Skip to main content

Advertisement

Log in

Predicting Reactive Astrogliosis Propagation by Bayesian Computational Modeling: the Repeater Stations Model

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Reactive astrogliosis occurs upon focal brain injury and in neurodegenerative diseases. The mechanisms that propagate reactive astrogliosis to distal parts of the brain, in a rapid wave that activates astrocytes and other cell types along the way, are not completely understood. It is proposed that damage-associated molecular patterns (DAMP) released by necrotic cells from the injury core have a major role in the reactive astrogliosis initiation but whether they also participate in reactive astrogliosis propagation remains to be determined. We here developed a Bayesian computational model to define the most probable model for reactive astrogliosis propagation. Starting with experimental data from GFAP-immunostained reactive astrocytes, we defined five types of astrocytes based on morphometrical cues and registered the position of each reactive astrocyte cell type in the hemisphere ipsilateral to the injured site after 3 and 7 days post-ischemia. We developed equations for the changes in DAMP concentration (due to diffusion, binding to receptors or degradation), soluble mediators secretion, and for the evolution reactive astrogliosis. We tested four predefined models based on abovementioned previous hypothesis and modifications to it. Our results showed that DAMP diffusion alone has not justified the reactive astrogliosis propagation as previously assumed. Only two models succeeded in accurately reproducing the experimentally measured data and they highlighted the role of microglia and the glial secretion of soluble mediators to sustain the reactive signal and activating neighboring astrocytes. Thus, our in silico analysis proposes that glial cells behave as repeater stations of the injury signal in order to propagate reactive astrogliosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Zamanian JL, Xu L, Foo LC, Nouri N, Zhou L, Giffard RG, Barres BA (2012) Genomic analysis of reactive astrogliosis. J Neurosci 32:6391–6410. https://doi.org/10.1523/JNEUROSCI.6221-11.2012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Anderson MA, Burda JE, Ren Y, Ao Y, O'Shea TM, Kawaguchi R, Coppola G, Khakh BS et al (2016) Astrocyte scar formation aids central nervous system axon regeneration. Nature 532:195–200. https://doi.org/10.1038/nature17623

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Itoh N, Itoh Y, Tassoni A, Ren E, Kaito M, Ohno A, Ao Y, Farkhondeh V et al (2018) Cell-specific and region-specific transcriptomics in the multiple sclerosis model: focus on astrocytes. Proc Natl Acad Sci U S A 115(2):E302–E309. https://doi.org/10.1073/pnas.1716032115

    Article  CAS  PubMed  Google Scholar 

  4. Liddelow SA, Guttenplan KA, Clarke LE, Bennett FC, Bohlen CJ, Schirmer L, Bennett ML, Münch AE et al (2017) Neurotoxic reactive astrocytes are induced by activated microglia. Nature 541(7638):481–487. https://doi.org/10.1038/nature21029

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Clarke LE, Liddelow SA, Chakraborty C, Münch AE, Heiman M, Barres BA (2018) Normal aging induces A1-like astrocyte reactivity. Proc Natl Acad Sci U S A 115(8):E1896–E1905. https://doi.org/10.1073/pnas.1800165115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Yun SP, Kam TI, Panicker N, Kim S, Oh Y, Park JS, Kwon SH, Park YJ et al (2018) Block of A1 astrocyte conversion by microglia is neuroprotective in models of Parkinson’s disease. Nat Med 24(7):931–938. https://doi.org/10.1038/s41591-018-0051-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Burda JE, Sofroniew MV (2014) Reactive gliosis and the multicellular response to CNS damage and disease. Neuron 81:229–248. https://doi.org/10.1016/j.neuron.2013.12.034

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Friston KJ, Parr T, de Vries B (2017) The graphical brain: belief propagation and active inference. Netw Neurosci 1:381–414. https://doi.org/10.1162/NETN_a_00018

    Article  PubMed  PubMed Central  Google Scholar 

  9. Lampinen J, Vehtari A (2001) Bayesian approach for neural networks--review and case studies. Neural Netw 14(3):257–274

    Article  CAS  PubMed  Google Scholar 

  10. Fernández Do Porto DA, Auzmendi J, Peña D, García VE, Moffatt L (2013) Bayesian approach to model CD137 signaling in human M. tuberculosis in vitro responses. PLoS One 8(2):e55987. https://doi.org/10.1371/journal.pone.0055987

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Herrera DG, Robertson HA (1989) Unilateral induction of c-fos protein in cortex following cortical devascularization. Brain Res 503:205–213

    Article  CAS  PubMed  Google Scholar 

  12. Villarreal A, Aviles Reyes RX, Angelo MF, Reines AG, Ramos AJ (2011) S100B alters neuronal survival and dendrite extension via RAGE-mediated NF-κB signaling. J Neurochem 117:321–332. https://doi.org/10.1111/j.1471-4159.2011.07207.x

    Article  CAS  PubMed  Google Scholar 

  13. Villarreal A, Rosciszewski G, Murta V, Cadena V, Usach V, Dodes-Traian MM, Setton-Avruj P, Barbeito LH et al (2016) Isolation and characterization of ischemia-derived astrocytes (IDAs) with ability to transactivate quiescent astrocytes. Front Cell Neurosci 10:139. https://doi.org/10.3389/fncel.2016.00139

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Angelo MF, Aviles-Reyes RX, Villarreal A, Barker P, Reines AG, Ramos AJ (2009) p75 NTR expression is induced in isolated neurons of the penumbra after ischemia by cortical devascularization. J Neurosci Res 87:1892–1903. https://doi.org/10.1002/jnr.21993

    Article  CAS  PubMed  Google Scholar 

  15. Aviles-Reyes RX, Angelo MF, Villarreal A, Rios H, Lazarowski A, Ramos AJ (2010) Intermittent hypoxia during sleep induces reactive gliosis and limited neuronal death in rats: implications for sleep apnea. J Neurochem 112:854–869. https://doi.org/10.1111/j.1471-4159.2009.06535.x

    Article  CAS  PubMed  Google Scholar 

  16. Ferreira T, Ou Y, Li S, Giniger E, van Meyel DJ (2014) Dendrite architecture organized by transcriptional control of the F-actin nucleator Spire. Development 141:650–660. https://doi.org/10.1242/dev.099655

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Sholl DA (1953) Dendritic organization in the neurons of the visual and motor cortices of the cat. J Anat 87:387–406

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Campaña AD, Sanchez F, Gamboa C, Gómez-Villalobos Mde J, De La Cruz F, Zamudio S, Flores G (2008) Dendritic morphology on neurons from prefrontal cortex, hippocampus, and nucleus accumbens is altered in adult male mice exposed to repeated low dose of malathion. Synapse 62(4):283–290. https://doi.org/10.1002/syn.20494

    Article  CAS  PubMed  Google Scholar 

  19. Murtie JC, Macklin WB, Corfas G (2007) Morphometric analysis of oligodendrocytes in the adult mouse frontal cortex. J Neurosci Res 85:2080–2086

    Article  CAS  PubMed  Google Scholar 

  20. Rosciszewski G, Cadena V, Murta V, Lukin J, Villarreal A, Roger T, Ramos AJ (2018) Toll-like receptor 4 (TLR4) and triggering receptor expressed on myeloid cells-2 (TREM-2) activation balance astrocyte polarization into a proinflammatory phenotype. Mol Neurobiol 55:3875–3888. https://doi.org/10.1007/s12035-017-0618-z

    Article  CAS  PubMed  Google Scholar 

  21. Zhang Y, Barres BA (2010) Astrocyte heterogeneity: an underappreciated topic in neurobiology. Curr Opin Neurobiol 20(5):588–594. https://doi.org/10.1016/j.conb.2010.06.005

    Article  CAS  PubMed  Google Scholar 

  22. Bribián A, Figueres-Oñate M, Martín-López E, López-Mascaraque L (2016) Decoding astrocyte heterogeneity: new tools for clonal analysis. Neuroscience 323:10–19. https://doi.org/10.1016/j.neuroscience.2015.04.036

    Article  CAS  PubMed  Google Scholar 

  23. Bardehle S, Krüger M, Buggenthin F, Schwausch J, Ninkovic J, Clevers H, Snippert HJ, Theis FJ et al (2013) Live imaging of astrocyte responses to acute injury reveals selective juxtavascular proliferation. Nat Neurosci 16:580–586. https://doi.org/10.1038/nn.3371

    Article  CAS  PubMed  Google Scholar 

  24. Ramos AJ (2016) Astroglial heterogeneity: merely a neurobiological question? Or an opportunity for neuroprotection and regeneration after brain injury? Neural Regen Res 11:1739–1741. https://doi.org/10.4103/1673-5374.194709

    Article  PubMed  PubMed Central  Google Scholar 

  25. Scheller A, Kirchhoff F (2016) Endocannabinoids and heterogeneity of glial cells in brain function. Front Integr Neurosci 10:24. https://doi.org/10.3389/fnint.2016.00024

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Martín-López E, García-Marques J, Núñez-Llaves R, López-Mascaraque L (2013) Clonal astrocytic response to cortical injury. PLoS One 8(9):e74039. https://doi.org/10.1371/journal.pone.0074039

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Frik J, Merl-Pham J, Plesnila N, Mattugini N, Kjell J, Kraska J, Gómez RM, Hauck SM, Sirko S, Götz M (2018). Cross-talk between monocyte invasion and astrocyte proliferation regulates scarring in brain injury. EMBO Rep. 19(5). doi: https://doi.org/10.15252/embr.201745294.

  28. Hamby ME, Sofroniew MV (2010) Reactive astrocytes as therapeutic targets for CNS disorders. Neurotherapeutics. 7(4):494–506. https://doi.org/10.1016/j.nurt.2010.07.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Sofroniew MV (2009) Molecular dissection of reactive astrogliosis and glial scar formation. Trends Neurosci 32(12):638–647. https://doi.org/10.1016/j.tins.2009.08.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Villarreal A, Seoane R, González Torres A, Rosciszewski G, Angelo MF, Rossi A, Barker PA, Ramos AJ (2014) S100B protein activates a RAGE-dependent autocrine loop in astrocytes: implications for its role in the propagation of reactive gliosis. J Neurochem 131:190–205. https://doi.org/10.1111/jnc.12790

    Article  CAS  PubMed  Google Scholar 

  31. Kigerl KA, de Rivero Vaccari JP, Dietrich WD, Popovich PG, Keane RW (2014) Pattern recognition receptors and central nervous system repair. Exp Neurol 258:5–16. https://doi.org/10.1016/j.expneurol.2014.01.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Eng LF, Ghirnikar RS, Lee YL (2000) Glial fibrillary acidic protein: GFAP-thirty-one years (1969-2000). Neurochem Res 25(9–10):1439–1451

    Article  CAS  PubMed  Google Scholar 

  33. Yu AC, Lee YL, Eng LF (1993) Astrogliosis in culture: I. The model and the effect of antisense oligonucleotides on glial fibrillary acidic protein synthesis. J Neurosci Res 34(3):295–303

    Article  CAS  PubMed  Google Scholar 

  34. Pekny M, Nilsson M (2005) Astrocyte activation and reactive gliosis. Glia 50:427–434

    Article  PubMed  Google Scholar 

  35. Brenner M (2014) Role of GFAP in CNS injuries. Neurosci Lett 565:7–13. https://doi.org/10.1016/j.neulet.2014.01.055

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Qiu J, Xu J, Zheng Y, Wei Y, Zhu X, Lo EH, Moskowitz MA, Sims JR (2010) High-mobility group box 1 promotes metalloproteinase-9 upregulation through toll-like receptor 4 after cerebral ischemia. Stroke 41(9):2077–2082

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Yang W, Li J, Shang Y, Zhao L, Wang M, Shi J, Li S (2017) HMGB1-TLR4 Axis plays a regulatory role in the pathogenesis of mesial temporal lobe epilepsy in immature rat model and children via the p38MAPK signaling pathway. Neurochem Res 42(4):1179–1190

    Article  CAS  PubMed  Google Scholar 

  38. Weber MD, Frank MG, Tracey KJ, Watkins LR, Maier SF (2015) Stress induces the danger-associated molecular pattern HMGB-1 in the hippocampus of male Sprague Dawley rats: a priming stimulus of microglia and the NLRP3 inflammasome. J Neurosci 35(1):316–324

    Article  PubMed  PubMed Central  Google Scholar 

  39. Tian X, Liu C, Shu Z, Chen G (2017) Review: therapeutic targeting of HMGB1 in stroke. Curr Drug Deliv 14:785–790

    Article  CAS  PubMed  Google Scholar 

  40. Chan JK, Roth J, Oppenheim JJ, Tracey KJ, Vogl T, Feldmann M, Horwood N, Nanchahal J (2012) Alarmins: awaiting a clinical response. J Clin Invest 122(8):2711–2719. https://doi.org/10.1172/JCI62423

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Kono H, Rock KL (2008) How dying cells alert the immune system to danger. Nat Rev Immunol 8(4):279–289. https://doi.org/10.1038/nri2215

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Perry VH (2010) Contribution of systemic inflammation to chronic neurodegeneration. Acta Neuropathol 120(3):277–286. https://doi.org/10.1007/s00401-010-0722-x

    Article  CAS  PubMed  Google Scholar 

  43. Popovich PG, Longbrake EE (2008) Can the immune system be harnessed to repair the CNS? Nat Rev Neurosci 9(6):481–493. https://doi.org/10.1038/nrn2398

    Article  CAS  PubMed  Google Scholar 

  44. García-Culebras A, Durán-Laforet V, Peña-Martínez C, Ballesteros I, Pradillo JM, Díaz-Guzmán J, Lizasoain I, Moro MA (2018) Myeloid cells as therapeutic targets in neuroinflammation after stroke: Specific roles of neutrophils and neutrophil-platelet interactions. J Cereb Blood Flow Metab 38:2150–2164. https://doi.org/10.1177/0271678X18795789

    Article  PubMed  PubMed Central  Google Scholar 

  45. Liu J, Wang Y, Akamatsu Y, Lee CC, Stetler RA, Lawton MT, Yang GY (2014) Vascular remodeling after ischemic stroke: mechanisms and therapeutic potentials. Prog Neurobiol 115:138–156. https://doi.org/10.1016/j.pneurobio.2013.11.004

    Article  PubMed  Google Scholar 

  46. Jolivel V, Bicker F, Binamé F, Ploen R, Keller S, Gollan R, Jurek B, Birkenstock J et al (2015) Perivascular microglia promote blood vessel disintegration in the ischemic penumbra. Acta Neuropathol 129:279–295. https://doi.org/10.1007/s00401-014-1372-1

    Article  PubMed  Google Scholar 

  47. Berthiaume AA, Grant RI, McDowell KP, Underly RG, Hartmann DA, Levy M, Bhat NR, Shih AY (2018) Dynamic remodeling of pericytes in vivo maintains capillary coverage in the adult mouse brain. Cell Rep 22(1):8–16. https://doi.org/10.1016/j.celrep.2017.12.016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Verkhratsky A, Toescu EC (2006) Neuronal-glial networks as substrate for CNS integration. J Cell Mol Med 10(4):826–836

    Article  CAS  PubMed  Google Scholar 

  49. Gao K, Wang CR, Jiang F, Wong AY, Su N, Jiang JH, Chai RC, Vatcher G et al (2013) Traumatic scratch injury in astrocytes triggers calcium influx to activate the JNK/c-Jun/AP-1 pathway and switch on GFAP expression. Glia 61(12):2063–2077. https://doi.org/10.1002/glia.22577

    Article  PubMed  Google Scholar 

  50. Cornell-Bell AH, Finkbeiner SM, Cooper MS, Smith SJ (1990) Glutamate induces calcium waves in cultured astrocytes: long-range glial signaling. Science 247(4941):470–473

    Article  CAS  PubMed  Google Scholar 

  51. Arcuino G, Lin JH, Takano T, Liu C, Jiang L, Gao Q, Kang J, Nedergaard M (2002) Intercellular calcium signaling mediated by point-source burst release of ATP. Proc Natl Acad Sci U S A 99(15):9840–9845

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Molnár T, Dobolyi A, Nyitrai G, Barabás P, Héja L, Emri Z, Palkovits M, Kardos J (2011) Calcium signals in the nucleus accumbens: activation of astrocytes by ATP and succinate. BMC Neurosci 12:96. https://doi.org/10.1186/1471-2202-12-96

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Charles AC, Merrill JE, Dirksen ER, Sanderson MJ (1991) Intercellular signaling in glial cells: calcium waves and oscillations in response to mechanical stimulation and glutamate. Neuron 6(6):983–992

    Article  CAS  PubMed  Google Scholar 

  54. De Bock M, Decrock E, Wang N, Bol M, Vinken M, Bultynck G, Leybaert L (2014) The dual face of connexin-based astroglial Ca(2+) communication: a key player in brain physiology and a prime target in pathology. Biochim Biophys Acta 1843:2211–2232. https://doi.org/10.1016/j.bbamcr.2014.04.016

    Article  CAS  PubMed  Google Scholar 

  55. Niraula A, Sheridan JF, Godbout JP (2017) Microglia priming with aging and stress. Neuropsychopharmacology. 42(1):318–333. https://doi.org/10.1038/npp.2016.185

    Article  PubMed  Google Scholar 

  56. Badan I, Platt D, Kessler C, Popa-Wagner A (2003) Temporal dynamics of degenerative and regenerative events associated with cerebral ischemia in aged rats. Gerontology. 49(6):356–365

    Article  CAS  PubMed  Google Scholar 

  57. Popa-Wagner A, Dinca I, Yalikun S, Walker L, Kroemer H, Kessler C (2006) Accelerated delimitation of the infarct zone by capillary-derived nestin-positive cells in aged rats. Curr Neurovasc Res 3(1):3–13

    Article  PubMed  Google Scholar 

  58. Sandu RE, Buga AM, Uzoni A, Petcu EB, Popa-Wagner A (2015) Neuroinflammation and comorbidities are frequently ignored factors in CNS pathology. Neural Regen Res 10(9):1349–1355. https://doi.org/10.4103/1673-5374.165208

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Ridet JL, Malhotra SK, Privat A, Gage FH (1997) Reactive astrocytes: cellular and molecular cues to biological function. Trends Neurosci 20(12):570–577 Erratum in: Trends Neurosci (1998) 21(2):80

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

JA, LM, and AJR are researchers from CONICET (Argentina). We thank Biot. Andrea Pecile, and Manuel Ponce for the animal care, and Dr. Carla Bonavita for the proofreading of the manuscript. The authors also would like to thank Centro de Simulación Computacional para Aplicaciones Tecnólogicas (CSC-CONICET) for granting use of computational resources which allowed us to perform the in silico analysis included in this work.

Funding

This study was supported by grants CONICET PIP 0479 (AJR) and PIP 0260 (LM), FONCYT PICT 2015-1451 and PICT 2017-2203 (AJR), and UBACYT (AJR).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Luciano Moffatt or Alberto Javier Ramos.

Ethics declarations

Animal care for this experimental protocol was in accordance with the NIH guidelines for the Care and Use of Laboratory Animals, the principles presented in the Guidelines for the Use of Animals in Neuroscience Research by the Society for Neuroscience, the ARRIVE guidelines, and it was approved by the CICUAL committee of the School of Medicine, University of Buenos Aires.

Conflict of Interest

The authors declare that there are no conflicts of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Figure S1

Predicted pattern of DAMP, SM and receptor concentrations at different distances and time points after ischemia. The graphs show the predicted spatio-temporal pattern of DAMP (ω) concentration bound (B), free (F) and free receptor (R) at different distances from the core expressed in millimeters. Any temporal point can be predicted and this graph shows 0.5 to 7 days post ischemia. To simplify the graphs, only model 2 and model 4 are presented. Red lines indicate free signaling molecules, green lines indicate free receptors and blue lines indicate complexes between the signaling molecules and their receptors. Concentration values (c) are normalized (y) against the correspondent equilibrium constant (Keq) by the equation y = c/(c + Keq). Each line represents a sample from the posterior distribution of a signaling profile. (PNG 2888 kb)

High resolution image (TIF 4741 kb)

Figure S2

BCM predicted spatio-temporal pattern of reactive astrocyte type cell abundance. Graphs show the posterior predicted distribution of each reactive astrocyte type at different days after ischemia with their position in millimeters from the ischemic core. Any temporal point can be predicted and this graph shows 0.5 to 7 days post ischemia. To simplify the graphs, only model 2 and model 4 are presented. Astrocytic cell types are presented as color-coded being type I, II, III, IV and V colored in black, brown, red, green and blue, respectively. Each tracing represents a sample from the posterior distribution of the predictions of the models. (PNG 1800 kb)

High resolution image (TIF 3662 kb)

Figure S3 to S7

Graphical representation of the parameters distribution predicted by the different models. To simplify the graphs, only model 2 and model 4 are presented. Prior distribution appears in pink and posterior distribution appears cyan. Each of the figures has a correlation with each of the supplementary tables that list the values of prior distributions of the parameters. (PNG 91 kb)

High resolution image (TIFF 296 kb)

Figure S4

(PNG 180 kb)

High resolution image (TIFF 582 kb)

Figure S5

(PNG 132 kb)

High resolution image (TIFF 534 kb)

Figure S6

(PNG 113 kb)

High resolution image (TIFF 513 kb)

Figure S7

(PNG 120 kb)

High resolution image (TIFF 488 kb)

ESM 1

(DOCX 57 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Auzmendi, J., Moffatt, L. & Ramos, A.J. Predicting Reactive Astrogliosis Propagation by Bayesian Computational Modeling: the Repeater Stations Model. Mol Neurobiol 57, 879–895 (2020). https://doi.org/10.1007/s12035-019-01749-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-019-01749-9

Keywords

Navigation