Skip to main content

Advertisement

Log in

EGF Treatment Improves Motor Behavior and Cortical GABAergic Function in the R6/2 Mouse Model of Huntington’s Disease

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Recent evidence indicates that disruption of epidermal growth factor (EGF) signaling by mutant huntingtin (polyQ-htt) may contribute to the onset of behavioral deficits observed in Huntington’s disease (HD) through a variety of mechanisms, including cerebrovascular dysfunction. Yet, whether EGF signaling modulates the development of HD pathology and the associated behavioral impairments remain unclear. To gain insight on this issue, we used the R6/2 mouse model of HD to assess the impact of chronic EGF treatment on behavior, and cerebrovascular and cortical neuronal functions. We found that bi-weekly treatment with a low dose of EGF (300 µg/kg, i.p.) for 6 weeks was sufficient to effectively improve motor behavior in R6/2 mice and diminish mortality, compared to vehicle-treated littermates. These beneficial effects of EGF treatment were dissociated from changes in cerebrovascular leakiness, a result that was surprising given that EGF ameliorates this deficit in other neurodegenerative diseases. Rather, the beneficial effect of EGF on R6/2 mice behavior was concomitant with a marked amelioration of cortical GABAergic function. As GABAergic transmission in cortical circuits is disrupted in HD, these novel data suggest a potential mechanistic link between deficits in EGF signaling and GABAergic dysfunction in the progression of HD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Availability of Data and Materials

The datasets used and/or analyzed during the current study are available from the corresponding author on reasonable request.

Abbreviations

aCSF:

Artificial cerebrospinal fluid

EGF:

Epidermal growth factor

GAD:

Glutamate decarboxylase

HD:

Huntington’s disease

htt:

Huntingtin protein

polyQ-htt:

Mutant htt

IHC:

Immunohistochemical

IPSC:

Inhibitory postsynaptic currents

KHC:

Kinesin heavy chain

PFC:

Prefrontal cortex

R6/2 mice:

Mice that express the 5′ end of the human HD gene containing 160 ± 5 poly Q

TBSX:

TBS containing 0.25% triton X-100

References

  1. Gusella JF, Wexler NS, Conneally PM, Naylor SL, Anderson MA, Tanzi RE, Watkins PC, Ottina K et al (1983) A polymorphic DNA marker genetically linked to Huntington’s disease. Nature 306(5940):234–238

    Article  CAS  Google Scholar 

  2. Han I, You Y, Kordower JH, Brady ST, Morfini GA (2010) Differential vulnerability of neurons in Huntington’s disease: the role of cell type-specific features. J Neurochem 113(5):1073–1091. https://doi.org/10.1111/j.1471-4159.2010.06672.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Roze E, Bonnet C, Betuing S, Caboche J (2010) Huntington’s disease. Adv Exp Med Biol 685:45–63

    Article  CAS  Google Scholar 

  4. Bodai L, Marsh JL (2012) A novel target for Huntington’s disease: ERK at the crossroads of signaling. The ERK signaling pathway is implicated in Huntington's disease and its upregulation ameliorates pathology. Bioessays 34(2):142–148

    Article  CAS  Google Scholar 

  5. Song C, Perides G, Liu YF (2002) Expression of full-length polyglutamine-expanded huntingtin disrupts growth factor receptor signaling in rat pheochromocytoma (PC12) cells. J Biol Chem 277(8):6703–6707. https://doi.org/10.1074/jbc.M110338200

    Article  CAS  PubMed  Google Scholar 

  6. Melone MA, Calarco A, Petillo O, Margarucci S, Colucci-D'Amato L, Galderisi U, Koverech G, Peluso G (2013) Mutant huntingtin regulates EGF receptor fate in non-neuronal cells lacking wild-type protein. Biochim Biophys Acta 1832(1):105–113. https://doi.org/10.1016/j.bbadis.2012.09.001

    Article  CAS  PubMed  Google Scholar 

  7. Lievens JC, Rival T, Iche M, Chneiweiss H, Birman S (2005) Expanded polyglutamine peptides disrupt EGF receptor signaling and glutamate transporter expression in Drosophila. Hum Mol Genet 14(5):713–724. https://doi.org/10.1093/hmg/ddi067

    Article  CAS  PubMed  Google Scholar 

  8. Lin CY, Hsu YH, Lin MH, Yang TH, Chen HM, Chen YC, Hsiao HY, Chen CC et al (2013) Neurovascular abnormalities in humans and mice with Huntington’s disease. Exp Neurol 250:20–30. https://doi.org/10.1016/j.expneurol.2013.08.019

    Article  CAS  PubMed  Google Scholar 

  9. Di Pardo A, Amico E, Scalabri F, Pepe G, Castaldo S, Elifani F, Capocci L, De Sanctis C et al (2017) Impairment of blood-brain barrier is an early event in R6/2 mouse model of Huntington disease. Sci Rep 7:41316. https://doi.org/10.1038/srep41316

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Hsiao HY, Chen YC, Huang CH, Chen CC, Hsu YH, Chen HM, Chiu FL, Kuo HC et al (2015) Aberrant astrocytes impair vascular reactivity in Huntington disease. Ann Neurol 78(2):178–192. https://doi.org/10.1002/ana.24428

    Article  CAS  PubMed  Google Scholar 

  11. Estrada-Sanchez AM, Rebec GV (2013) Role of cerebral cortex in the neuropathology of Huntington’s disease. Front Neural Circuits 7:19. https://doi.org/10.3389/fncir.2013.00019

    Article  PubMed  PubMed Central  Google Scholar 

  12. Tang Y, Ye M, Du Y, Qiu X, Lv X, Yang W, Luo J (2015) EGFR signaling upregulates surface expression of the GluN2B-containing NMDA receptor and contributes to long-term potentiation in the hippocampus. Neuroscience 304:109–121. https://doi.org/10.1016/j.neuroscience.2015.07.021

    Article  CAS  PubMed  Google Scholar 

  13. Terlau H, Seifert W (1989) Influence of epidermal growth factor on long-term potentiation in the hippocampal slice. Brain Res 484(1–2):352–356

    Article  CAS  Google Scholar 

  14. Namba H, Zheng Y, Abe Y, Nawa H (2009) Epidermal growth factor administered in the periphery influences excitatory synaptic inputs onto midbrain dopaminergic neurons in postnatal mice. Neuroscience 158(4):1731–1741. https://doi.org/10.1016/j.neuroscience.2008.10.057

    Article  CAS  PubMed  Google Scholar 

  15. Abe K, Saito H (1992) Epidermal growth factor selectively enhances NMDA receptor-mediated increase of intracellular Ca2+ concentration in rat hippocampal neurons. Brain Res 587(1):102–108

    Article  CAS  Google Scholar 

  16. Tohmi M, Tsuda N, Mizuno M, Takei N, Frankland PW, Nawa H (2005) Distinct influences of neonatal epidermal growth factor challenge on adult neurobehavioral traits in four mouse strains. Behav Genet 35(5):615–629. https://doi.org/10.1007/s10519-005-5357-7

    Article  PubMed  Google Scholar 

  17. Futamura T, Kakita A, Tohmi M, Sotoyama H, Takahashi H, Nawa H (2003) Neonatal perturbation of neurotrophic signaling results in abnormal sensorimotor gating and social interaction in adults: implication for epidermal growth factor in cognitive development. Mol Psychiatry 8(1):19–29. https://doi.org/10.1038/sj.mp.4001138

    Article  CAS  PubMed  Google Scholar 

  18. Nagano T, Namba H, Abe Y, Aoki H, Takei N, Nawa H (2007) In vivo administration of epidermal growth factor and its homologue attenuates developmental maturation of functional excitatory synapses in cortical GABAergic neurons. Eur J Neurosci 25(2):380–390. https://doi.org/10.1111/j.1460-9568.2007.05297.x

    Article  PubMed  Google Scholar 

  19. Namba H, Nagano T, Jodo E, Eifuku S, Horie M, Takebayashi H, Iwakura Y, Sotoyama H et al (2017) Epidermal growth factor signals attenuate phenotypic and functional development of neocortical GABA neurons. J Neurochem 142:886–900. https://doi.org/10.1111/jnc.14097

    Article  CAS  PubMed  Google Scholar 

  20. Sotoyama H, Namba H, Chiken S, Nambu A, Nawa H (2013) Exposure to the cytokine EGF leads to abnormal hyperactivity of pallidal GABA neurons: implications for schizophrenia and its modeling. J Neurochem 126(4):518–528. https://doi.org/10.1111/jnc.12223

    Article  CAS  PubMed  Google Scholar 

  21. Rattray I, Smith E, Gale R, Matsumoto K, Bates GP, Modo M (2013) Correlations of behavioral deficits with brain pathology assessed through longitudinal MRI and histopathology in the R6/2 mouse model of HD. PLoS One 8(4):e60012. https://doi.org/10.1371/journal.pone.0060012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Thomas R, Morris AWJ, Tai LM (2017) Epidermal growth factor prevents APOE4-induced cognitive and cerebrovascular deficits in female mice. Heliyon 3(6):e00319. https://doi.org/10.1016/j.heliyon.2017.e00319

    Article  PubMed  PubMed Central  Google Scholar 

  23. Thomas R, Zuchowska P, Morris AW, Marottoli FM, Sunny S, Deaton R, Gann PH, Tai LM (2016) Epidermal growth factor prevents APOE4 and amyloid-beta-induced cognitive and cerebrovascular deficits in female mice. Acta Neuropathol Commun 4(1):111. https://doi.org/10.1186/s40478-016-0387-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Gatto RG, Chu Y, Ye AQ, Price SD, Tavassoli E, Buenaventura A, Brady ST, Magin RL et al (2015) Analysis of YFP(J16)-R6/2 reporter mice and postmortem brains reveals early pathology and increased vulnerability of callosal axons in Huntington’s disease. Hum Mol Genet 24(18):5285–5298. https://doi.org/10.1093/hmg/ddv248

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Marottoli FM, Katsumata Y, Koster KP, Thomas R, Fardo DW, Tai LM (2017) Peripheral inflammation, apolipoprotein E4, and amyloid-beta interact to induce cognitive and cerebrovascular dysfunction. ASN Neuro 9 (4):1759091417719201. doi:https://doi.org/10.1177/1759091417719201

    Article  Google Scholar 

  26. Cass DK, Flores-Barrera E, Thomases DR, Vital WF, Caballero A, Tseng KY (2014) CB1 cannabinoid receptor stimulation during adolescence impairs the maturation of GABA function in the adult rat prefrontal cortex. Mol Psychiatry 19(5):536–543. https://doi.org/10.1038/mp.2014.14

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Flores-Barrera E, Thomases DR, Cass DK, Bhandari A, Schwarcz R, Bruno JP, Tseng KY (2017) Preferential disruption of prefrontal GABAergic function by nanomolar concentrations of the alpha7nACh negative modulator kynurenic acid. J Neurosci 37(33):7921–7929. https://doi.org/10.1523/JNEUROSCI.0932-17.2017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Menalled L, El-Khodor BF, Patry M, Suarez-Farinas M, Orenstein SJ, Zahasky B, Leahy C, Wheeler V et al (2009) Systematic behavioral evaluation of Huntington’s disease transgenic and knock-in mouse models. Neurobiol Dis 35(3):319–336. https://doi.org/10.1016/j.nbd.2009.05.007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Berlanga-Acosta J, Gavilondo-Cowley J, Lopez-Saura P, Gonzalez-Lopez T, Castro-Santana MD, Lopez-Mola E, Guillen-Nieto G, Herrera-Martinez L (2009) Epidermal growth factor in clinical practice—a review of its biological actions, clinical indications and safety implications. Int Wound J 6(5):331–346. https://doi.org/10.1111/j.1742-481X.2009.00622.x

    Article  PubMed  Google Scholar 

  30. Gu X, Li C, Wei W, Lo V, Gong S, Li SH, Iwasato T, Itohara S et al (2005) Pathological cell-cell interactions elicited by a neuropathogenic form of mutant huntingtin contribute to cortical pathogenesis in HD mice. Neuron 46(3):433–444. https://doi.org/10.1016/j.neuron.2005.03.025

    Article  CAS  PubMed  Google Scholar 

  31. Dougherty SE, Hollimon JJ, McMeekin LJ, Bohannon AS, West AB, Lesort M, Hablitz JJ, Cowell RM (2014) Hyperactivity and cortical disinhibition in mice with restricted expression of mutant huntingtin to parvalbumin-positive cells. Neurobiol Dis 62:160–171. https://doi.org/10.1016/j.nbd.2013.10.002

    Article  CAS  PubMed  Google Scholar 

  32. Spampanato J, Gu X, Yang XW, Mody I (2008) Progressive synaptic pathology of motor cortical neurons in a BAC transgenic mouse model of Huntington’s disease. Neuroscience 157(3):606–620. https://doi.org/10.1016/j.neuroscience.2008.09.020

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Skotte NH, Andersen JV, Santos A, Aldana BI, Willert CW, Norremolle A, Waagepetersen HS, Nielsen ML (2018) Integrative characterization of the R6/2 mouse model of Huntington’s disease reveals dysfunctional astrocyte metabolism. Cell Rep 23(7):2211–2224. https://doi.org/10.1016/j.celrep.2018.04.052

    Article  CAS  PubMed  Google Scholar 

  34. Qi J, Kim M, Sanchez R, Ziaee SM, Kohtz JD, Koh S (2018) Enhanced susceptibility to stress and seizures in GAD65 deficient mice. PLoS One 13(1):e0191794. https://doi.org/10.1371/journal.pone.0191794

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Gourfinkel-An I, Parain K, Hartmann A, Mangiarini L, Brice A, Bates G, Hirsch EC (2003) Changes in GAD67 mRNA expression evidenced by in situ hybridization in the brain of R6/2 transgenic mice. J Neurochem 86(6):1369–1378

    Article  CAS  Google Scholar 

  36. Walker AG, Miller BR, Fritsch JN, Barton SJ, Rebec GV (2008) Altered information processing in the prefrontal cortex of Huntington’s disease mouse models. J Neurosci 28(36):8973–8982. https://doi.org/10.1523/JNEUROSCI.2804-08.2008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Bristow LJ, Hutson PH, Thorn L, Tricklebank MD (1993) The glycine/NMDA receptor antagonist, R-(+)-HA-966, blocks activation of the mesolimbic dopaminergic system induced by phencyclidine and dizocilpine (MK-801) in rodents. Br J Pharmacol 108(4):1156–1163

    Article  CAS  Google Scholar 

  38. Takahata R, Moghaddam B (2003) Activation of glutamate neurotransmission in the prefrontal cortex sustains the motoric and dopaminergic effects of phencyclidine. Neuropsychopharmacology 28(6):1117–1124. https://doi.org/10.1038/sj.npp.1300127

    Article  CAS  PubMed  Google Scholar 

  39. Sokolowski JD, Salamone JD (1994) Effects of dopamine depletions in the medial prefrontal cortex on DRL performance and motor activity in the rat. Brain Res 642(1–2):20–28

    Article  CAS  Google Scholar 

  40. Jinks AL, McGregor IS (1997) Modulation of anxiety-related behaviours following lesions of the prelimbic or infralimbic cortex in the rat. Brain Res 772(1–2):181–190

    Article  CAS  Google Scholar 

  41. Jentsch JD, Tran A, Taylor JR, Roth RH (1998) Prefrontal cortical involvement in phencyclidine-induced activation of the mesolimbic dopamine system: behavioral and neurochemical evidence. Psychopharmacology 138(1):89–95

    Article  CAS  Google Scholar 

  42. Drouin-Ouellet J, Sawiak SJ, Cisbani G, Lagace M, Kuan WL, Saint-Pierre M, Dury RJ, Alata W et al (2015) Cerebrovascular and blood-brain barrier impairments in Huntington's disease: potential implications for its pathophysiology. Ann Neurol 78(2):160–177. https://doi.org/10.1002/ana.24406

    Article  PubMed  Google Scholar 

  43. Lim RG, Quan C, Reyes-Ortiz AM, Lutz SE, Kedaigle AJ, Gipson TA, Wu J, Vatine GD et al (2017) Huntington’s disease iPSC-derived brain microvascular endothelial cells reveal WNT-mediated angiogenic and blood-brain barrier deficits. Cell Rep 19(7):1365–1377. https://doi.org/10.1016/j.celrep.2017.04.021

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Hsu YT, Chang YG, Chern Y (2018) Insights into GABAAergic system alteration in Huntington’s disease. Open Biol 8(12):180165. https://doi.org/10.1098/rsob.180165

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Philpott AL, Cummins TDR, Bailey NW, Churchyard A, Fitzgerald PB, Georgiou-Karistianis N (2016) Cortical inhibitory deficits in premanifest and early Huntington’s disease. Behav Brain Res 296:311–317. https://doi.org/10.1016/j.bbr.2015.09.030

    Article  PubMed  Google Scholar 

  46. Cummings DM, Andre VM, Uzgil BO, Gee SM, Fisher YE, Cepeda C, Levine MS (2009) Alterations in cortical excitation and inhibition in genetic mouse models of Huntington’s disease. J Neurosci 29(33):10371–10386. https://doi.org/10.1523/JNEUROSCI.1592-09.2009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Spokes EG, Garrett NJ, Rossor MN, Iversen LL (1980) Distribution of GABA in post-mortem brain tissue from control, psychotic and Huntington’s chorea subjects. J Neurol Sci 48(3):303–313

    Article  CAS  Google Scholar 

  48. Perry TL, Hansen S, Kloster M (1973) Huntington’s chorea. Deficiency of gamma-aminobutyric acid in brain. N Engl J Med 288(7):337–342. https://doi.org/10.1056/NEJM197302152880703

    Article  CAS  PubMed  Google Scholar 

  49. Reynolds GP, Pearson SJ (1990) Brain GABA levels in asymptomatic Huntington’s disease. N Engl J Med 323(10):682–683. https://doi.org/10.1056/NEJM199009063231014

    Article  CAS  PubMed  Google Scholar 

  50. Reynolds GP, Pearson SJ (1987) Decreased glutamic acid and increased 5-hydroxytryptamine in Huntington's disease brain. Neurosci Lett 78(2):233–238

    Article  CAS  Google Scholar 

  51. Iwakura Y, Nawa H (2013) ErbB1-4-dependent EGF/neuregulin signals and their cross talk in the central nervous system: pathological implications in schizophrenia and Parkinson’s disease. Front Cell Neurosci 7:4. https://doi.org/10.3389/fncel.2013.00004

    Article  PubMed  PubMed Central  Google Scholar 

  52. Sanchez-Huertas C, Rico B (2011) CREB-dependent regulation of GAD65 transcription by BDNF/TrkB in cortical interneurons. Cereb Cortex 21(4):777–788. https://doi.org/10.1093/cercor/bhq150

    Article  PubMed  Google Scholar 

  53. Chou CC, Modi JP, Wang CY, Hsu PC, Lee YH, Huang KF, Wang AH, Nan C et al (2017) Activation of brain L-glutamate decarboxylase 65 isoform (GAD65) by phosphorylation at threonine 95 (T95). Mol Neurobiol 54(2):866–873. https://doi.org/10.1007/s12035-015-9633-0

    Article  CAS  PubMed  Google Scholar 

  54. Rush DB, Leon RT, McCollum MH, Treu RW, Wei J (2012) Palmitoylation and trafficking of GAD65 are impaired in a cellular model of Huntington’s disease. Biochem J 442(1):39–48. https://doi.org/10.1042/BJ20110679

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Morfini GA, You YM, Pollema SL, Kaminska A, Liu K, Yoshioka K, Bjorkblom B, Coffey ET et al (2009) Pathogenic huntingtin inhibits fast axonal transport by activating JNK3 and phosphorylating kinesin. Nat Neurosci 12(7):864–871. https://doi.org/10.1038/nn.2346

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Song M, Messing RO (2005) Protein kinase C regulation of GABAA receptors. Cell Mol Life Sci 62(2):119–127. https://doi.org/10.1007/s00018-004-4339-x

    Article  CAS  PubMed  Google Scholar 

  57. Bell-Horner CL, Dohi A, Nguyen Q, Dillon GH, Singh M (2006) ERK/MAPK pathway regulates GABAA receptors. J Neurobiol 66(13):1467–1474. https://doi.org/10.1002/neu.20327

    Article  CAS  PubMed  Google Scholar 

  58. Lund IV, Hu Y, Raol YH, Benham RS, Faris R, Russek SJ, Brooks-Kayal AR (2008) BDNF selectively regulates GABAA receptor transcription by activation of the JAK/STAT pathway. Sci Signal 1(41):ra9. https://doi.org/10.1126/scisignal.1162396

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Li SH, Yu ZX, Li CL, Nguyen HP, Zhou YX, Deng C, Li XJ (2003) Lack of huntingtin-associated protein-1 causes neuronal death resembling hypothalamic degeneration in Huntington's disease. J Neurosci 23(17):6956–6964

    Article  CAS  Google Scholar 

  60. Giampa C, Montagna E, Dato C, Melone MA, Bernardi G, Fusco FR (2013) Systemic delivery of recombinant brain derived neurotrophic factor (BDNF) in the R6/2 mouse model of Huntington’s disease. PLoS One 8(5):e64037. https://doi.org/10.1371/journal.pone.0064037

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

We would like to thank Norma Hernandez for technical assistance with mouse breeding and UL1TR002003, which allowed the use of the Keyence microscope.

Funding

Supported by National Institutes of Health Grants (R01AG061114, R21AG053876, and R21AG061715 to L.M.T; R21NS096642 to G.A.M.), University of Illinois at Chicago institutional start-up funds (L.M.T), and CHDI research contract No. A-11014 (G.A.M and S.T.B).

Author information

Authors and Affiliations

Authors

Contributions

L.M.T. and K.Y.T. wrote the manuscript and prepared the figures. L.M.T, F.M.M., G.A.M., S.T.B., and K.Y.T. designed and supervised the study. F.M.M., L.M.T., P.M., R.P., S.Z., K.D.F., G.K.E., and N.H. conducted behavior testing, biochemical, and immunohistochemical analyses. K.Y.T. and E.F. designed and performed the electrophysiological experiments and data analyses. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Leon M. Tai.

Ethics declarations

Conflict of Interest

The authors declare they have no conflict of interest.

Research Involving Human Participants and/or Animals

This article does not contain any studies with human participants performed by any of the authors.

Ethical Approval

All procedures follow the UIC Institutional Animal Care and Use Committee protocols.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic Supplementary Material

Supplementary Fig. 1

Sex does not modulate open-field or rotarod performance in R6/2 mice. Ten/eleven-week-old male and female, wild-type (WT), and R6/2 mice were tested for motor behavior. Compared to WT mice, R6/2 mice displayed a impaired performance in the rotarod test and b hypoactivity, lower average speed, and higher number of stops in the open-field behavioral test. Rotarod: F(2, 23) = 70.63. Open-field distance: F(2, 23) = 28.90. Open-field speed: F(2, 23) = 10.27. Open-field number of stops: F(2, 23) = 17.08. Sex did not modulate performance in R6/2 mice in open-field or rotarod tests. Data expressed as mean ± SEM. *p < 0.05 Tukey’s post hoc analysis after two-way ANOVA analysis (only genotype interactions were significant). n = 5 for male WT mice, 7 for female WT mice, 7 for male R6/2 mice, and 8 for female R6/2 mice. (AI 233 kb)

Supplementary Fig. 2

Study design. (AI 234 kb)

Supplementary Fig. 3

The effect of EGF treatment on behavior and HD-relevant pathology in wild-type mice. Wild-type (WT) mice were treated twice per week with vehicle (Veh) or EGF (300 μg/kg) from 4/5 to 10/11 weeks of age. a EGF treatment reduced rotarod performance but b did not modulate performance in open field. c EGF levels were higher in the plasma after EGF treatment. EGF treatment did not cause changes in d fibrinogen extravasation, e vessel coverage, or f levels of GABAergic proteins in the cortex. Data expressed as mean ± SEM. *p < 0.05 by Student’s t test. n = 5 per group. In (d), green, CD31; red, fibrinogen. In (e), green, laminin. Scale bar, 50 μm. (AI 1.11 kb)

Supplementary Fig. 4

EGF treatment does not modulate HD-relevant pathology in the striatum of R6/2 mice. Wild-type (WT) or R6/2 mice were treated twice per week with vehicle (Veh) or EGF (300 μg/kg) from 4/5 to 10/11 weeks of age. a Fibrinogen levels were higher in R6/2 mice compared to wild-type (WT) mice but were unaffected by EGF treatment in the striatum (IHC analysis). F(2, 16) = 77.23. b Cortical vessel coverage (laminin staining) was higher in R6/2 mice compared to vehicle-treated R6/2 mice but was also unaltered by EGF treatment in R6/2 mice. F(2, 16) = 3.997. c Top, representative images of fibrinogen (red) and brain endothelial cell (CD31, green) staining in the striatum. Bottom, representative images of laminin (green) staining in striatum. Scale bar, 50 μm. d PSD95 and DARPP-32 levels were lower in R6/2 mice compared to WT mice, whereas GAD67 and GAD65 levels were similar when assessed by western blot analysis. PSD95: F(2, 14) = 27.61. DARPP-32: F(2, 14) = 31. EGF treatment did not alter levels of PSD95, GAD65, GAD67, or DARPP-32 in the striatum of R6/2 mice. Left, quantification of each protein when normalized to KHC as a loading control. All data were then expressed as a ratio to vehicle-treated WT mice. Right, representative blots of each protein and loading control with bands on the same gel in nonadjacent positions separated by a dashed line. Data expressed as mean ± SEM. *p < 0.05 Tukey’s post hoc analysis after one-way ANOVA analysis. In (a)–(c), n = 5 for WT mice, 6 for vehicle-treated R6/2 mice, and 8 for EGF-treated R6/2 mice. In (d), n = 5 for WT mice, 6 for vehicle-treated R6/2 mice, and 6 for EGF-treated R6/2 mice. (AI 604 kb)

Supplementary Fig. 5

EGF treatment does not alter PSD95, NR1, or NR2A levels in the cortex of R6/2 mice. Wild-type (WT) or R6/2 mice were treated twice per week with vehicle (Veh) or EGF (300 μg/kg) from 4/5 to 10/11 weeks of age. Levels of PSD95, NR1, and NR2A were lower in R6/2 mice compared to WT. PSD95: F(2, 14) = 13.71. NR1: F(2, 14) = 23.84. NR2A: F(2, 14) = 38.23. However, EGF treatment did not alter levels of these markers in the cortex when assessed by western blot analysis. a Quantification of each protein when normalized to GAPDH as a loading control. All data were then expressed as a ratio to vehicle-treated WT mice. b Representative blots of each protein and loading control, with bands on the same gel in nonadjacent positions separated by a dashed line. Data expressed as mean ± SEM. *p < 0.05 using Tukey’s post hoc test after significant one-way ANOVA. n = 5 for WT mice, 6 for vehicle-treated R6/2 mice, and 6 for EGF-treated R6/2 mice. (AI 552 kb)

ESM 1

(DOCX 13.7 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Marottoli, F.M., Priego, M., Flores-Barrera, E. et al. EGF Treatment Improves Motor Behavior and Cortical GABAergic Function in the R6/2 Mouse Model of Huntington’s Disease. Mol Neurobiol 56, 7708–7718 (2019). https://doi.org/10.1007/s12035-019-1634-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-019-1634-y

Keywords

Navigation