Skip to main content
Log in

Disruption of Brain Redox Homeostasis, Microglia Activation and Neuronal Damage Induced by Intracerebroventricular Administration of S-Adenosylmethionine to Developing Rats

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

S-Adenosylmethionine (AdoMet) concentrations are highly elevated in tissues and biological fluids of patients affected by S-adenosylhomocysteine hydrolase deficiency. This disorder is clinically characterized by severe neurological symptoms, whose pathophysiology is not yet established. Therefore, we investigated the effects of intracerebroventricular administration of AdoMet on redox homeostasis, microglia activation, synaptophysin levels, and TAU phosphorylation in cerebral cortex and striatum of young rats. AdoMet provoked significant lipid and protein oxidation, decreased glutathione concentrations, and altered the activity of important antioxidant enzymes in cerebral cortex and striatum. AdoMet also increased reactive oxygen (2′,7′-dichlorofluorescein oxidation increase) and nitrogen (nitrate and nitrite levels increase) species generation in cerebral cortex. Furthermore, the antioxidants N-acetylcysteine and melatonin prevented most of AdoMet-induced pro-oxidant effects in both cerebral structures. Finally, we verified that AdoMet produced microglia activation by increasing Iba1 staining and TAU phosphorylation, as well as reduced synaptophysin levels in cerebral cortex. Taken together, it is presumed that impairment of redox homeostasis possibly associated with microglia activation and neuronal dysfunction caused by AdoMet may represent deleterious pathomechanisms involved in the pathophysiology of brain damage in S-adenosylhomocysteine hydrolase deficiency.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Gaull GE, Von Berg W, Raiha NC, Sturman JA (1973) Development of methyltransferase activities of human fetal tissues. Pediatr Res 7(5):527–533. https://doi.org/10.1203/00006450-197305000-00006

    Article  CAS  PubMed  Google Scholar 

  2. Grubbs R, Vugrek O, Deisch J, Wagner C, Stabler S, Allen R, Baric I, Rados M et al (2010) S-adenosylhomocysteine hydrolase deficiency: two siblings with fetal hydrops and fatal outcomes. J Inherit Metab Dis 33(6):705–713. https://doi.org/10.1007/s10545-010-9171-x

    Article  CAS  PubMed  Google Scholar 

  3. Honzik T, Magner M, Krijt J, Sokolova J, Vugrek O, Beluzic R, Baric I, Hansikova H et al (2012) Clinical picture of S-adenosylhomocysteine hydrolase deficiency resembles phosphomannomutase 2 deficiency. Mol Genet Metab 107(3):611–613. https://doi.org/10.1016/j.ymgme.2012.08.014

    Article  CAS  PubMed  Google Scholar 

  4. Mudd SH, Brosnan JT, Brosnan ME, Jacobs RL, Stabler SP, Allen RH, Vance DE, Wagner C (2007) Methyl balance and transmethylation fluxes in humans. Am J Clin Nutr 85(1):19–25. https://doi.org/10.1093/ajcn/85.1.19

    Article  CAS  PubMed  Google Scholar 

  5. Stender S, Chakrabarti RS, Xing C, Gotway G, Cohen JC, Hobbs HH (2015) Adult-onset liver disease and hepatocellular carcinoma in S-adenosylhomocysteine hydrolase deficiency. Mol Genet Metab 116(4):269–274. https://doi.org/10.1016/j.ymgme.2015.10.009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Strauss KA, Ferreira C, Bottiglieri T, Zhao X, Arning E, Zhang S, Zeisel SH, Escolar ML et al (2015) Liver transplantation for treatment of severe S-adenosylhomocysteine hydrolase deficiency. Mol Genet Metab 116(1–2):44–52. https://doi.org/10.1016/j.ymgme.2015.06.005

    Article  CAS  PubMed  Google Scholar 

  7. Baric I, Staufner C, Augoustides-Savvopoulou P, Chien YH, Dobbelaere D, Grunert SC, Opladen T, Petkovic Ramadza D et al (2017) Consensus recommendations for the diagnosis, treatment and follow-up of inherited methylation disorders. J Inherit Metab Dis 40(1):5–20. https://doi.org/10.1007/s10545-016-9972-7

    Article  CAS  PubMed  Google Scholar 

  8. Baric I, Fumic K, Glenn B, Cuk M, Schulze A, Finkelstein JD, James SJ, Mejaski-Bosnjak V et al (2004) S-adenosylhomocysteine hydrolase deficiency in a human: a genetic disorder of methionine metabolism. Proc Natl Acad Sci U S A 101(12):4234–4239. https://doi.org/10.1073/pnas.0400658101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Baric I, Cuk M, Fumic K, Vugrek O, Allen RH, Glenn B, Maradin M, Pazanin L et al (2005) S-Adenosylhomocysteine hydrolase deficiency: a second patient, the younger brother of the index patient, and outcomes during therapy. J Inherit Metab Dis 28(6):885–902. https://doi.org/10.1007/s10545-005-0192-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Finkelstein JD, Kyle W, Harris BJ (1971) Methionine metabolism in mammals. Regulation of homocysteine methyltransferases in rat tissue. Arch Biochem Biophys 146(1):84–92

    Article  CAS  Google Scholar 

  11. Gao J, Cahill CM, Huang X, Roffman JL, Lamon-Fava S, Fava M, Mischoulon D, Rogers JT (2018) S-Adenosyl methionine and transmethylation pathways in neuropsychiatric diseases throughout life. Neurotherapeutics 15(1):156–175. https://doi.org/10.1007/s13311-017-0593-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Rubin RA, Ordonez LA, Wurtman RJ (1974) Physiological dependence of brain methionine and S-adenosylmethionine concentrations on serum amino acid pattern. J Neurochem 23(1):227–231

    Article  CAS  Google Scholar 

  13. Molloy AM, Orsi B, Kennedy DG, Kennedy S, Weir DG, Scott JM (1992) The relationship between the activity of methionine synthase and the ratio of S-adenosylmethionine to S-adenosylhomocysteine in the brain and other tissues of the pig. Biochem Pharmacol 44(7):1349–1355

    Article  CAS  Google Scholar 

  14. Halliwell BGJ (2015) Cellular responses to oxidative stress: adaptation, damage, repair, senescence and death. In: Free radicals in biology and medicine. Oxford University Press Inc, Oxford, pp. 199–283

    Chapter  Google Scholar 

  15. Zanatta A, Cecatto C, Ribeiro RT, Amaral AU, Wyse AT, Leipnitz G, Wajner M (2017) S-Adenosylmethionine promotes oxidative stress and decreases Na(+), K(+)-ATPase activity in cerebral cortex supernatants of adolescent rats: implications for the pathogenesis of S-adenosylhomocysteine hydrolase deficiency. Mol Neurobiol 55:5868–5878. https://doi.org/10.1007/s12035-017-0804-z

    Article  CAS  PubMed  Google Scholar 

  16. Paxinos G, Watson C (2013) The rat brain in stereotaxic coordinates, 7th edn. Academic, Cambridge

    Google Scholar 

  17. da Rosa MS, Joao Ribeiro CA, Seminotti B, Teixeira Ribeiro R, Amaral AU, Coelho Dde M, de Oliveira FH, Leipnitz G et al (2015) In vivo intracerebral administration of L-2-hydroxyglutaric acid provokes oxidative stress and histopathological alterations in striatum and cerebellum of adolescent rats. Free Radic Biol Med 83:201–213. https://doi.org/10.1016/j.freeradbiomed.2015.02.008

    Article  CAS  PubMed  Google Scholar 

  18. Evelson P, Travacio M, Repetto M, Escobar J, Llesuy S, Lissi EA (2001) Evaluation of total reactive antioxidant potential (TRAP) of tissue homogenates and their cytosols. Arch Biochem Biophys 388(2):261–266. https://doi.org/10.1006/abbi.2001.2292

    Article  CAS  PubMed  Google Scholar 

  19. Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193(1):265–275

    CAS  PubMed  Google Scholar 

  20. Yagi K (1998) Simple procedure for specific assay of lipid hydroperoxides in serum or plasma. Methods Mol Biol 108:107–110. https://doi.org/10.1385/0-89603-472-0:107

    Article  CAS  PubMed  Google Scholar 

  21. Reznick AZ, Packer L (1994) Oxidative damage to proteins: spectrophotometric method for carbonyl assay. Methods Enzymol 233:357–363

    Article  CAS  Google Scholar 

  22. Aksenov MY, Markesbery WR (2001) Changes in thiol content and expression of glutathione redox system genes in the hippocampus and cerebellum in Alzheimer’s disease. Neurosci Lett 302(2–3):141–145

    Article  CAS  Google Scholar 

  23. Browne RW, Armstrong D (1998) Reduced glutathione and glutathione disulfide. Methods Mol Biol 108:347–352. https://doi.org/10.1385/0-89603-472-0:347

    Article  CAS  PubMed  Google Scholar 

  24. Teare JP, Punchard NA, Powell JJ, Lumb PJ, Mitchell WD, Thompson RP (1993) Automated spectrophotometric method for determining oxidized and reduced glutathione in liver. Clin Chem 39(4):686–689

    CAS  PubMed  Google Scholar 

  25. Wendel A (1981) Glutathione peroxidase. Methods Enzymol 77:325–333

    Article  CAS  Google Scholar 

  26. Carlberg I, Mannervik B (1985) Glutathione reductase. Methods Enzymol 113:484–490

    Article  CAS  Google Scholar 

  27. Marklund SL (1985) Product of extracellular-superoxide dismutase catalysis. FEBS Lett 184(2):237–239

    Article  CAS  Google Scholar 

  28. Aebi H (1984) Catalase in vitro. Methods Enzymol 105:121–126

    Article  CAS  Google Scholar 

  29. Guthenberg C, Mannervik B (1981) Glutathione S-transferase (transferase pi) from human placenta is identical or closely related to glutathione S-transferase (transferase rho) from erythrocytes. Biochim Biophys Acta 661(2):255–260

    Article  CAS  Google Scholar 

  30. Leong SF, Clark JB (1984) Regional development of glutamate dehydrogenase in the rat brain. J Neurochem 43(1):106–111

    Article  CAS  Google Scholar 

  31. LeBel CP, Ischiropoulos H, Bondy SC (1992) Evaluation of the probe 2′,7′-dichlorofluorescin as an indicator of reactive oxygen species formation and oxidative stress. Chem Res Toxicol 5(2):227–231

    Article  CAS  Google Scholar 

  32. Navarro-Gonzalvez JA, Garcia-Benayas C, Arenas J (1998) Semiautomated measurement of nitrate in biological fluids. Clin Chem 44(3):679–681

    CAS  PubMed  Google Scholar 

  33. Moura AP, Parmeggiani B, Gasparotto J, Grings M, Fernandez Cardoso GM, Seminotti B, Moreira JCF, Gelain DP et al (2018) Glycine administration alters MAPK signaling pathways and causes neuronal damage in rat brain: putative mechanisms involved in the neurological dysfunction in nonketotic hyperglycinemia. Mol Neurobiol 55(1):741–750. https://doi.org/10.1007/s12035-016-0319-z

    Article  CAS  PubMed  Google Scholar 

  34. Waza AA, Hamid Z, Ali S, Bhat SA, Bhat MA (2018) A review on heme oxygenase-1 induction: is it a necessary evil. Inflamm Res 67:579–588. https://doi.org/10.1007/s00011-018-1151-x

    Article  CAS  PubMed  Google Scholar 

  35. Hoogland IC, Houbolt C, van Westerloo DJ, van Gool WA, van de Beek D (2015) Systemic inflammation and microglial activation: systematic review of animal experiments. J Neuroinflammation 12:114. https://doi.org/10.1186/s12974-015-0332-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Dalle-Donne I, Rossi R, Giustarini D, Milzani A, Colombo R (2003) Protein carbonyl groups as biomarkers of oxidative stress. Clin Chim Acta 329(1–2):23–38

    Article  CAS  Google Scholar 

  37. Davies MJ (2003) Singlet oxygen-mediated damage to proteins and its consequences. Biochem Biophys Res Commun 305(3):761–770

    Article  CAS  Google Scholar 

  38. Reiter RJ, Tan DX, Manchester LC, Qi W (2001) Biochemical reactivity of melatonin with reactive oxygen and nitrogen species: a review of the evidence. Cell Biochem Biophys 34(2):237–256. https://doi.org/10.1385/CBB:34:2:237

    Article  CAS  PubMed  Google Scholar 

  39. Anisimov VN (2006) Premature ageing prevention: limitations and perspectives of pharmacological interventions. Curr Drug Targets 7(11):1485–1503

    Article  CAS  Google Scholar 

  40. Elbini Dhouib I, Jallouli M, Annabi A, Gharbi N, Elfazaa S, Lasram MM (2016) A minireview on N-acetylcysteine: an old drug with new approaches. Life Sci 151:359–363. https://doi.org/10.1016/j.lfs.2016.03.003

    Article  CAS  PubMed  Google Scholar 

  41. Singh P, Jain A, Kaur G (2004) Impact of hypoglycemia and diabetes on CNS: correlation of mitochondrial oxidative stress with DNA damage. Mol Cell Biochem 260(1–2):153–159

    Article  CAS  Google Scholar 

  42. Kaushik S, Kaur J (2003) Chronic cold exposure affects the antioxidant defense system in various rat tissues. Clin Chim Acta 333(1):69–77

    Article  CAS  Google Scholar 

  43. Jafari M (2007) Dose- and time-dependent effects of sulfur mustard on antioxidant system in liver and brain of rat. Toxicology 231(1):30–39. https://doi.org/10.1016/j.tox.2006.11.048

    Article  CAS  PubMed  Google Scholar 

  44. Myhre O, Andersen JM, Aarnes H, Fonnum F (2003) Evaluation of the probes 2′,7′-dichlorofluorescin diacetate, luminol, and lucigenin as indicators of reactive species formation. Biochem Pharmacol 65(10):1575–1582

    Article  CAS  Google Scholar 

  45. Bonini MG, Rota C, Tomasi A, Mason RP (2006) The oxidation of 2′,7′-dichlorofluorescin to reactive oxygen species: a self-fulfilling prophesy? Free Radic Biol Med 40(6):968–975. https://doi.org/10.1016/j.freeradbiomed.2005.10.042

    Article  CAS  PubMed  Google Scholar 

  46. Ito D, Imai Y, Ohsawa K, Nakajima K, Fukuuchi Y, Kohsaka S (1998) Microglia-specific localisation of a novel calcium binding protein, Iba1. Brain Res Mol Brain Res 57(1):1–9

    Article  CAS  Google Scholar 

  47. Serrano-Pozo A, Gomez-Isla T, Growdon JH, Frosch MP, Hyman BT (2013) A phenotypic change but not proliferation underlies glial responses in Alzheimer disease. Am J Pathol 182(6):2332–2344. https://doi.org/10.1016/j.ajpath.2013.02.031

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Wirths O, Breyhan H, Marcello A, Cotel MC, Bruck W, Bayer TA (2010) Inflammatory changes are tightly associated with neurodegeneration in the brain and spinal cord of the APP/PS1KI mouse model of Alzheimer’s disease. Neurobiol Aging 31(5):747–757. https://doi.org/10.1016/j.neurobiolaging.2008.06.011

    Article  CAS  PubMed  Google Scholar 

  49. Norden DM, Trojanowski PJ, Villanueva E, Navarro E, Godbout JP (2016) Sequential activation of microglia and astrocyte cytokine expression precedes increased Iba-1 or GFAP immunoreactivity following systemic immune challenge. Glia 64(2):300–316. https://doi.org/10.1002/glia.22930

    Article  PubMed  Google Scholar 

  50. Balducci C, Forloni G (2018) Novel targets in Alzheimer’s disease: a special focus on microglia. Pharmacol Res 130:402–413. https://doi.org/10.1016/j.phrs.2018.01.017

    Article  CAS  PubMed  Google Scholar 

  51. Sun L, Shen R, Agnihotri SK, Chen Y, Huang Z, Bueler H (2018) Lack of PINK1 alters glia innate immune responses and enhances inflammation-induced, nitric oxide-mediated neuron death. Sci Rep 8(1):383. https://doi.org/10.1038/s41598-017-18786-w

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Gudi V, Gai L, Herder V, Tejedor LS, Kipp M, Amor S, Suhs KW, Hansmann F et al (2017) Synaptophysin is a reliable marker for axonal damage. J Neuropathol Exp Neurol 76:109–125. https://doi.org/10.1093/jnen/nlw114

    Article  CAS  Google Scholar 

  53. Wang X, Cheng JL, Ran YC, Zhang Y, Yang L, Lin YN (2017) Expression of RGMb in brain tissue of MCAO rats and its relationship with axonal regeneration. J Neurol Sci 383:79–86. https://doi.org/10.1016/j.jns.2017.10.032

    Article  CAS  PubMed  Google Scholar 

  54. Thome J, Pesold B, Baader M, Hu M, Gewirtz JC, Duman RS, Henn FA (2001) Stress differentially regulates synaptophysin and synaptotagmin expression in hippocampus. Biol Psychiatry 50(10):809–812

    Article  CAS  Google Scholar 

  55. Xu H, He J, Richardson JS, Li XM (2004) The response of synaptophysin and microtubule-associated protein 1 to restraint stress in rat hippocampus and its modulation by venlafaxine. J Neurochem 91(6):1380–1388. https://doi.org/10.1111/j.1471-4159.2004.02827.x

    Article  CAS  PubMed  Google Scholar 

  56. Terry RD (1998) The cytoskeleton in Alzheimer disease. J Neural Transm Suppl 53:141–145

    Article  CAS  Google Scholar 

  57. Kuszczyk M, Gordon-Krajcer W, Lazarewicz JW (2009) Homocysteine-induced acute excitotoxicity in cerebellar granule cells in vitro is accompanied by PP2A-mediated dephosphorylation of tau. Neurochem Int 55(1–3):174–180. https://doi.org/10.1016/j.neuint.2009.02.010

    Article  CAS  PubMed  Google Scholar 

  58. Abisambra JF, Jinwal UK, Blair LJ, O'Leary JC 3rd, Li Q, Brady S, Wang L, Guidi CE et al (2013) Tau accumulation activates the unfolded protein response by impairing endoplasmic reticulum-associated degradation. J Neurosci 33(22):9498–9507. https://doi.org/10.1523/JNEUROSCI.5397-12.2013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Lee VM, Goedert M, Trojanowski JQ (2001) Neurodegenerative tauopathies. Annu Rev Neurosci 24:1121–1159. https://doi.org/10.1146/annurev.neuro.24.1.1121

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by the Conselho Nacional de Desenvolvimento Científico e Tecnológico [grant number #404883/2013-3], Fundação de Amparo à Pesquisa do Estado do Rio Grande do Sul [grant number #2266- 2551/14-2], and Financiadora de Estudos e Projetos/Rede Instituto Brasileiro de Neurociência [grant number #01.06.0842-00].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Moacir Wajner.

Ethics declarations

The experimental protocol was approved by the local Animal Ethics Committe of Universidade Federal do Rio Grande do Sul. The guidelines of National Institutes of Health Guide for the Care and Use of Laboratory Animals (NIH publication no. 80–23, revised 2011) and Directive 2010/63/EU were followed.

Conflict of Interest

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Seminotti, B., Zanatta, Â., Ribeiro, R.T. et al. Disruption of Brain Redox Homeostasis, Microglia Activation and Neuronal Damage Induced by Intracerebroventricular Administration of S-Adenosylmethionine to Developing Rats. Mol Neurobiol 56, 2760–2773 (2019). https://doi.org/10.1007/s12035-018-1275-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-018-1275-6

Keywords

Navigation