets 15:45–53

    Article  CAS  PubMed  Google Scholar 

  10. Nicoletti G, Crescibene L, Scornaienchi M, Bastone L, Bagalà A, Napoli ID, Caracciolo M, Quattrone A (2001) Plasma levels of vitamin E in Parkinson’s disease. Arch Gerontol Geriatr 33:7–12

    Article  CAS  PubMed  Google Scholar 

  11. Wang Y, Cai Y, Huang H, Chen X, Chen X, Chen X, Mai H, Li X et al (2018) miR-486-3p influences the neurotoxicity of a-synuclein by targeting the SIRT2 gene and the polymorphisms at target sites contributing to Parkinson’s disease. Cell Physiol Biochem 51:2732–2745

    Article  CAS  PubMed  Google Scholar 

  12. Outeiro TF, Kontopoulos E, Altmann SM, Kufareva I, Strathearn KE, Amore AM, Volk CB, Maxwell MM et al (2007) Sirtuin 2 inhibitors rescue alpha-synuclein-mediated toxicity in models of Parkinson’s disease. Science 317:516–519

    Article  CAS  PubMed  Google Scholar 

  13. Di Fruscia P, Zacharioudakis E, Liu C, Moniot S, Laohasinnarong S, Khongkow M, Harrison IF, Koltsida K et al (2015) The discovery of a highly selective 5,6,7,8-tetrahydrobenzo[4,5]thieno[2,3-d]pyrimidin-4(3H)-one SIRT2 inhibitor that is neuroprotective in an in vitro Parkinson’s disease model. ChemMedChem 10:69–82

    Article  PubMed  CAS  Google Scholar 

  14. Liu L, Arun A, Ellis L, Peritore C, Donmez G (2012) Sirtuin 2 (SIRT2) enhances 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced nigrostriatal damage via deacetylating forkhead box O3a (Foxo3a) and activating Bim protein. J Biol Chem 287:32307–32311

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Yang X, Park SH, Chang HC, Shapiro JS, Vassilopoulos A, Sawicki KT, Chen C, Shang M et al (2017) Sirtuin 2 regulates cellular iron homeostasis via deacetylation of transcription factor NRF2. J Clin Invest 127:1505–1516

    Article  PubMed  PubMed Central  Google Scholar 

  16. Bresciani A, Missineo A, Gallo M, Cerretani M, Fezzardi P, Tomei L, Cicero DO, Altamura S et al (2017) Nuclear factor (erythroid-derived 2)-like 2 (NRF2) drug discovery: biochemical toolbox to develop NRF2 activators by reversible binding of Kelch-like ECH-associated protein 1 (KEAP1). Arch Biochem Biophys 631:31–41

    Article  CAS  PubMed  Google Scholar 

  17. Choi JW, Kim S, Park JH, Kim HJ, Shin SJ, Kim JW, Woo SY, Lee C et al (2019) Optimization of vinyl sulfone derivatives as potent nuclear factor erythroid 2-related factor 2 (Nrf2) activators for Parkinson’s disease therapy. J Med Chem 62:811–830

    Article  CAS  PubMed  Google Scholar 

  18. Xu X, Song N, Wang R, Jiang H, Xie J (2016) Preferential heme oxygenase-1 activation in striatal astrocytes antagonizes dopaminergic neuron degeneration in MPTP-intoxicated mice. Mol Neurobiol 53:5056–5065

    Article  CAS  PubMed  Google Scholar 

  19. Park JS, Leem YH, Park JE, Kim DY, Kim HS (2019) Neuroprotective effect of β-lapachone in MPTP-induced Parkinson’s disease mouse model: involvement of Astroglial p-AMPK/Nrf2/HO-1 signaling pathways. Biomol Ther (Seoul) 27:178–184

    Article  Google Scholar 

  20. Shah MA, Bosco SJ, Mir SA (2014) Plant extracts as natural antioxidants in meat and meat products. Meat Sci 98:21–33

    Article  CAS  PubMed  Google Scholar 

  21. Leonti M, Stafford GI, Cero MD, Cabras S, Castellanos ME, Casu L, Weckerle CS (2017) Reverse ethnopharmacology and drug discovery. J Ethnopharmacol 198:417–431

    Article  CAS  PubMed  Google Scholar 

  22. Bolognesi ML (2017) Neurodegenerative drug discovery: building on the past, looking to the future. Future Med Chem 9:707–709

    Article  CAS  PubMed  Google Scholar 

  23. Huang C, Wu J, Chen D, Jin J, Wu Y, Chen Z (2019) Effects of sulforaphane in the central nervous system. Eur J Pharmacol 853:153–168

    Article  CAS  PubMed  Google Scholar 

  24. Yu CL, Zhao XM, Niu YC (2016) Ferulic acid protects against lead acetate-induced inhibition of neurite outgrowth by upregulating HO-1 in PC12 cells: Involvement of ERK1/2-Nrf2 pathway. Mol Neurobiol 53:6489–6500

    Article  CAS  PubMed  Google Scholar 

  25. Raju A, Jaisankar P, Borah A, Mohanakumar KP (2018) 1-Methyl-4-phenylpyridinium-induced death of differentiated SH-SY5Y neurons is potentiated by cholesterol. Ann Neurosci 24:243–251

    Article  PubMed  Google Scholar 

  26. Jost MM, Budde P, Tammen H, Hess R, Kellmann M, Schulte I, Rose H (2005) The concept of functional peptidomics for the discovery of bioactive peptides in cell culture models. Comb Chem High Throughput Screen 8:767–773

    Article  CAS  PubMed  Google Scholar 

  27. Patel VP, Chu CT (2014) Decreased SIRT2 activity leads to altered microtubule dynamics in oxidatively-stressed neuronal cells: implications for Parkinson's disease. Exp Neurol 257:170–181

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Guedes A, Ludovico P, Sampaio-Marques B (2017) Caloric restriction alleviates alpha-synuclein toxicity in aged yeast cells by controlling the opposite roles of Tor1 and Sir2 on autophagy. Mech Ageing Dev 161:270–276

    Article  CAS  PubMed  Google Scholar 

  29. Sarrafchi A, Bahmani M, Shirzad H, Rafieian-Kopaei M (2016) Oxidative stress and Parkinson’s disease: new hopes in treatment with herbal antioxidants. Curr Pharm Des 22:238–246

    Article  PubMed  CAS  Google Scholar 

  30. Li C, Tang B, Feng Y, Tang F, Pui-Man Hoi M, Su Z, Ming-Yuen Lee S (2018) Pinostrobin exerts neuroprotective actions in neurotoxin-induced Parkinson’s disease models through Nrf2 induction. J Agric Food Chem 66:8307–8318

    Article  PubMed  CAS  Google Scholar 

  31. Zhou X, Zhang Y, Shen Y, Zhang X, Xu S, Shang Z, Xia M, Wang M (2019) Efficient production of androstenedione by repeated batch fermentation in waste cooking oil media through regulating NAD+/NADH ratio and strengthening cell vitality of Mycobacterium neoaurum. Bioresour Technol 279:209–217

    Article  CAS  PubMed  Google Scholar 

  32. Silva-Islas CA, Maldonado PD (2018) Canonical and non-canonical mechanisms of Nrf2 activation. Pharmacol Res 134:92–99

    Article  CAS  PubMed  Google Scholar 

  33. Wang J, Huang X, Zhang K, Mao X, Ding X, Zeng Q, Bai S, Xuan Y et al (2017) Vanadate oxidative and apoptotic effects are mediated by the MAPK-Nrf2 pathway in layer oviduct magnum epithelial cells. Metallomics 9:1562–1575

    Article  CAS  PubMed  Google Scholar 

  34. Lalith Kumar V, Muralidhara (2014) Ameliorative effects of ferulic acid against lead acetate-induced oxidative stress, mitochondrial dysfunctions and toxicity in prepubertal rat brain. Neurochem Res 39:2501–2515

    Article  CAS  PubMed  Google Scholar 

  35. Guo JD, Zhao X, Li Y, Li GR, Liu XL (2018) Damage to dopaminergic neurons by oxidative stress in Parkinson’s disease (review). Int J Mol Med 41:1817–1825

    CAS  PubMed  Google Scholar 

  36. Chandra G, Shenoi RA, Anand R, Rajamma U, Mohanakumar KP (2019) Reinforcing mitochondrial functions in aging brain: an insight into Parkinson’s disease therapeutics. J Chem Neuroanat 95:29–42

    Article  CAS  PubMed  Google Scholar 

  37. Snow BJ, Rolfe FL, Lockhart MM, Frampton CM, O’Sullivan JD, Fung V, Smith RA, Murphy MP et al (2010) A double-blind, placebo-controlled study to assess the mitochondria-targeted antioxidant MitoQ as a disease-modifying therapy in Parkinson’s disease. Mov Disord 25:1670–1674

    Article  PubMed  Google Scholar 

  38. Zduńska K, Dana A, Kolodziejczak A, Rotsztejn H (2018) Antioxidant properties of ferulic acid and its possible application. Skin Pharmacol Physiol 31:332–336

    Article  PubMed  CAS  Google Scholar 

  39. Mujalli A, Chicanne G, Bertrand-Michel J, Viars F, Stephens L, Hawkins P, Viaud J, Gaits-Iacovoni F et al (2018) Profiling of phosphoinositide molecular species in human and mouse platelets identifies new species increasing following stimulation. Biochim Biophys Acta Mol Cell Biol Lipids 1863:1121–1131

    Article  CAS  PubMed  Google Scholar 

  40. Ojha S, Javed H, Azimullah S, Abul Khair SB, Haque ME (2015) Neuroprotective potential of ferulic acid in the rotenone model of Parkinson’s disease. Drug Des Devel Ther 9:5499–5510

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Fariss MW, Zhang JG (2003) Vitamin E therapy in Parkinson’s disease. Toxicology 189:129–146

    Article  CAS  PubMed  Google Scholar 

  42. Ding H, Wang X, Wang H, Zhu L, Wang Q, Jia Y, Wei W, Zhou C et al (2017) Nrf2-ARE signaling provides neuroprotection in traumatic brain injury via modulation of the ubiquitin proteasome system. Neurochem Int 111:32–44

    Article  CAS  PubMed  Google Scholar 

  43. Wang X, Guan Q, Wang M, Yang L, Bai J, Yan Z, Zhang Y, Liu Z (2015) Aging-related rotenone-induced neurochemical and behavioral deficits: role of SIRT2 and redox imbalance, and neuroprotection by AK-7. Drug Des Devel Ther 9:2553–2563

    Article  PubMed  PubMed Central  Google Scholar 

  44. Pan Y, Zhang H, Zheng Y, Zhou J, Yuan J, Yu Y, Wang J (2017) Resveratrol exerts antioxidant effects by activating SIRT2 to deacetylate Prx1. Biochemistry 56:6325–6328

    Article  CAS  PubMed  Google Scholar 

  45. Gaki GS, Papavassiliou AG (2014) Oxidative stress-induced signaling pathways implicated in the pathogenesis of Parkinson’s disease. NeuroMolecular Med 16:217–230

    Article  CAS  PubMed  Google Scholar 

  46. Englert C, Trützschler AK, Raasch M, Bus T, Borchers P, Mosig AS, Traeger A, Schubert US (2016) Crossing the blood-brain barrier: glutathione-conjugated poly(ethylene imine) for gene delivery. J Control Release 241:1–14

    Article  CAS  PubMed  Google Scholar 

  47. Satoh T, McKercher SR, Lipton SA (2013) Nrf2/ARE-mediated antioxidant actions of pro-electrophilic drugs. Free Radic Biol Med 65:645–657

    Article  CAS  PubMed  Google Scholar 

  48. Zhang Y, Ahmad KA, Khan FU, Yan S, Ihsan AU, Ding Q (2019) Chitosan oligosaccharides prevent doxorubicin-induced oxidative stress and cardiac apoptosis through activating p38 and JNK MAPK mediated Nrf2/ARE pathway. Chem Biol Interact 305:54–65

    Article  CAS  PubMed  Google Scholar 

  49. Todorovic M, Wood SA, Mellick GD (2016) Nrf2: a modulator of Parkinson’s disease? J Neural Transm (Vienna) 123:611–619

    Article  CAS  Google Scholar 

  50. Johnson DA, Johnson JA (2015) Nrf2--a therapeutic target for the treatment of neurodegenerative diseases. Free Radic Biol Med 88:253–267

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

We thank Yingcai Niu for valuable scientific discussion.

Funding

This research was supported by the National Natural Science Foundation of China (No. 81873133) to Dong MX.

Author information

Authors and Affiliations

Authors

Contributions

M.D. and X.Z. designed and supervised the study. M.D. wrote the first draft of the manuscript. X.L., H.R., and J.Z. carried out experiments. J.Z. undertook the statistical analysis.

Corresponding author

Correspondence to Miaoxian Dong.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic Supplementary Material

ESM 1

(DOC 19 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, X., Zhang, J., Rong, H. et al. Ferulic Acid Ameliorates MPP+/MPTP-Induced Oxidative Stress via ERK1/2-Dependent Nrf2 Activation: Translational Implications for Parkinson Disease Treatment. Mol Neurobiol 57, 2981–2995 (2020). https://doi.org/10.1007/s12035-020-01934-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-020-01934-1

Keywords

Navigation