Skip to main content
Log in

The Synergistic Effect of Raloxifene, Fluoxetine, and Bromocriptine Protects Against Pilocarpine-Induced Status Epilepticus and Temporal Lobe Epilepsy

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

The present antiepileptic drugs pose several problems in the management of seizures owing to their meager neuroprotective potential, adverse effects on bone, detrimental effects on cognitive function, chronic toxicity, drug interactions, side effects including aggression, agitation, and irritability and sometimes exacerbation of seizures. We followed up progressive preclinical investigation in mice against pilocarpine (PILO)-induced status epilepticus (SE) and temporal lobe epilepsy (TLE). To determine the response of raloxifene (RF) (4 and 8 mg/kg), fluoxetine (FT) (14 and 22 mg/kg), bromocriptine (BC) (6 and 10 mg/kg), and their low-dose combinations, oral treatment was scheduled for 28 days followed by PILO (300 mg/kg, i.p). The response was stalked for intensive behavioral monitoring of convulsions, hippocampal neuropeptide Y (NPY), and oxidative stress discernment along with histomorphological studies. The resultant data confirmed the therapeutic potential of triple drug combination of raloxifene (4 mg/kg) with fluoxetine (14 mg/kg) and bromocriptine (6 mg/kg) compared to monotherapy with raloxifene (4 mg/kg), and bromocriptine (6 mg/kg) as otherwise monotherapy with fluoxetine (14 mg/kg) was ineffective to suppress convulsions; an effect better than sodium valproate (300 mg/kg), a standard AED, was validated. Most profoundly, PILO-induced compensatory increases in hippocampal NPY levels (20.01%), which was escalated (100%) with the triple drug combination. The same pattern of results was superseded for oxidative stress indices and neuronal damage. The results for the first time demonstrate the propitious role of triple drug combination in the management of SE and TLE. Therapeutically, this enhancing profile of drugs fosters a safer and more effective drug-combination regimen.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

SE:

Status epilepticus

TLE:

Temporal lobe epilepsy

NPY:

Neuropeptide Y

PILO:

Pilocarpine

KA:

Kainic acid

SRS:

Spontaneously recurring seizures

RF:

Raloxifene

SV:

Sodium valproate

BC:

Bromocriptine

FT:

Fluoxetine

References

  1. Puttachary S, Sharma S, Stark S, Thippeswamy T (2015) Seizure-induced oxidative stress in temporal lobe epilepsy. Biomed Res Int 2015:745613–745620. https://doi.org/10.1155/2015/745613

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Sankaraneni R, Lachhwani D (2015) Antiepileptic drugs—a review. Pediatr Ann 44:e36–e42. https://doi.org/10.3928/00904481-20150203-10

    Article  PubMed  Google Scholar 

  3. Kwan P, Brodie MJ (2000) Early identification of refractory epilepsy. N Engl J Med 342:314–319. https://doi.org/10.1056/NEJM200002033420503

    Article  CAS  PubMed  Google Scholar 

  4. Wieser H-G, ILAE Commission on Neurosurgery of Epilepsy (2004) ILAE commission report. Mesial temporal lobe epilepsy with hippocampal sclerosis. Epilepsia 45:695–714. https://doi.org/10.1111/j.0013-9580.2004.09004.x

    Article  PubMed  Google Scholar 

  5. Lemos T, Cavalheiro EA (1995) Suppression of pilocarpine-induced status epilepticus and the late development of epilepsy in rats. Exp Brain Res 102:423–428

    Article  CAS  Google Scholar 

  6. Starr MS (1996) The role of dopamine in epilepsy. Synapse 22:159–194 . doi: https://doi.org/10.1002/(SICI)1098-2396(199602)22:2<159::AID-SYN8>3.0.CO;2-C

  7. Shiha AA, de Cristóbal J, Delgado M, Fernández de la Rosa R, Bascuñana P, Pozo MA, García-García L (2015) Subacute administration of fluoxetine prevents short-term brain hypometabolism and reduces brain damage markers induced by the lithium-pilocarpine model of epilepsy in rats. Brain Res Bull 111:36–47. https://doi.org/10.1016/j.brainresbull.2014.12.009

    Article  CAS  PubMed  Google Scholar 

  8. Leander JD (1992) Fluoxetine, a selective serotonin-uptake inhibitor, enhances the anticonvulsant effects of phenytoin, carbamazepine, and ameltolide (LY201116). Epilepsia 33:573–576

    Article  CAS  Google Scholar 

  9. Browning RA, Wood AV, Merrill MA, Dailey JW, Jobe PC (1997) Enhancement of the anticonvulsant effect of fluoxetine following blockade of 5-HT1A receptors. Eur J Pharmacol 336:1–6. https://doi.org/10.1016/S0014-2999(97)01215-6

    Article  CAS  PubMed  Google Scholar 

  10. Bozzi Y, Vallone D, Borrelli E (2000) Neuroprotective role of dopamine against hippocampal cell death. J Neurosci 20:8643–8649

    Article  CAS  Google Scholar 

  11. Farjo IB, McQueen JK (1979) Dopamine agonists and cobalt-induced epilepsy in the rat. Br J Pharmacol 67:353–360

    Article  CAS  Google Scholar 

  12. O’Neill MJ, Hicks CA, Ward MA et al (1998) Dopamine D2 receptor agonists protect against ischaemia-induced hippocampal neurodegeneration in global cerebral ischaemia. Eur J Pharmacol 352:37–46

    Article  Google Scholar 

  13. Rocca WA, Grossardt BR, Shuster LT (2011) Oophorectomy, menopause, estrogen treatment, and cognitive aging: clinical evidence for a window of opportunity. Brain Res 1379:188–198. https://doi.org/10.1016/j.brainres.2010.10.031

    Article  CAS  PubMed  Google Scholar 

  14. Lange SC, Julien RM (1978) Re-evaluation of estrogen-induced cortical and thalamic paroxysmal EEG activity in the cat. Electroencephalogr Clin Neurophysiol 44:94–103

    Article  CAS  Google Scholar 

  15. Foy MR, Xu J, Xie X, Brinton RD, Thompson RF, Berger TW (1999) 17beta-estradiol enhances NMDA receptor-mediated EPSPs and long-term potentiation. J Neurophysiol 81:925–929. https://doi.org/10.1152/jn.1999.81.2.925

    Article  CAS  PubMed  Google Scholar 

  16. Ibrahim NK, Hortobagyi GN (1999) The evolving role of specific estrogen receptor modulators (SERMs). Surg Oncol 8:103–123

    Article  CAS  Google Scholar 

  17. Arevalo MA, Santos-Galindo M, Lagunas N, Azcoitia I, Garcia-Segura LM (2011) Selective estrogen receptor modulators as brain therapeutic agents. J Mol Endocrinol 46:R1–R9. https://doi.org/10.1677/JME-10-0122

    Article  CAS  PubMed  Google Scholar 

  18. Ciriza I, Carrero P, Azcoitia I et al (2004) Selective estrogen receptor modulators protect hippocampal neurons from kainic acid excitotoxicity: differences with the effect of estradiol. J Neurobiol 61:209–221. https://doi.org/10.1002/neu.20043

    Article  CAS  PubMed  Google Scholar 

  19. Pottoo FH, Bhowmik M, Vohora D (2014) Raloxifene protects against seizures and neurodegeneration in a mouse model mimicking epilepsy in postmenopausal woman. Eur J Pharm Sci 65:167–173. https://doi.org/10.1016/j.ejps.2014.09.002

    Article  CAS  PubMed  Google Scholar 

  20. Scharfman HE, Malthankar-Phatak GH, Friedman D, Pearce P, McCloskey DP, Harden CL, MacLusky NJ (2009) A rat model of epilepsy in women: a tool to study physiological interactions between endocrine systems and seizures. Endocrinology 150:4437–4442. https://doi.org/10.1210/en.2009-0135

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Brothers SP, Wahlestedt C (2010) Therapeutic potential of neuropeptide Y (NPY) receptor ligands. EMBO Mol Med 2:429–439. https://doi.org/10.1002/emmm.201000100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Velísková J, Velísek L (2007) Beta-estradiol increases dentate gyrus inhibition in female rats via augmentation of hilar neuropeptide Y. J Neurosci 27:6054–6063. https://doi.org/10.1523/JNEUROSCI.0366-07.2007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Qian J, Colmers WF, Saggau P (1997) Inhibition of synaptic transmission by neuropeptide Y in rat hippocampal area CA1: modulation of presynaptic Ca2+entry. J Neurosci 17:8169–8177. https://doi.org/10.1523/JNEUROSCI.17-21-08169.1997

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Vezzani A, Michalkiewicz M, Michalkiewicz T, Moneta D, Ravizza T, Richichi C, Aliprandi M, Mulé F et al (2002) Seizure susceptibility and epileptogenesis are decreased in transgenic rats overexpressing neuropeptide Y. Neuroscience 110:237–243

    Article  CAS  Google Scholar 

  25. Weinshenker D, Szot P, Miller NS, Rust NC, Hohmann JG, Pyati U, White SS, Palmiter RD (2001) Genetic comparison of seizure control by norepinephrine and neuropeptide Y. J Neurosci 21:7764–7769

    Article  CAS  Google Scholar 

  26. May RM, Tabatadze N, Czech MM, Woolley CS (2014) Estradiol regulates large dense core vesicles in the hippocampus of adult female rats. Brain Struct Funct 219:1947–1954. https://doi.org/10.1007/s00429-013-0614-7

    Article  CAS  PubMed  Google Scholar 

  27. Nigar S, Pottoo FH, Tabassum N, Verma S, Javed M (2016) Molecular insights into the role of inflammation and oxidative stress in epilepsy. J Adv Med Pharm Sci 10:1–9

    Google Scholar 

  28. White HS, Smith MD, Wilcox KS (2007) Mechanisms of action of antiepileptic drugs. Int Rev Neurobiol 81:85–110. https://doi.org/10.1016/S0074-7742(06)81006-8

    Article  CAS  PubMed  Google Scholar 

  29. Zoratti M, Szabò I (1995) The mitochondrial permeability transition. Biochim Biophys Acta 1241:139–176

    Article  Google Scholar 

  30. Chepurnov SA, Suleĭmanova EM, Guliaev MV, Abbasova KR, Pirogov IuA, Chepurnova NE (2012) Neuroprotection in epilepsy. Usp Fiziol Nauk 43:55–71

    CAS  PubMed  Google Scholar 

  31. Suda S, Ueda M, Nito C, Nishiyama Y, Okubo S, Abe A, Aoki J, Suzuki K et al (2015) Valproic acid ameliorates ischemic brain injury in hyperglycemic rats with permanent middle cerebral occlusion. Brain Res 1606:1–8. https://doi.org/10.1016/j.brainres.2015.02.013

    Article  CAS  PubMed  Google Scholar 

  32. Mao X-Y, Cao Y-G, Ji Z, Zhou HH, Liu ZQ, Sun HL (2015) Topiramate protects against glutamate excitotoxicity via activating BDNF/TrkB-dependent ERK pathway in rodent hippocampal neurons. Prog Neuro-Psychopharmacol Biol Psychiatry 60:11–17. https://doi.org/10.1016/j.pnpbp.2015.01.015

    Article  CAS  Google Scholar 

  33. Delmas PD, Ensrud KE, Adachi JD, Harper KD, Sarkar S, Gennari C, Reginster JY, Pols HA et al (2002) Efficacy of raloxifene on vertebral fracture risk reduction in postmenopausal women with osteoporosis: four-year results from a randomized clinical trial. J Clin Endocrinol Metab 87:3609–3617. https://doi.org/10.1210/jcem.87.8.8750

    Article  CAS  PubMed  Google Scholar 

  34. Kobayashi K, Ikeda Y, Sakai A, Yamasaki N, Haneda E, Miyakawa T, Suzuki H (2010) Reversal of hippocampal neuronal maturation by serotonergic antidepressants. Proc Natl Acad Sci U S A 107:8434–8439. https://doi.org/10.1073/pnas.0912690107

    Article  PubMed  PubMed Central  Google Scholar 

  35. Mohanasundari M, Srinivasan MS, Sethupathy S, Sabesan M (2006) Enhanced neuroprotective effect by combination of bromocriptine and Hypericum perforatum extract against MPTP-induced neurotoxicity in mice. J Neurol Sci 249:140–144. https://doi.org/10.1016/j.jns.2006.06.018

    Article  CAS  PubMed  Google Scholar 

  36. Mazzuferi M, Kumar G, Rospo C, Kaminski RM (2012) Rapid epileptogenesis in the mouse pilocarpine model: video-EEG, pharmacokinetic and histopathological characterization. Exp Neurol 238:156–167. https://doi.org/10.1016/j.expneurol.2012.08.022

    Article  CAS  PubMed  Google Scholar 

  37. Kim YB, Ryu JK, Lee HJ, Lim IJ, Park D, Lee MC, Kim SU (2010) Midkine, heparin-binding growth factor, blocks kainic acid-induced seizure and neuronal cell death in mouse hippocampus. BMC Neurosci 11:42. https://doi.org/10.1186/1471-2202-11-42

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193:265–275

    CAS  Google Scholar 

  39. Ohkawa H, Ohishi N, Yagi K (1979) Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Anal Biochem 95:351–358. https://doi.org/10.1016/0003-2697(79)90738-3

    Article  CAS  Google Scholar 

  40. Maehly AC, Chance B (1954) The assay of catalases and peroxidases. Methods Biochem Anal 1:357–424

    CAS  PubMed  Google Scholar 

  41. Marklund S, Marklund G (1974) Involvement of the superoxide anion radical in the autoxidation of pyrogallol and a convenient assay for superoxide dismutase. Eur J Biochem 47:469–474

    Article  CAS  Google Scholar 

  42. Reynolds EH, Shorvon SD (1981) Monotherapy or polytherapy for epilepsy? Epilepsia 22:1–10

    Article  CAS  Google Scholar 

  43. Brodie MJ, Besag F, Ettinger AB, Mula M, Gobbi G, Comai S, Aldenkamp AP, Steinhoff BJ (2016) Epilepsy, antiepileptic drugs, and aggression: an evidence-based review. Pharmacol Rev 68:563–602. https://doi.org/10.1124/pr.115.012021

    Article  PubMed  PubMed Central  Google Scholar 

  44. Mattson RH, Cramer JA, Collins JF, Group* the D of VAECSN 264 (1992) A comparison of valproate with carbamazepine for the treatment of complex partial seizures and secondarily generalized tonic–clonic seizures in adults. N Engl J Med 327:765–771. https://doi.org/10.1056/NEJM199209103271104

    Article  CAS  PubMed  Google Scholar 

  45. Richens A, Davidson DL, Cartlidge NE, Easter DJ (1994) A multicentre comparative trial of sodium valproate and carbamazepine in adult onset epilepsy. Adult EPITEG Collaborative Group. J Neurol Neurosurg Psychiatry 57:682–687

    Article  CAS  Google Scholar 

  46. Brodie MJ, Richens A, Yuen AW (1995) Double-blind comparison of lamotrigine and carbamazepine in newly diagnosed epilepsy. UK Lamotrigine/Carbamazepine Monotherapy Trial Group Lancet 345:476–479

    CAS  PubMed  Google Scholar 

  47. Beydoun A (1997) Monotherapy trials of new antiepileptic drugs. Epilepsia 38(Suppl 9):S21–S31

    Article  CAS  Google Scholar 

  48. Franco V, French JA, Perucca E (2016) Challenges in the clinical development of new antiepileptic drugs. Pharmacol Res 103:95–104. https://doi.org/10.1016/j.phrs.2015.11.007

    Article  PubMed  Google Scholar 

  49. Gatti G, Bonomi I, Jannuzzi G, Perucca E (2000) The new antiepileptic drugs: pharmacological and clinical aspects. Curr Pharm Des 6:839–860

    Article  CAS  Google Scholar 

  50. Brodie MJ, Sills GJ (2011) Combining antiepileptic drugs—rational polytherapy? Seizure 20:369–375. https://doi.org/10.1016/j.seizure.2011.01.004

    Article  PubMed  Google Scholar 

  51. Sarhan EM, Walker MC, Selai C (2016) Evidence for efficacy of combination of antiepileptic drugs in treatment of epilepsy. J Neurol Res 5:267–276. https://doi.org/10.14740/jnr.v5i6.356

    Article  Google Scholar 

  52. Mani J (2013) Combination therapy in epilepsy: what, when, how and what not! J Assoc Physicians India 61:40–44

    PubMed  Google Scholar 

  53. Etemad L, Moshiri M, Moallem SA (2012) Epilepsy drugs and effects on fetal development: potential mechanisms. J Res Med Sci 17:876–881

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Bernardi F, Pluchino N, Stomati M et al (2003) CNS: sex steroids and SERMs. Ann N Y Acad Sci 997:378–388

    Article  CAS  Google Scholar 

  55. Genazzani AR, Lombardi I, Borgioli G, di Bono I, Casarosa E, Gambacciani M, Palumbo M, Genazzani AD et al (2003) Adrenal function under long-term raloxifene administration. Gynecol Endocrinol 17:159–168

    Article  CAS  Google Scholar 

  56. Clemens B (1988) Dopamine agonist treatment of self-induced pattern-sensitive epilepsy. A case report. Epilepsy Res 2:340–343. https://doi.org/10.1016/0920-1211(88)90044-7

    Article  CAS  PubMed  Google Scholar 

  57. Micale V, Incognito T, Ignoto A, Rampello L, Spartà M, Drago F (2006) Dopaminergic drugs may counteract behavioral and biochemical changes induced by models of brain injury. Eur Neuropsychopharmacol 16:195–203. https://doi.org/10.1016/j.euroneuro.2005.08.003

    Article  CAS  PubMed  Google Scholar 

  58. Deepak D, Daousi C, Javadpour M, MacFarlane IA (2007) Macroprolactinomas and epilepsy. Clin Endocrinol 66:503–507. https://doi.org/10.1111/j.1365-2265.2007.02759.x

    Article  Google Scholar 

  59. Prendiville S, Gale K (1993) Anticonvulsant effect of fluoxetine on focally evoked limbic motor seizures in rats. Epilepsia 34:381–384. https://doi.org/10.1111/j.1528-1157.1993.tb02425.x

    Article  CAS  PubMed  Google Scholar 

  60. Dailey JW, Yan QS, Mishra PK, Burger RL, Jobe PC (1992) Effects of fluoxetine on convulsions and on brain serotonin as detected by microdialysis in genetically epilepsy-prone rats. J Pharmacol Exp Ther 260:533–540

    CAS  PubMed  Google Scholar 

  61. Pericić D, Lazić J, Svob Strac D (2005) Anticonvulsant effects of acute and repeated fluoxetine treatment in unstressed and stressed mice. Brain Res 1033:90–95. https://doi.org/10.1016/j.brainres.2004.11.025

    Article  CAS  PubMed  Google Scholar 

  62. Borowicz KK, Piskorska B, Stępniak B, Czuczwar SJ (2012) Effects of fluoxetine on the anticonvulsant action of valproate and ethosuximide in mouse model of myoclonic convulsions. Ann Agric Environ Med 19:487–490

    CAS  PubMed  Google Scholar 

  63. Klitgaard H, Matagne A, Vanneste-Goemaere J, Margineanu DG (2002) Pilocarpine-induced epileptogenesis in the rat: impact of initial duration of status epilepticus on electrophysiological and neuropathological alterations. Epilepsy Res 51:93–107. https://doi.org/10.1016/S0920-1211(02)00099-2

    Article  CAS  PubMed  Google Scholar 

  64. Liu Z, Nagao T, Desjardins GC, Gloor P, Avoli M (1994) Quantitative evaluation of neuronal loss in the dorsal hippocampus in rats with long-term pilocarpine seizures. Epilepsy Res 17:237–247

    Article  CAS  Google Scholar 

  65. Morris BJ (1989) Neuronal localisation of neuropeptide Y gene expression in rat brain. J Comp Neurol 290:358–368. https://doi.org/10.1002/cne.902900305

    Article  CAS  PubMed  Google Scholar 

  66. Stroud LM, O’Brien TJ, Jupp B et al (2005) Neuropeptide Y suppresses absence seizures in a genetic rat model. Brain Res 1033:151–156. https://doi.org/10.1016/j.brainres.2004.11.022

    Article  CAS  PubMed  Google Scholar 

  67. Elms J, Powell KL, van Raay L, Dedeurwaerdere S, O’Brien TJ, Morris MJ (2013) Long-term valproate treatment increases brain neuropeptide Y expression and decreases seizure expression in a genetic rat model of absence epilepsy. PLoS One 8:e73505. https://doi.org/10.1371/journal.pone.0073505

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Guo H, Castro PA, Palmiter RD, Baraban SC (2002) Y5 receptors mediate neuropeptide Y actions at excitatory synapses in area CA3 of the mouse hippocampus. J Neurophysiol 87:558–566. https://doi.org/10.1152/jn.00532.2001

    Article  CAS  PubMed  Google Scholar 

  69. van den Pol AN (2012) Neuropeptide transmission in brain circuits. Neuron 76:98–115. https://doi.org/10.1016/j.neuron.2012.09.014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Lundberg JM, Franco-Cereceda A, Hemsén A, Lacroix JS, Pernow J (1990) Pharmacology of noradrenaline and neuropeptide tyrosine (NPY)-mediated sympathetic cotransmission. Fundam Clin Pharmacol 4:373–391

    Article  CAS  Google Scholar 

  71. Winyard PG, Moody CJ, Jacob C (2005) Oxidative activation of antioxidant defence. Trends Biochem Sci 30:453–461. https://doi.org/10.1016/j.tibs.2005.06.001

    Article  CAS  PubMed  Google Scholar 

  72. Hussein AM, Ghalwash M, Magdy K, Abulseoud OA (2016) Beta lactams antibiotic ceftriaxone modulates seizures, oxidative stress and connexin 43 expression in hippocampus of pentylenetetrazole kindled rats. J Epilepsy Res 6:8–15. https://doi.org/10.14581/jer.16002

    Article  PubMed  PubMed Central  Google Scholar 

  73. Waldbaum S, Patel M (2010) Mitochondrial dysfunction and oxidative stress: a contributing link to acquired epilepsy? J Bioenerg Biomembr 42:449–455. https://doi.org/10.1007/s10863-010-9320-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Saad K, Hammad E, Hassan AF, Badry R (2014) Trace element, oxidant, and antioxidant enzyme values in blood of children with refractory epilepsy. Int J Neurosci 124:181–186. https://doi.org/10.3109/00207454.2013.831851

    Article  CAS  PubMed  Google Scholar 

  75. Pazdernik TL, Emerson MR, Cross R, Nelson SR, Samson FE (2001) Soman-induced seizures: limbic activity, oxidative stress and neuroprotective proteins. J Appl Toxicol 21(Suppl 1):S87–S94

    Article  CAS  Google Scholar 

  76. Carrasco-Pozo C, Tan KN, Borges K (2015) Sulforaphane is anticonvulsant and improves mitochondrial function. J Neurochem 135:932–942. https://doi.org/10.1111/jnc.13361

    Article  CAS  PubMed  Google Scholar 

  77. Costa DA, de Oliveira GAL, Lima TC, dos Santos PS, de Sousa DP, de Freitas RM (2012) Anticonvulsant and antioxidant effects of cyano-carvone and its action on acetylcholinesterase activity in mice hippocampus. Cell Mol Neurobiol 32:633–640. https://doi.org/10.1007/s10571-012-9812-8

    Article  CAS  PubMed  Google Scholar 

  78. Rodrigues AD, Scheffel TB, Scola G, dos Santos MT, Fank B, Dani C, Vanderlinde R, Henriques JAP et al (2013) Purple grape juices prevent pentylenetetrazol-induced oxidative damage in the liver and serum of Wistar rats. Nutr Res 33:120–125. https://doi.org/10.1016/j.nutres.2012.12.002

    Article  CAS  PubMed  Google Scholar 

  79. Gao F, Gao Y, Liu Y, Wang L, Li YJ (2014) Berberine exerts an anticonvulsant effect and ameliorates memory impairment and oxidative stress in a pilocarpine-induced epilepsy model in the rat. Neuropsychiatr Dis Treat 10:2139–2145. https://doi.org/10.2147/NDT.S73210

    Article  PubMed  PubMed Central  Google Scholar 

  80. Oliveira AA, Almeida JPC, Freitas RM, Nascimento VS, Aguiar LMV, Júnior HVN, Fonseca FN, Viana GSB et al (2007) Effects of levetiracetam in lipid peroxidation level, nitrite-nitrate formation and antioxidant enzymatic activity in mice brain after pilocarpine-induced seizures. Cell Mol Neurobiol 27:395–406. https://doi.org/10.1007/s10571-006-9132-y

    Article  CAS  PubMed  Google Scholar 

  81. Frantseva MV, Velazquez JL, Hwang PA, Carlen PL (2000) Free radical production correlates with cell death in an in vitro model of epilepsy. Eur J Neurosci 12:1431–1439

    Article  CAS  Google Scholar 

  82. Kiasalari Z, Khalili M, Roghani M, Heidari H, Azizi Y (2013) Antiepileptic and antioxidant effect of hydroalcoholic extract of Ferula Assa Foetida gum on pentylentetrazole-induced kindling in male mice. Basic Clin Neurosci 4:299–306

    PubMed  PubMed Central  Google Scholar 

  83. Halász P, Rásonyi G (2004) Neuroprotection and epilepsy. In: Frontiers in Clinical Neuroscience. Springer, Boston, MA, pp. 91–109

    Chapter  Google Scholar 

  84. Kimiskidis V (2008) Neuroprotection in epilepsy: the role of antiepileptic drugs. Ann General Psychiatry 7:S74. https://doi.org/10.1186/1744-859X-7-S1-S74

    Article  Google Scholar 

  85. Trojnar MK, Małek R, Chrościńska M, Nowak S, Błaszczyk B, Czuczwar SJ (2002) Neuroprotective effects of antiepileptic drugs. Pol J Pharmacol 54:557–566

    CAS  PubMed  Google Scholar 

  86. Dam AM (1980) Epilepsy and neuron loss in the hippocampus. Epilepsia 21:617–629

    Article  CAS  Google Scholar 

  87. Cho I, Cho Y-J, Kim H-W, Heo K, Lee BI, Kim WJ (2014) Effect of androsterone after pilocarpine-induced status epilepticus in mice. J Epilepsy Res 4:7–13

    Article  Google Scholar 

  88. do Nascimento AL, Dos Santos NF, Campos Pelágio F et al (2012) Neuronal degeneration and gliosis time-course in the mouse hippocampal formation after pilocarpine-induced status epilepticus. Brain Res 1470:98–110. https://doi.org/10.1016/j.brainres.2012.06.008

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge DST, New Delhi, for providing instrumental facilities under FIST scheme to PG Department of Pharmaceutical Sciences, University of Kashmir. The authors wish to express their gratitude to Unicure (India) Pvt. Ltd., Noida, for carrying out the pharmaceutical analysis of APIs.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Faheem Hyder Pottoo or Nahida Tabassum.

Ethics declarations

Conflict of Interest

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pottoo, F.H., Tabassum, N., Javed, M.N. et al. The Synergistic Effect of Raloxifene, Fluoxetine, and Bromocriptine Protects Against Pilocarpine-Induced Status Epilepticus and Temporal Lobe Epilepsy. Mol Neurobiol 56, 1233–1247 (2019). https://doi.org/10.1007/s12035-018-1121-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-018-1121-x

Keywords

Navigation