Skip to main content

Advertisement

Log in

Chronic Metabolic Derangement-Induced Cognitive Deficits and Neurotoxicity Are Associated with REST Inactivation

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Chronic metabolic alterations may represent a risk factor for the development of cognitive impairment, dementia, or neurodegenerative diseases. Hyperglycemia and obesity are known to imprint epigenetic markers that compromise the proper expression of cell survival genes. Here, we showed that chronic hyperglycemia (60 days) induced by a single intraperitoneal injection of streptozotocin compromised cognition by reducing hippocampal ERK signaling and by inducing neurotoxicity in rats. The mechanisms appear to be linked to reduced active DNA demethylation and diminished expression of the neuroprotective transcription factor REST. The impact of the relationship between adiposity and DNA hypermethylation on REST expression was also demonstrated in peripheral blood mononuclear cells in obese children with reduced levels of blood ascorbate. The reversible nature of epigenetic modifications and the cognitive impairment reported in obese children, adolescents, and adults suggest that the correction of the anthropometry and the peripheral metabolic alterations would protect brain homeostasis and reduce the risk of developing neurodegenerative diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Craft S (2012) Alzheimer disease: insulin resistance and AD extending the translational path. Nat Rev Neurol 8:360–362. https://doi.org/10.1038/nrneurol.2012.112

    Article  CAS  PubMed  Google Scholar 

  2. Crane PK, Walker R, Hubbard RA, Li G, Nathan DM, Zheng H, Haneuse S, Craft S et al (2013) Glucose levels and risk of dementia. N Engl J Med 369:540–548. https://doi.org/10.1056/NEJMoa1215740

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Kerti L, Witte AV, Winkler A, Grittner U, Rujescu D, Floel A (2013) Higher glucose levels associated with lower memory and reduced hippocampal microstructure. Neurology 81:1746–1752. https://doi.org/10.1212/01.wnl.0000435561.00234.ee

    Article  CAS  PubMed  Google Scholar 

  4. D’Amelio M, Ragonese P, Callari G et al (2009) Diabetes preceding Parkinson’s disease onset. A case-control study. Park Relat Disord 15:660–664. https://doi.org/10.1016/j.parkreldis.2009.02.013

    Article  Google Scholar 

  5. Boyd AE, Lebovitz HE, Feldman JM (1971) Endocrine function and glucose metabolism in patients with Parkinson’s disease and their alternation by L-Dopa. J Clin Endocrinol Metab 33:829–837. https://doi.org/10.1210/jcem-33-5-829

    Article  PubMed  Google Scholar 

  6. Brauer R, Bhaskaran K, Chaturvedi N, Dexter DT, Smeeth L, Douglas I (2015) Glitazone treatment and incidence of Parkinson’s disease among people with diabetes: a retrospective cohort study. PLoS Med 12:e1001854. https://doi.org/10.1371/journal.pmed.1001854

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Landgrave-Gómez J, Mercado-Gómez O, Guevara-Guzmán R (2015) Epigenetic mechanisms in neurological and neurodegenerative diseases. Front Cell Neurosci 9. https://doi.org/10.3389/fncel.2015.00058

  8. Masliah E, Dumaop W, Galasko D, Desplats P (2013) Identification of concordant epigenetic changes in brain and peripheral blood leukocytes distinctive patterns of DNA methylation associated with Parkinson disease. Epigenetics 8:1030–1038. https://doi.org/10.4161/epi.25865

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Smith AR, Smith RG, Condliffe D, Hannon E, Schalkwyk L, Mill J, Lunnon K (2016) Increased DNA methylation near TREM2 is consistently seen in the superior temporal gyrus in Alzheimer’s disease brain. Neurobiol Aging 47:35–40. https://doi.org/10.1016/j.neurobiolaging.2016.07.008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Dallagnol KMC, Remor AP, da Silva RA, Prediger RD, Latini A, Aguiar AS Jr (2016) Running for REST: physical activity attenuates neuroinflammation in the hippocampus of aged mice. Brain Behav Immun 61:31–35. https://doi.org/10.1016/j.bbi.2016.07.159

    Article  CAS  PubMed  Google Scholar 

  11. Lu T, Aron L, Zullo J, Pan Y, Kim H, Chen Y, Yang TH, Kim HM et al (2014) REST and stress resistance in ageing and Alzheimer’s disease. Nature 507:448–454. https://doi.org/10.1038/nature13163

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Lenoir da Silva T, Muller Linhares RM, Pertile Remor A, Ghisoni K, de Paula Martins R, Poli A, Aguiar Jr A, Fernando Ronsoni M et al (2017) Blood advanced glycation end products and biomarkers of inflammation in class III obese Brazilian subjects. Integr Obes Diabetes 3:1–4. https://doi.org/10.15761/IOD.1000174

    Article  Google Scholar 

  13. Castro AA, Ghisoni K, Latini A, Quevedo J, Tasca CI, Prediger RDS (2012) Lithium and valproate prevent olfactory discrimination and short-term memory impairments in the intranasal 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) rat model of Parkinson’s disease. Behav Brain Res 229:208–215. https://doi.org/10.1016/j.bbr.2012.01.016

    Article  CAS  PubMed  Google Scholar 

  14. Morris RGM, Garrud P, Rawlins JNP, O’Keefe J (1982) Place navigation impaired in rats with hippocampal lesions. Nature 297:681–683. https://doi.org/10.1038/297681a0

    Article  CAS  PubMed  Google Scholar 

  15. Latini A, Rodriguez M, Borba Rosa R, Scussiato K, Leipnitz G, Reis de Assis D, da Costa Ferreira G, Funchal C et al (2005) 3-Hydroxyglutaric acid moderately impairs energy metabolism in brain of young rats. Neuroscience 135:111–120. https://doi.org/10.1016/j.neuroscience.2005.05.013

    Article  CAS  PubMed  Google Scholar 

  16. Ellman GL (1959) Tissue sulfhydryl groups. Arch Biochem Biophys 82:70–77. https://doi.org/10.1016/0003-9861(59)90090-6

    Article  CAS  PubMed  Google Scholar 

  17. Esterbauer H, Cheeseman KH (1990) Determination of aldehydic lipid peroxidation products: malonaldehyde and 4-hydroxynonenal. Methods Enzymol 186:407–421. https://doi.org/10.1016/0076-6879(90)86134-H

    Article  CAS  PubMed  Google Scholar 

  18. Latremoliere A, Latini A, Andrews N, Cronin SJ, Fujita M, Gorska K, Hovius R, Romero C et al (2015) Reduction of neuropathic and inflammatory pain through inhibition of the tetrahydrobiopterin pathway. Neuron 86:1393–1406. https://doi.org/10.1016/j.neuron.2015.05.033

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. De Paula Martins R, Glaser V, Da Luz Scheffer D et al (2013) Platelet oxygen consumption as a peripheral blood marker of brain energetics in a mouse model of severe neurotoxicity. J Bioenerg Biomembr 45:449–457. https://doi.org/10.1007/s10863-013-9499-7

    Article  CAS  PubMed  Google Scholar 

  20. Ghisoni K, Martins R de PRDP, Barbeito L, Latini A (2015) Neopterin as a potential cytoprotective brain molecule. J Psychiatr Res 71:134-139. https://doi.org/10.1016/j.jpsychires.2015.10.003

  21. Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193:265–275. https://doi.org/10.1016/0304-3894(92)87011-4

    Article  CAS  PubMed  Google Scholar 

  22. Trevilatto PC, Line SRP (2000) Use of buccal epithelial cells for PCR amplification of large DNA fragments. J Forensic Odontostomatol 18:6–9

    CAS  PubMed  Google Scholar 

  23. Molognoni F, Cruz AT, Meliso FM, Morais AS, Souza CF, Xander P, Bischof JM, Costa FF et al (2011) Epigenetic reprogramming as a key contributor to melanocyte malignant transformation. Epigenetics 6:450–464. https://doi.org/10.4161/epi.6.4.14917

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Xiong Z, Laird PW (1997) COBRA: a sensitive and quantitative DNA methylation assay. Nucleic Acids Res 25:2532–2534. https://doi.org/10.1093/nar/25.12.2532

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Sabatino MEME, Petiti JPJP, Del Valle Sosa L et al (2015) Evidence of cellular senescence during the development of estrogen-induced pituitary tumors. Endocr Relat Cancer 22:299–317. https://doi.org/10.1530/ERC-14-0333

    Article  CAS  PubMed  Google Scholar 

  26. Khan A, Khan MI, Iqbal Z, Shah Y, Ahmad L, Nazir S, Watson DG, Khan JA et al (2011) A new HPLC method for the simultaneous determination of ascorbic acid and aminothiols in human plasma and erythrocytes using electrochemical detection. Talanta 84:789–801. https://doi.org/10.1016/j.talanta.2011.02.019

    Article  CAS  PubMed  Google Scholar 

  27. Remor AP, de Matos FJ, Ghisoni K et al (2011) Differential effects of insulin on peripheral diabetes-related changes in mitochondrial bioenergetics: involvement of advanced glycosylated end products. Biochim Biophys Acta. 1812(11):1460–1471. https://doi.org/10.1016/j.bbadis.2011.06.017

  28. Sindelar DK, Havel PJ, Seeley RJ, Wilkinson CW, Woods SC, Schwartz MW (2000) Low plasma leptin levels contribute to diabetic hyperphagia in rats. Diabetes 48:1275–1280. https://doi.org/10.2337/diabetes.48.6.1275

    Article  Google Scholar 

  29. Thornalley PJ, Hooper NI, Jennings PE, Florkowski CM, Jones AF, Lunec J, Barnett AH (1989) The human red blood cell glyoxalase system in diabetes mellitus. Diabetes Res Clin Pract 7:115–120. https://doi.org/10.1016/0168-8227(89)90101-0

    Article  CAS  PubMed  Google Scholar 

  30. Takahashi K (1977) Further studies on the reactions of phenylglyoxal and related reagents with proteins. J Biochem 81:403–414

    Article  CAS  PubMed  Google Scholar 

  31. Boitard C, Cavaroc A, Sauvant J, Aubert A, Castanon N, Layé S, Ferreira G (2014) Impairment of hippocampal-dependent memory induced by juvenile high-fat diet intake is associated with enhanced hippocampal inflammation in rats. Brain Behav Immun 40:9–17. https://doi.org/10.1016/j.bbi.2014.03.005

    Article  CAS  PubMed  Google Scholar 

  32. Zhou X, Zhang J, Chen Y, Ma T, Wang Y, Wang J, Zhang Z (2014) Aggravated cognitive and brain functional impairment in mild cognitive impairment patients with type 2 diabetes: a resting-state functional MRI study. J Alzheimers Dis 41:925–935. https://doi.org/10.3233/JAD-132354

    Article  CAS  PubMed  Google Scholar 

  33. Air EL, Strowski MZ, Benoit SC, Conarello SL, Salituro GM, Guan XM, Liu K, Woods SC et al (2002) Small molecule insulin mimetics reduce food intake and body weight and prevent development of obesity. Nat Med 8:179–183. https://doi.org/10.1038/nm0202-179

    Article  CAS  PubMed  Google Scholar 

  34. Werther GA, Hogg A, Oldfield BJ et al (1987) Localization and characterization of insulin receptors in rat brain and pituitary gland using in vitro autoradiography and computerized densitometry. Endocrinology 121:1562–1570. https://doi.org/10.1210/endo-121-4-1562

    Article  CAS  PubMed  Google Scholar 

  35. Tomlinson DR, Gardiner NJ (2008) Glucose neurotoxicity. Nat Rev Neurosci 9:36–45. https://doi.org/10.1038/nrn2294

    Article  CAS  PubMed  Google Scholar 

  36. Haj-ali V, Mohaddes G, Babri SH (2009) Intracerebroventricular insulin improves spatial learning and memory in male Wistar rats. Behav Neurosci 123:1309–1314. https://doi.org/10.1037/a0017722

    Article  CAS  PubMed  Google Scholar 

  37. Pardo J, Uriarte M, Cónsole GM, Reggiani PC, Outeiro TF, Morel GR, Goya RG (2016) Insulin-like growth factor-I gene therapy increases hippocampal neurogenesis, astrocyte branching and improves spatial memory in female aging rats. Eur J Neurosci 44:2120–2128. https://doi.org/10.1111/ejn.13278

    Article  PubMed  Google Scholar 

  38. Banks WA, Jaspan JB, Huang W, Kastin AJ (1997) Transport of insulin across the blood-brain barrier: saturability at euglycemic doses of insulin. Peptides 18:1423–1429. https://doi.org/10.1016/S0196-9781(97)00231-3

    Article  CAS  PubMed  Google Scholar 

  39. Craft S (2006) Insulin resistance syndrome and Alzheimer disease: pathophysiologic mechanisms and therapeutic implications. Alzheimer Dis Assoc Disord 20:298–301. https://doi.org/10.1097/01.wad.0000213866.86934.7e

    Article  CAS  PubMed  Google Scholar 

  40. Belfiore A, Frasca F, Pandini G, Sciacca L, Vigneri R (2009) Insulin receptor isoforms and insulin receptor/insulin-like growth factor receptor hybrids in physiology and disease. Endocr Rev 30:586–623

    Article  CAS  PubMed  Google Scholar 

  41. Atkins CM, Selcher JC, Petraitis JJ, Trzaskos JM, Sweatt JD (1998) The MAPK cascade is required for mammalian associative learning. Nat Neurosci 1:602–609. https://doi.org/10.1038/2836

    Article  CAS  PubMed  Google Scholar 

  42. Blum S, Moore AN, Adams F, Dash PK (1999) A mitogen-activated protein kinase cascade in the CA1/CA2 subfield of the dorsal hippocampus is essential for long-term spatial memory. J Neurosci 19:3535–3544. https://doi.org/10.1002/hipo.10070

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Lang C, Barco A, Zablow L, Kandel ER, Siegelbaum SA, Zakharenko SS (2004) Transient expansion of synaptically connected dendritic spines upon induction of hippocampal long-term potentiation. Proc Natl Acad Sci 101:16665–16670. https://doi.org/10.1073/pnas.0407581101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Bechara RG, Lyne R, Kelly ÁM (2014) BDNF-stimulated intracellular signalling mechanisms underlie exercise-induced improvement in spatial memory in the male Wistar rat. Behav Brain Res 275:297–306. https://doi.org/10.1016/j.bbr.2013.11.015

    Article  CAS  PubMed  Google Scholar 

  45. Bekinschtein P, Cammarota M, Igaz LM, Bevilaqua LRM, Izquierdo I, Medina JH (2007) Persistence of long-term memory storage requires a late protein synthesis- and BDNF-dependent phase in the hippocampus. Neuron 53:261–277. https://doi.org/10.1016/j.neuron.2006.11.025

    Article  CAS  PubMed  Google Scholar 

  46. Ortíz BM, Emiliano JR, Ramos-Rodríguez E et al (2016) Brain-derived neurotrophic factor plasma levels and premature cognitive impairment/dementia in type 2 diabetes. World J Diabetes 7:615–620. https://doi.org/10.4239/wjd.v7.i20.615

    Article  Google Scholar 

  47. Spetter MS, Hallschmid M (2015) Intranasal neuropeptide administration to target the human brain in health and disease. Mol Pharm 12:2767–2780. https://doi.org/10.1021/acs.molpharmaceut.5b00047

    Article  CAS  PubMed  Google Scholar 

  48. Pham CLL, Cappai R (2013) The interplay between lipids and dopamine on α-synuclein oligomerization and membrane binding. Biosci Rep 33:807–814. https://doi.org/10.1042/BSR20130092

    Article  CAS  Google Scholar 

  49. Gilkerson RW, De vries RLA, Lebot P et al (2012) Mitochondrial autophagy in cells with mtDNA mutations results from synergistic loss of transmembrane potential and mTORC1 inhibition. Hum Mol Genet 21:978–990. https://doi.org/10.1093/hmg/ddr529

    Article  CAS  PubMed  Google Scholar 

  50. Renna M, Jimenez-Sanchez M, Sarkar S, Rubinsztein DC (2010) Chemical inducers of autophagy that enhance the clearance of mutant proteins in neurodegenerative diseases. J Biol Chem 285:11061–11067

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Schlensog M, Magnus L, Heide T, Eschenbruch J, Steib F, Tator M, Kloten V, Rose M et al (2016) Epigenetic loss of putative tumor suppressor SFRP3 correlates with poor prognosis of lung adenocarcinoma patients. Epigenetics 0:1–14. https://doi.org/10.1080/15592294.2016.1229730

    Article  Google Scholar 

  52. Goodier JL, Kazazian HH (2008) Retrotransposons revisited: the restraint and rehabilitation of parasites. Cell 135:23–35. https://doi.org/10.1016/j.cell.2008.09.022

    Article  CAS  PubMed  Google Scholar 

  53. Bollati V, Galimberti D, Pergoli L, Dalla Valle E, Barretta F, Cortini F, Scarpini E, Bertazzi PA et al (2011) DNA methylation in repetitive elements and Alzheimer disease. Brain Behav Immun 25:1078–1083. https://doi.org/10.1016/j.bbi.2011.01.017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Song Z, Shah SZA, Yang W, Dong H, Yang L, Zhou X, Zhao D (2017) Downregulation of the repressor element 1-silencing transcription factor (REST) is associated with Akt-mTOR and Wnt-β-catenin signaling in prion diseases models. Front Mol Neurosci 10:1–18. https://doi.org/10.3389/fnmol.2017.00128

    Article  CAS  Google Scholar 

  55. Song Z, Zhu T, Zhou X, Barrow P, Yang W, Cui Y, Yang L, Zhao D (2016) REST alleviates neurotoxic prion peptide-induced synaptic abnormalities neurofibrillary degeneration and neuronal death partially via LRP6-mediated Wnt-β-catenin signaling. Oncotarget 7:12035–12052. https://doi.org/10.18632/oncotarget.7640

    Article  PubMed  PubMed Central  Google Scholar 

  56. Lu T, Aron L, Zullo J, Pan Y, Kim H, Chen Y, Yang TH, Kim HM et al (2014) REST and stress resistance in ageing and Alzheimer disease. Nature 507:448–454. https://doi.org/10.1038/nature13163

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Nho K, Kim S, Risacher SL, Shen L, Corneveaux JJ, Swaminathan S, Lin H, Ramanan VK et al (2015) Protective variant for hippocampal atrophy identified by whole exome sequencing. Ann Neurol 77:547–552. https://doi.org/10.1002/ana.24349

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Yu M, Cai L, Liang M, Huang Y, Gao H, Lu S, Fei J, Huang F (2009) Alteration of NRSF expression exacerbating 1-methyl-4-phenyl-pyridinium ion-induced cell death of SH-SY5Y cells. Neurosci Res 65:236–244. https://doi.org/10.1016/j.neures.2009.07.006

    Article  CAS  PubMed  Google Scholar 

  59. Sunahori K, Juang Y-T, Tsokos GC (2009) Methylation status of CpG islands flanking a cAMP response element motif on the protein phosphatase 2Ac alpha promoter determines CREB binding and activity. J Immunol 182:1500–1508

    Article  CAS  PubMed  Google Scholar 

  60. Huang Y, Myers SJ, Dingledine R (1999) Transcriptional repression by REST: recruitment of Sin3A and histone deacetylase to neuronal genes. Nat Neurosci 2:867–872. https://doi.org/10.1038/13165

    Article  CAS  PubMed  Google Scholar 

  61. Boulle F, van den Hove DLA, Jakob SB, Rutten BP, Hamon M, van Os J, Lesch KP, Lanfumey L et al (2012) Epigenetic regulation of the BDNF gene: implications for psychiatric disorders. Mol Psychiatry 17:584–596. https://doi.org/10.1038/mp.2011.107

    Article  CAS  PubMed  Google Scholar 

  62. Okano M, Bell DW, Haber DA, Li E (1999) DNA methyltransferases Dnmt3a and Dnmt3b are essential for de novo methylation and mammalian development. Cell 99:247–257. https://doi.org/10.1016/S0092-8674(00)81656-6

    Article  CAS  PubMed  Google Scholar 

  63. Hermann A, Goyal R, Jeltsch A (2004) The Dnmt1 DNA-(cytosine-C5)-methyltransferase methylates DNA processively with high preference for hemimethylated target sites. J Biol Chem 279:48350–48359. https://doi.org/10.1074/jbc.M403427200

    Article  CAS  PubMed  Google Scholar 

  64. Wu SC, Zhang Y (2010) Active DNA demethylation: many roads lead to Rome. Nat Rev Mol Cell Biol 11:750–750. https://doi.org/10.1038/nrm2975

    Article  CAS  Google Scholar 

  65. Minor EA, Court BL, Young JI, Wang G (2013) Ascorbate induces ten-eleven translocation (Tet) methylcytosine dioxygenase-mediated generation of 5-hydroxymethylcytosine. J Biol Chem 288:13669–13674. https://doi.org/10.1074/jbc.C113.464800

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Zhao Y, Zhu M, Yu Y, Qiu L, Zhang Y, He L, Zhang J (2016) Brain REST/NRSF is not only a silent repressor but also an active protector. Mol Neurobiol 54:1–10. https://doi.org/10.1007/s12035-015-9658-4

    Article  CAS  Google Scholar 

  67. Palm K, Belluardo N, Metsis M, Timmusk T (1998) Neuronal expression of zinc finger transcription factor REST/NRSF/XBR gene. J Neurosci 18:1280–1296

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Dick KJ, Nelson CP, Tsaprouni L, Sandling JK, Aïssi D, Wahl S, Meduri E, Morange PE et al (2014) DNA methylation and body-mass index: a genome-wide analysis. Lancet (London, England) 383:1990–1998. https://doi.org/10.1016/S0140-6736(13)62674-4

    Article  CAS  Google Scholar 

  69. Tsai CK, Kao TW, Lee JT, Wu CJ, Hueng DY, Liang CS, Wang GC, Yang FC et al (2016) Increased risk of cognitive impairment in patients with components of metabolic syndrome. Med 95:e4791. https://doi.org/10.1097/MD.0000000000004791

    Article  CAS  Google Scholar 

  70. Bozkurt H, Özer S, Yılmaz R, Sönmezgöz E, Kazancı Ö, Erbaş O, Demir O (2016) Assessment of neurocognitive functions in children and adolescents with obesity. Appl Neuropsychol Child 2965:1–7. https://doi.org/10.1080/21622965.2016.1150184

    Article  Google Scholar 

  71. El-Osta A, Brasacchio D, Yao D et al (2008) Transient high glucose causes persistent epigenetic changes and altered gene expression during subsequent normoglycemia. J Exp Med 205:2409–2417. https://doi.org/10.1084/jem.20081188

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Roth TL, Sweatt JD (2009) Regulation of chromatin structure in memory formation. Curr Opin Neurobiol 19:336–342

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

The authors are grateful to Theodore Griswold for language editing.

Funding

This work was supported by grants from Conselho Nacional de Desenvolvimento Científico e Tecnológico, Brazil (479222/2013-4); Coordenação de Aperfeiçoamento de Pessoal de Nível Superior, Brazil (PVE: 004_2013 and 88881.062164/2014-01, INCT 189405 16/2014); Programa de Apoio a Núcleos de Excelência PRONEX (NENASC Project); Secretaría de Ciencia y Técnica de la Universidad Nacional de Córdoba, Argentina; Fondo para la Investigación Científica y Tecnológica, Argentina; and Consejo Nacional de Investigaciones Científicas y Técnicas, Argentina. R.D.P., A.S.A.Jr., R.W. and A.L. are CNPq fellows.

Author information

Authors and Affiliations

Authors

Contributions

A.P.R. designed, planned, and performed the animal model; carried out biochemical measurements, Western blot assays, and data analyses; prepared the initial figures; and revised the manuscript. R.A.S. designed and performed the animal model; carried out molecular assays, epigenetic measurements, and data analyses; and revised the manuscript. F.J.M. set up the animal model and performed the PCR assays; V.G. carried out histochemical and PCR analyses; R.D.P performed Western blot assays and HPLC measurements; D.L.S., D.P., and D.C.A. performed DNA studies and data analyses; A.R. coordinated insulin-related Western blot studies and insulin measurements; P.A.O. performed behavioral tests; M.F.R., A.H., R.M.M.L., and R.W. were responsible for the clinical data from obese and diabetic patients, collected the samples, and were responsible for funding acquisition; R.D.P. coordinated the behavioral tests and revised the manuscript; A.P.S. performed the DNA extraction and revised the manuscript; A.S.A.Jr. performed statistics, revised the manuscript, and was responsible for funding acquisition; A.T. and A.L.D.P. performed the immunoelectron microscopy assays and was responsible for funding acquisition; A.L. coordinated all experimental procedures and data analyses, prepared the final version of the figures, wrote the manuscript, was responsible for funding acquisition, and provided the required infrastructure.

Corresponding author

Correspondence to Alexandra Latini.

Ethics declarations

All procedures detailed in this study employing experimental animals were performed under the ethical guidelines of the Ethics Committee for Animal Research (PP00350/CEUA) of the Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil, and were carried out in accordance with the ARRIVE guidelines. All the human experiments were performed under the ethical guidelines of the Ethics Committee for Human Research (CEPSH/435/09, CEPSH/2150/2011, and CAAE 33173314.7.0000.0121) of the Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil, and subjects’ consent was obtained according to the Declaration of Helsinki.

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Highlights

• Impaired cognition and hippocampal ERK signaling were induced in hyperglycemic rats.

• Chronic metabolic disturbances elicited neurotoxicity with signs of neurodegeneration.

• Hyperglycemia elicited reduced hippocampal DNA demethylation with REST inactivation.

• Leukocytes from obese children showed repressed REST and DNA hypermethylation.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Remor, A.P., da Silva, R.A., de Matos, F.J. et al. Chronic Metabolic Derangement-Induced Cognitive Deficits and Neurotoxicity Are Associated with REST Inactivation. Mol Neurobiol 56, 1539–1557 (2019). https://doi.org/10.1007/s12035-018-1175-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-018-1175-9

Keywords

Navigation