Skip to main content
Log in

The Effects of Non-selective Dopamine Receptor Activation by Apomorphine in the Mouse Hippocampus

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Apomorphine is a dopamine receptor agonist that activates D1–D5 dopamine receptors and that is used to treat Parkinson’s disease (PD). However, the effect of apomorphine on non-motor activity has been poorly studied, and likewise, the effects of dopaminergic activation in brain areas that do not fulfill motor functions are unclear. The aim of this study was to determine how dopamine receptor activation affects behavior, as well as plasticity, morphology, and oxidative stress in the hippocampus. Adult mice were chronically administered apomorphine (1 mg/kg for 15 days), and the effects on memory and learning, synaptic plasticity, dendritic length, inflammatory responses, and oxidative stress were evaluated. Apomorphine impaired learning and long-term memory in mice, as evaluated in the Morris water maze test. In addition, electrophysiological recording of field excitatory postsynaptic potentials (fEPSP) indicated that the long-term potentiation (LTP) of synaptic transmission in the CA1 region of the hippocampus was fully impaired by apomorphine. In addition, a Sholl analysis of Golgi-Cox stained neurons showed that apomorphine reduced the total length of dendrites in the CA1 region of the hippocampus. Finally, there were more reactive astrocytes and oxidative stress biomarkers in mice administered apomorphine, as measured by GFAP immunohistochemistry and markers of redox balance, respectively. Hence, the non-selective activation of dopaminergic receptors in the hippocampus by apomorphine triggers deficiencies in learning and memory, it prevents LTP, reduces dendritic length, and provokes neuronal damage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Millan MJ, Maiofiss L, Cussac D, Audinot V, Boutin JA, Newman-Tancredi A (2002) Differential actions of antiparkinson agents at multiple classes of monoaminergic receptor. I. A multivariate analysis of the binding profiles of 14 drugs at 21 native and cloned human receptor subtypes. J Pharmacol Exp Ther 303(2):791–804

    Article  CAS  Google Scholar 

  2. Chen JJ, Obering C (2005) A review of intermittent subcutaneous apomorphine injections for the rescue management of motor fluctuations associated with advanced Parkinson’s disease. Clin Ther 27:1710–1724

    Article  CAS  Google Scholar 

  3. Menon R, Stacy M (2007) Apomorphine in the treatment of Parkinson’s disease. Expert Opin Pharmacother 8:1941–1950

    Article  CAS  Google Scholar 

  4. Jenner P, Katzenschlager R (2016) Apomorphine-pharmacological properties and clinical trials in Parkinson’s disease. Parkinsonism Relat Disord 33(Suppl 1):S13–S21

    Article  Google Scholar 

  5. Albersen M, Orabi H, Lue TF (2012) Evaluation and treatment of erectile dysfunction in the aging male: a mini-review. Gerontology 58:3–14

    Article  CAS  Google Scholar 

  6. Van Der Kam EL, Coolen JC, Ellenbroek BA, Cools AR (2005) The effects of stress on alcohol consumption: mild acute and sub-chronic stressors differentially affect apomorphine susceptible and unsusceptible rats. Life Sci 6:1759–1770

    Google Scholar 

  7. Haleem DJ, Ikram H, Haider S, Parveen T, Haleem MA (2013) Enhancement and inhibition of apomorphine-induced sensitization in rats exposed to immobilization stress: relationship with adaptation to stress. Pharmacol Biochem Behav 112:22–28

    Article  CAS  Google Scholar 

  8. Sanguedo FV, Dias FR, Bloise E, Cespedes IC, Giraldi-Guimarães A, Samuels RI, Carey RJ, Carrera MP (2014) Increase in medial frontal cortex ERK activation following the induction of apomorphine sensitization. Pharmacol Biochem Behav 118:60–68

    Article  CAS  Google Scholar 

  9. Haleem DJ, Farhan M (2015) Inhibition of apomorphine-induced behavioral sensitization in rats pretreated with fluoxetine. Behav Pharmacol 26:159–166

    Article  CAS  Google Scholar 

  10. Björklund A, Dunnett SB (2007) Dopamine neuron systems in the brain: an update. Trends Neurosci 30:194–202

    Article  Google Scholar 

  11. Lammel S, Hetzel A, Häckel O, Jones I, Liss B, Roeper J (2008) Unique properties of mesoprefrontal neurons within a dual mesocorticolimbic dopamine system. Neuron 57:760–773

    Article  CAS  Google Scholar 

  12. Bodea GO, Blaess S (2015) Establishing diversity in the dopaminergic system. FEBS Lett 589:3773–3785

    Article  CAS  Google Scholar 

  13. Tindell AJ, Berridge KC, Zhang J, Peciña S, Aldridge JW (2005) Ventral pallidal neurons code incentive motivation: amplification by mesolimbic sensitization and amphetamine. Eur J Neurosci 22:2617–2634

    Article  Google Scholar 

  14. Schmidt WJ, Beninger RJ (2006) Behavioural sensitization in addiction, schizophrenia, Parkinson’s disease and dyskinesia. Neurotox Res 10:161–166

    Article  CAS  Google Scholar 

  15. Zhu J, Chen Y, Zhao N, Cao G, Dang Y, Han W, Xu M, Chen T (2012) Distinct roles of dopamine D3 receptors in modulating methamphetamine-induced behavioral sensitization and ultrastructural plasticity in the shell of the nucleus accumbens. J Neurosci Res 90:895–904

    Article  CAS  Google Scholar 

  16. Vanderschuren LJ, Pierce RC (2010) Sensitization processes in drug addiction. Curr Top Behav Neurosci 3:179–195

    Article  Google Scholar 

  17. Robinson TE, Berridge KC (1993) The neural basis of drug craving: an incentive-sensitization theory of addiction. Brain Res Rev 18:247–291

    Article  CAS  Google Scholar 

  18. Robinson TE, Berridge KC (2003) Addiction. Annu Rev Psychol 54:25–53

    Article  Google Scholar 

  19. Morris RG, Moser EI, Riedel G, Martin SJ, Sandin J, Day M, O'Carroll C (2003) Elements of a neurobiological theory of the hippocampus: the role of activity-dependent synaptic plasticity in memory. Philos Trans R Soc Lond Ser B Biol Sci 358:773–786

    Article  CAS  Google Scholar 

  20. Lisman JE, Grace AA (2005) The hippocampal-VTA loop: controlling the entry of information into long-term memory. Neuron 46:703–713

    Article  CAS  Google Scholar 

  21. McNamara CG, Tejero-Cantero Á, Trouche S, Campo-Urriza N, Dupret D (2014) Dopaminergic neurons promote hippocampal reactivation and spatial memory persistence. Nat Neurosci 17:1658–1660

    Article  CAS  Google Scholar 

  22. Rosen ZB, Cheung S, Siegelbaum SA (2015) Midbrain dopamine neurons bidirectionally regulate CA3-CA1 synaptic drive. Nat Neurosci 18:1763–1771

    Article  CAS  Google Scholar 

  23. Gourgiotis I, Kampouri NG, Koulouri V, Lempesis IG, Prasinou MD, Georgiadou G, Pitsikas N (2012) Nitric oxide modulates apomorphine-induced recognition memory deficits in rats. Pharmacol Biochem Behav 102:507–614

    Article  CAS  Google Scholar 

  24. Ikram H, Haleem DJ (2011) Attenuation of apomorphine-induced sensitization by buspirone. Pharmacol Biochem Behav 99:444–450

    Article  CAS  Google Scholar 

  25. Lazcano Z, Solis O, Bringas ME, Limón D, Diaz A, Espinosa B, García-Peláez I, Flores G et al (2014) Unilateral injection of Ab25-35 in the hippocampus reduces the number of dendritic spines in hyperglycemic rats. Synapse 68:585–594

    Article  CAS  Google Scholar 

  26. Negrete-Díaz JV, Sihra TS, Delgado-García JM, Rodríguez-Moreno A (2007) Kainate receptor-mediated presynaptic inhibition converges with presynaptic inhibition mediated by group II mGluRs and long-term depression at the hippocampal mossy fiber-CA3 synapse. J Neural Transm 114:1425–1431

    Article  Google Scholar 

  27. Andrade-Talavera Y, Duque-Feria P, Paulsen O, Rodríguez-Moreno A (2016) Presynaptic spike timing-dependent long-term depression in the mouse hippocampus. Cereb Cortex 26:411–421

    Article  Google Scholar 

  28. Pérez-Villegas EM, Negrete-Díaz JV, Porras-García ME, Ruiz R, Carrión AM, Rodríguez-Moreno A, Armengol JA (2017) Mutation of the HERC 1 ubiquitin ligase impairs associative learning in the lateral amygdala. Mol Neurobiol 55:1157–1168. https://doi.org/10.1007/s12035-016-0371-8

    Article  CAS  PubMed  Google Scholar 

  29. Flores G, Alquicer G, Silva-Gómez AB, Zaldivar G, Stewart J, Quirion R, Srivastava LK (2005) Alterations in dendritic morphology of prefrontal cortical and nucleus accumbens neurons in post-pubertal rats after neonatal excitotoxic lesions of the ventral hippocampus. Neuroscience 133:463–470

    Article  CAS  Google Scholar 

  30. Torres-García ME, Solís O, Patricio A, Rodríguez-Moreno A, Camacho-Abrego I, Limón ID, Flores G (2012) Dendritic morphology changes in neurons from the prefrontal cortex, hippocampus and nucleus accumbens in rats after lesion of the thalamic reticular nucleus. Neuroscience 223:429–438

    Article  Google Scholar 

  31. Gibb R, Kolb B (1998) A method for vibratome sectioning of Golgi-Cox stained whole rat brain. J Neurosci Methods 79(1):1–4

    Article  CAS  Google Scholar 

  32. Robinson TE, Kolb B (1997) Persistent structural modifications in nucleus accumbens and prefrontal cortex neurons produced by previous experience with amphetamine. J Neurosci 17:8491–8497

    Article  CAS  Google Scholar 

  33. Paxinos G, Watson C (1986) The rat brain in stereotaxic coordinates, 2nd edn. Academic Press, New York

    Google Scholar 

  34. Kolb B, Firgie M, Gibb R, Gorny G, Rowntree S (1998) Age, experience and the changing brain. Neurosci Biobehav Rev 22:143–159

    Article  CAS  Google Scholar 

  35. Sholl DA (1953) Dendritic organization in the neurons of the visual and motor cortices of the cat. J Anat 87:387–406

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Silva-Gomez AB, Rojas D, Juarez I, Flores G (2003) Decreased dendritic spine density on prefrontal cortical and hippocampal pyramidal neurons in postweaning social isolation rats. Brain Res 983:128–136

    Article  CAS  Google Scholar 

  37. Vega E, de Gómez-Villalobos M, J, Flores G (2004) Alteration in dendritic morphology of pyramidal neurons from the prefrontal cortex of rats with renovascular hypertension. Brain Res 1021:112–138

    Article  CAS  Google Scholar 

  38. Díaz A, Treviño S, Guevara J, Muñoz-Arenas G, Brambila E, Espinosa B, Moreno-Rodríguez A, Lopez-Lopez G et al (2016) Energy drink administration in combination with alcohol causes an inflammatory response and oxidative stress in the hippocampus and temporal cortex of rats. Oxidative Med Cell Longev 2016:8725354

    Article  Google Scholar 

  39. Bringas ME, Morales-Medina JC, Flores-Vivaldo Y, Negrete-Díaz JV, Aguilar-Alonso P, León-Chávez BA, Lazcano-Ortiz Z, Monroy E et al (2012) Clozapine administration reverses behavioral, neuronal, and nitric oxide disturbances in the neonatal ventral hippocampus rat. Neuropharmacology 62:1848–1857

    Article  CAS  Google Scholar 

  40. Gerard-Monnier D, Erdelmeier I, Regnard K, Moze-Henry N, Yadan JC, Chaudiere J (1998) Reactions of 1-methyl-2-phenylindole with malondialdehyde and 4 hydroxyalkenals. Analytical applications to a colorimetric assay of lipid peroxidation. Chem Res Toxicol 11:1176–1183

    Article  CAS  Google Scholar 

  41. Rahman I, Kode A, Biswas SK (2006) Assay for quantitative determination of glutathione and glutathione disulfide levels using enzymatic recycling method. Nat Protoc 1:3159–3165

    Article  CAS  Google Scholar 

  42. Griffith OW (1980) Determination of glutathione and glutathione disulfide using glutathione reductase and 2-vinylpyridine. Anal Biochem 106:207–212

    Article  CAS  Google Scholar 

  43. Morris RGM (1993) An attempt to dissociate ‘spatial-mapping’ and ‘working-memory’ theories of hippocampal function. In: Seifert W (ed) Neurobiology of the hippocampus. Academic Press, New York, pp. 405–432

    Google Scholar 

  44. Gomide V, Bibancos T, Chadi G (2005) Dopamine cell morphology and glial cell hypertrophy and process branching in the nigrostriatal system after striatal 6-OHDA analyzed by specific sterological tools. Int J Neurosci 11:557–582

    Article  Google Scholar 

  45. Cadet JL, Krasnova IN, Jayanthi S, Lyles J (2007) Neurotoxicity of substituted amphetamines: molecular and cellular mechanisms. Neuro Research 11:183–202

    Article  CAS  Google Scholar 

  46. Del Rio D, Stewart AJ, Pellegrini N (2005) A review of recent studies on malondialdehyde as toxic molecule and biological marker of oxidative stress. Nutr Metab Cardiovasc Dis 15:316–328

    Article  Google Scholar 

  47. Huang MC, Lin SK, Chen CH, Pan CH, Lee CH, Liu HC (2013) Oxidative stress status in recently abstinent methamphetamine abusers. Psychiatry Clin Neurosci 67:92–100

    Article  CAS  Google Scholar 

  48. Pompella A, Corti A (2015) The changing faces of glutathione, a cellular protagonist. Front Pharmacol 15(6):98

    Google Scholar 

  49. Bethus I, Tse D, Morris RGM (2010) Dopamine and memory: modulation of the persistence of memory for novel hippocampal NMDA receptor-dependent paired associates. J Neurosci 30:1610–1618

    Article  CAS  Google Scholar 

  50. Glickstein SB, Hof PR, Schmauss C (2002) Mice lacking dopamine D2 and D3 receptors have spatial working memory deficits. J Neurosci 22(13):5619–5629

    Article  CAS  Google Scholar 

  51. El-Ghundi M, Fletcher PJ, Drago J, Sibley DR, O'Dowd BF, George SR (1999) Spatial learning deficit in dopamine D(1) receptor knockout mice. Eur J Neuropharmacol 383:95–106

    Article  CAS  Google Scholar 

  52. Calabresi P, Saiardi A, Pisani A, Baik JH, Centonze D, Mercuri NB, Bernardi G, Borrelli E (1997) Abnormal synaptic plasticity in the striatum of mice lacking dopamine D2 receptors. J Neurosci 17:4536–4544

    Article  CAS  Google Scholar 

  53. Bach ME, Barad M, Son H, Zhuo M, Lu YF, Shih R, Mansuy I, Hawkins RD et al (1999) Age-related defects in spatial memory are correlated with defects in the late phase of hippocampal long-term potentiation in vitro and are attenuated by drugs that enhance the cAMP signaling pathway. Proc Natl Acad Sci U S A 96:5280–5285

    Article  CAS  Google Scholar 

  54. Swant J, Chiewa S, Stanwood G, Khoshbouei H (2010) Methamphetamine reduces LTP and increase baseline synaptic transmission in the CA1 region of mouse hippocampus. PLoS One 5:e11382

    Article  Google Scholar 

  55. North A, Swant J, Salvatore MF, Gamble-George J, Prins P, Butler B, Mittai MK, Heltsley R et al (2013) Chronic methamphetamine exposure produces a delayed, long-lasting memory deficit. Synapse 67:245–257

    Article  CAS  Google Scholar 

  56. Granado N, Ortiz O, Suárez LM, Martín ED, Ceña V, Solís JM, Moratalla R (2008) D1 but not D5 dopamine receptors are critical for LTP, spatial learning and LTP-induced arc and zif268 expression in the hippocampus. Cereb Cortex 18:1–12

    Article  Google Scholar 

  57. Guo F, Zhao J, Zhao D, Wang J, Wang X, Feng Z, Vreugdenhil M, Lu C (2017) Dopamine D4 receptor activation restores CA1 LTP in hippocampal slices from aged mice. Aging Cell 16:1323–1333

    Article  CAS  Google Scholar 

  58. Rodrigues TB, Granado N, Ortiz O, Cerdán S, Moratalla R (2007) Metabolic interactions between glutamatergic and dopaminergic neurotransmitter systems are mediated through D(1) dopamine receptors. J Neurosci Res 85(15):3284–3293

    Article  CAS  Google Scholar 

  59. Lipska BK, Weinberger DR (2000) To model a psychiatric disorder in animals: schizophrenia as a reality test. Neuropsychopharmacology 23(3):223–239

    Article  CAS  Google Scholar 

  60. Ferreras S, Fernández G, Danelon V, Pisano MV, Masseroni L, Chapleau CA, Krapacher FA, Mlewski EC et al (2017) Cdk5 is essential for amphetamine to increase dendritic spine density in hippocampal pyramidal neurons. Front Cell Neurosci 11:372

  61. Flores G, Morales-Medina JC, Diaz A (2016) Neuronal and brain morphological changes in animal models of schizophrenia. Behav Brain Res 301:190–203

    Article  CAS  Google Scholar 

  62. Fanselow MS, Dong HW (2010) Are the dorsal and ventral hippocampus functionally distinct structures? Neuron 65:7–19

    Article  CAS  Google Scholar 

  63. Sahay A, Hen R (2007) Adult hippocampal neurogenesis in depression. Nat Neurosci 10:1110–1115

    Article  CAS  Google Scholar 

  64. Herman JP, Figueiredo H, Mueller NK, Ulrich-Lai Y, Ostrander MM, Choi DC, Cullinan WE (2003) Central mechanisms of stress integration: hierarchical circuitry controlling hypothalamo-pituitary-adrenocortical responsiveness. Front Neuroendocrinol 24:151–180

    Article  CAS  Google Scholar 

  65. Belda X, Armario A (2009) Dopamine D1 and D2 dopamine receptors regulate immobilization stress-induced activation of the hypothalamus-pituitary-adrenal axis. Psychopharmacology 206:355–365

    Article  CAS  Google Scholar 

  66. Luo Y, Roth GS (2000) The roles of dopamine oxidative stress and dopamine receptor signaling in aging and age-related neurodegeneration. Antioxid Redox Signal 2:449–460

    Article  CAS  Google Scholar 

  67. Miyazaki I, Asanuma M (2008) Dopaminergic neuron-specific oxidative stress caused by dopamine itself. Acta Med Okayama 62:141–150

    CAS  PubMed  Google Scholar 

  68. Ridet JL, Malhotra SK, Privat A, Gage FH (1997) Reactive astrocytes: cellular and molecular cues to biological function. Trends Neurosci 20:570–577

    Article  CAS  Google Scholar 

  69. Sofroniew MV (2009) Molecular dissection of reactive astrogliosis and glial scar formation. Trends Neurosci 32:638–647

    Article  CAS  Google Scholar 

  70. Kang K, Lee SW, Han JE, Choi JW, Song MR (2014) The complex morphology of reactive astrocytes controlled by fibroblast growth factor signaling. Glia 62:1328–1344

    Article  Google Scholar 

  71. Garwood CJ, Ratcliffe LE, Simpson JE, Heath PR, Ince PG, Wharton SB (2017) Review: astrocytes in Alzheimer’s disease and other age-associated dementias: a supporting player with a central role. Neuropathol Appl Neurobiol 43:281–298

    Article  CAS  Google Scholar 

  72. Beckman JS, Ye YZ, Chen J, Conger KA (1996) The interactions of nitric oxide with oxygen radicals and scavengers in cerebral ischemic injury. Adv Neurol 71:339–350

    CAS  PubMed  Google Scholar 

  73. Morales-Medina JC, Mejorada A, Romero-Curiel A, Flores G (2007) Alterations in dendritic morphology of hippocampal neurons in adult rats after neonatal administration of N-omega-nitro-L-arginine. Synapse 61:785–789

    Article  CAS  Google Scholar 

  74. Morales-Medina JC, Mejorada A, Romero-Curiel A, Aguilar-Alonso P, León-Chávez BA, Gamboa C, Quirion R, Flores G (2008) Neonatal administration of N-omega-nitro-L-arginine induces permanent decrease in NO levels and hyperresponsiveness to locomotor activity by D-amphetamine in postpubertal rats. Neuropharmacology 55:1313–1320

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We acknowledge the assistance of Dr. Mark Sefton in the preparation of this manuscript and the technical assistance of Dr. Yuniesky Andrade-Talavera. This work received financial support from the following grants: AR-M (MINECO/FEDER BFU2012-38208 and the Junta de Andalucía P11-CVI-7290) and GF (VIEP-BUAP Number FLAG-2016 and CONACYT Number 252808).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Gonzalo Flores or Antonio Rodríguez-Moreno.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Arroyo-García, L.E., Vázquez-Roque, R.A., Díaz, A. et al. The Effects of Non-selective Dopamine Receptor Activation by Apomorphine in the Mouse Hippocampus. Mol Neurobiol 55, 8625–8636 (2018). https://doi.org/10.1007/s12035-018-0991-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-018-0991-2

Keywords

Navigation