Skip to main content
Log in

PKCδ Knockout Mice Are Protected from Dextromethorphan-Induced Serotonergic Behaviors in Mice: Involvements of Downregulation of 5-HT1A Receptor and Upregulation of Nrf2-Dependent GSH Synthesis

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

We investigated whether a specific serotonin (5-HT) receptor-mediated mechanism was involved in dextromethorphan (DM)-induced serotonergic behaviors. We firstly observed that the activation of 5-HT1A receptor, but not 5-HT2A receptor, contributed to DM-induced serotonergic behaviors in mice. We aimed to determine whether the upregulation of 5-HT1A receptor induced by DM facilitates the specific induction of certain PKC isoform, because previous reports suggested that 5-HT1A receptor activates protein kinase C (PKC). A high dose of DM (80 mg/kg, i.p.) induced a selective induction of PKCδ out of PKCα, PKCβI, PKCβII, PKCξ, and PKCδ in the hypothalamus of wild-type (WT) mice. More importantly, 5-HT1A receptor co-immunoprecipitated PKCδ in the presence of DM. Consistently, rottlerin, a pharmacological inhibitor of PKCδ, or PKCδ knockout significantly protected against increases in 5-HT1A receptor gene expression, 5-HT turnover rate, and serotonergic behaviors induced by DM. Treatment with DM resulted in an initial increase in nuclear factor erythroid-2-related factor 2 (Nrf2) nuclear translocation and DNA-binding activity, γ-glutamylcysteine (GCL) mRNA expression, and glutathione (GSH) level. This compensative induction was further potentiated by rottlerin or PKCδ knockout. However, GCL mRNA and GSH/GSSG levels were decreased 6 and 12 h post-DM. These decreases were attenuated by PKCδ inhibition. Our results suggest that interaction between 5-HT1A receptor and PKCδ is critical for inducing DM-induced serotonergic behaviors and that inhibition of PKCδ attenuates the serotonergic behaviors via downregulation of 5-HT1A receptor and upregulation of Nrf2-dependent GSH synthesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Abbreviations

5-HIAA:

5-Hydroxyindoleacetic acid

5-HT:

Serotonin

ARE:

Antioxidant response element

CNS:

Central nervous system

DM:

Dextromethorphan

GCL:

γ-Glutamylcysteine

GI:

Gastrointestinal

GSH:

Glutathione

GSSG:

Glutathione disulfide

IPANs:

Intrinsic primary afferent nerves

Keap1:

Kelch ECH associating protein 1

KO:

Knockout

L-BSO:

l-Buthionine sulfoximine

MAO-A:

Monoamine oxidase-A

MDL:

MDL11,939

Nrf2:

Nuclear factor erythroid-2-related factor 2

PKC:

Protein kinase C

Rott:

Rottlerin

WAY:

WAY100635

WT:

Wild-type

References

  1. Shin EJ, Lee PH, Kim HJ, Nabeshima T, Kim HC (2008) Neuropsychotoxicity of abused drugs: potential of dextromethorphan and novel neuroprotective analogs of dextromethorphan with improved safety profiles in terms of abuse and neuroprotective effects. J Pharmacol Sci 106(1):22–27. https://doi.org/10.1254/jphs.FM0070177

    Article  PubMed  CAS  Google Scholar 

  2. Shin EJ, Bach JH, Lee SY, Kim JM, Lee J, Hong JS, Nabeshima T, Kim HC (2011) Neuropsychotoxic and neuroprotective potentials of dextromethorphan and its analogs. J Pharmacol Sci 116(2):137–148. https://doi.org/10.1254/jphs.11R02CR

    Article  PubMed  CAS  Google Scholar 

  3. Desai S, Aldea D, Daneels E, Soliman M, Braksmajer AS, Kopes-Kerr CP (2006) Chronic addiction to dextromethorphan cough syrup: a case report. J Am Board Fam Med 19(3):320–323. https://doi.org/10.3122/jabfm.19.3.320

    Article  PubMed  Google Scholar 

  4. Holtzman SG (1994) Discriminative stimulus effects of dextromethorphan in the rat. Psychopharmacology 116(3):249–254. https://doi.org/10.1007/BF02245325

    Article  PubMed  CAS  Google Scholar 

  5. Jhoo WK, Shin EJ, Lee YH, Cheon MA, Oh KW, Kang SY, Lee C, Yi BC et al (2000) Dual effects of dextromethorphan on cocaine-induced conditioned place preference in mice. Neurosci Lett 288(1):76–80. https://doi.org/10.1016/S0304-3940(00)01188-5

    Article  PubMed  CAS  Google Scholar 

  6. Kim HC, Bing G, Shin EJ, Jhoo HS, Cheon MA, Lee SH, Choi KH, Kim JI et al (2001) Dextromethorphan affects cocaine-mediated behavioral pattern in parallel with a long-lasting Fos-related antigen-immunoreactivity. Life Sci 69(6):615–624. https://doi.org/10.1016/S0024-3205(01)01152-3

    Article  PubMed  CAS  Google Scholar 

  7. Kim HC, Pennypacker KR, Bing G, Bronstein D, McMillian MK, Hong JS (1996) The effects of dextromethorphan on kainic acid-induced seizures in the rat. Neurotoxicology 17(2):375–385

    PubMed  CAS  Google Scholar 

  8. Pender ES, Parks BR (1991) Toxicity with dextromethorphan-containing preparations: a literature review and report of two additional cases. Pediatr Emerg Care 7(3):163–165. https://doi.org/10.1097/00006565-199106000-00010

    Article  PubMed  CAS  Google Scholar 

  9. Shin EJ, Nah SY, Chae JS, Bing G, Shin SW, Yen TP, Baek IH, Kim WK et al (2007) Dextromethorphan attenuates trimethyltin-induced neurotoxicity via sigma 1 receptor activation in rats. Neurochem Int 50(6):791–799. https://doi.org/10.1016/j.neuint.2007.01.008

    Article  PubMed  CAS  Google Scholar 

  10. Miller A, Panitch H (2007) Therapeutic use of dextromethorphan: key learnings from treatment of pseudobulbar affect. J Neurol Sci 259(1–2):67–73. https://doi.org/10.1016/j.jns.2006.06.030

    Article  PubMed  CAS  Google Scholar 

  11. Weinbroum AA, Rudick V, Paret G, Ben-Abraham R (2000) The role of dextromethorphan in pain control. Can J Anaesth 47(6):585–596. https://doi.org/10.1007/BF03018952

    Article  PubMed  CAS  Google Scholar 

  12. Tran HQ, Chung YH, Shin EJ, Kim WK, Lee JC, Jeong JH, Wie MB, Jang CG et al (2016) High-dose dextromethorphan produces myelinoid bodies in the hippocampus of rats. J Pharmacol Sci 132(2):166–170. https://doi.org/10.1016/j.jphs.2016.10.001

    Article  PubMed  CAS  Google Scholar 

  13. Tran HQ, Chung YH, Shin EJ, Tran TV, Jeong JH, Jang CG, Nah SY, Yamada K et al (2017) MK-801, but not naloxone, attenuates high-dose dextromethorphan-induced convulsive behavior: possible involvement of the GluN2B receptor. Toxicol Appl Pharmacol 334:158–166. https://doi.org/10.1016/j.taap.2017.09.010

    Article  PubMed  CAS  Google Scholar 

  14. Ganetsky M, Babu KM, Boyer EW (2007) Serotonin syndrome in dextromethorphan ingestion responsive to propofol therapy. Pediatr Emerg Care 23(11):829–831. https://doi.org/10.1097/PEC.0b013e31815a0667

    Article  PubMed  Google Scholar 

  15. Kinoshita H, Ohkubo T, Yasuda M, Yakushiji F (2011) Serotonin syndrome induced by dextromethorphan (Medicon) administrated at the conventional dose. Geriatr Gerontol Int 11(1):121–122. https://doi.org/10.1111/j.1447-0594.2010.00652.x

    Article  PubMed  Google Scholar 

  16. Tanaka A, Nagamatsu T, Yamaguchi M, Nomura A, Nagura F, Maeda K, Tomino T, Watanabe T et al (2011) Myoclonus after dextromethorphan administration in peritoneal dialysis. Ann Pharmacother 45(1):e1. https://doi.org/10.1345/aph.1P301

    Article  PubMed  Google Scholar 

  17. Haberzettl R, Bert B, Fink H, Fox MA (2013) Animal models of the serotonin syndrome: a systematic review. Behav Brain Res 256:328–345. https://doi.org/10.1016/j.bbr.2013.08.045

    Article  PubMed  CAS  Google Scholar 

  18. Bijl D (2004) The serotonin syndrome. Neth J Med 62(9):309–313

    PubMed  CAS  Google Scholar 

  19. Gershon MD, Tack J (2007) The serotonin signaling system: from basic understanding to drug development for functional GI disorders. Gastroenterology 132(1):397–414. https://doi.org/10.1053/j.gastro.2006.11.002

    Article  PubMed  CAS  Google Scholar 

  20. Stone TW, Darlington LG (2002) Endogenous kynurenines as targets for drug discovery and development. Nat Rev Drug Discov 1(8):609–620. https://doi.org/10.1038/nrd870

    Article  PubMed  CAS  Google Scholar 

  21. Sanger GJ (2008) 5-Hydroxytryptamine and the gastrointestinal tract: where next? Trends Pharmacol Sci 29(9):465–471. https://doi.org/10.1016/j.tips.2008.06.008

    Article  PubMed  CAS  Google Scholar 

  22. Manocha M, Khan WI (2012) Serotonin and GI disorders: an update on clinical and experimental studies. Clin Transl Gastroenterol 3(4):e13. https://doi.org/10.1038/ctg.2012.8

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. Liu YF, Albert PR (1991) Cell-specific signaling of the 5-HT1A receptor. Modulation by protein kinases C and A. J Biol Chem 266(35):23689–23697

    PubMed  CAS  Google Scholar 

  24. Middleton JP, Albers FJ, Dennis VW, Raymond JR (1990) Thapsigargin demonstrates calcium-dependent regulation of phosphate uptake in HeLa cells. Am J Phys 259(4 Pt 2):F727–F731

    CAS  Google Scholar 

  25. Raymond JR, Fargin A, Middleton JP, Graff JM, Haupt DM, Caron MG, Lefkowitz RJ, Dennis VW (1989) The human 5-HT1A receptor expressed in HeLa cells stimulates sodium-dependent phosphate uptake via protein kinase C. J Biol Chem 264(36):21943–21950

    PubMed  CAS  Google Scholar 

  26. Raymond JR, Mukhin YV, Gelasco A, Turner J, Collinsworth G, Gettys TW, Grewal JS, Garnovskaya MN (2001) Multiplicity of mechanisms of serotonin receptor signal transduction. Pharmacol Ther 92(2–3):179–212. https://doi.org/10.1016/S0163-7258(01)00169-3

    Article  PubMed  CAS  Google Scholar 

  27. Giorgi C, Agnoletto C, Baldini C, Bononi A, Bonora M, Marchi S, Missiroli S, Patergnani S et al (2010) Redox control of protein kinase C: cell- and disease-specific aspects. Antioxid Redox Signal 13(7):1051–1085. https://doi.org/10.1089/ars.2009.2825

    Article  PubMed  CAS  Google Scholar 

  28. Mellor H, Parker PJ (1998) The extended protein kinase C superfamily. Biochem J 332(Pt 2):281–292. https://doi.org/10.1042/bj3320281

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. Nishizuka Y (1995) Protein kinase C and lipid signaling for sustained cellular responses. FASEB J 9(7):484–496. https://doi.org/10.1096/fasebj.9.7.7737456

    Article  PubMed  CAS  Google Scholar 

  30. Shin EJ, Duong CX, Nguyen XT, Li Z, Bing G, Bach JH, Park DH, Nakayama K et al (2012) Role of oxidative stress in methamphetamine-induced dopaminergic toxicity mediated by protein kinase C delta. Behav Brain Res 232(1):98–113. https://doi.org/10.1016/j.bbr.2012.04.001

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  31. Shin EJ, Nam Y, Tu TH, Lim YK, Wie MB, Kim DJ, Jeong JH, Kim HC (2016) Protein kinase C delta mediates trimethyltin-induced neurotoxicity in mice in vivo via inhibition of glutathione defense mechanism. Arch Toxicol 90(4):937–953. https://doi.org/10.1007/s00204-015-1516-7

    Article  PubMed  CAS  Google Scholar 

  32. Steinberg SF (2004) Distinctive activation mechanisms and functions for protein kinase C delta. Biochem J 384(Pt 3):449–459. https://doi.org/10.1042/BJ20040704

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. Yoshida K (2007) PKC delta signaling: mechanisms of DNA damage response and apoptosis. Cell Signal 19(5):892–901. https://doi.org/10.1016/j.cellsig.2007.01.027

    Article  PubMed  CAS  Google Scholar 

  34. Shin EJ, Duong CX, Nguyen XT, Bing G, Bach JH, Park DH, Nakayama K, Ali SF et al (2011) PKC delta inhibition enhances tyrosine hydroxylase phosphorylation in mice after methamphetamine treatment. Neurochem Int 59(1):39–50. https://doi.org/10.1016/j.neuint.2011.03.022

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. Miyamoto A, Nakayama K, Imaki H, Hirose S, Jiang Y, Abe M, Tsukiyama T, Nagahama H et al (2002) Increased proliferation of B cells and auto-immunity in mice lacking protein kinase C delta. Nature 416(6883):865–869. https://doi.org/10.1038/416865a

    Article  PubMed  CAS  Google Scholar 

  36. Dougherty JP, Aloyo VJ (2011) Pharmacological and behavioral characterization of the 5-HT2A receptor in C57BL/6N mice. Psychopharmacology 215(3):581–593. https://doi.org/10.1007/s00213-011-2207-6

    Article  PubMed  CAS  Google Scholar 

  37. Sakaue M, Ago Y, Sowa C, Sakamoto Y, Nishihara B, Koyama Y, Baba A, Matsuda T (2002) Modulation by 5-HT2A receptors of aggressive behavior in isolated mice. Jpn J Pharmacol 89(1):89–92. https://doi.org/10.1254/jjp.89.89

    Article  PubMed  CAS  Google Scholar 

  38. Fox MA, Jensen CL, Gallagher PS, Murphy DL (2007) Receptor mediation of exaggerated responses to serotonin-enhancing drugs in serotonin transporter (SERT)-deficient mice. Neuropharmacology 53(5):643–656. https://doi.org/10.1016/j.neuropharm.2007.07.009

    Article  PubMed  CAS  Google Scholar 

  39. Izumi T, Iwamoto N, Kitaichi Y, Kato A, Inoue T, Koyama T (2006) Effects of co-administration of a selective serotonin reuptake inhibitor and monoamine oxidase inhibitors on 5-HT-related behavior in rats. Eur J Pharmacol 532(3):258–264. https://doi.org/10.1016/j.ejphar.2005.12.075

    Article  PubMed  CAS  Google Scholar 

  40. Jacobs BL (1976) An animal behavior model for studying central serotonergic synapses. Life Sci 19(6):777–785. https://doi.org/10.1016/0024-3205(76)90303-9

    Article  PubMed  CAS  Google Scholar 

  41. Wang Q, Shin EJ, Nguyen XK, Li Q, Bach JH, Bing G, Kim WK, Kim HC et al (2012) Endogenous dynorphin protects against neurotoxin-elicited nigrostriatal dopaminergic neuron damage and motor deficits in mice. J Neuroinflammation 9(1):124. https://doi.org/10.1186/1742-2094-9-124

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  42. Tran TV, Shin EJ, Jeong JH, Lee JW, Lee Y, Jang CG, Nah SY, Lei XG et al (2017) Protective potential of the glutathione peroxidase-1 gene in abnormal behaviors induced by phencyclidine in mice. Mol Neurobiol 54(9):7042–7062. https://doi.org/10.1007/s12035-016-0239-y

    Article  PubMed  CAS  Google Scholar 

  43. Shin EJ, Shin SW, Nguyen TT, Park DH, Wie MB, Jang CG, Nah SY, Yang BW et al (2014) Ginsenoside Re rescues methamphetamine-induced oxidative damage, mitochondrial dysfunction, microglial activation, and dopaminergic degeneration by inhibiting the protein kinase C delta gene. Mol Neurobiol 49(3):1400–1421. https://doi.org/10.1007/s12035-013-8617-1

    Article  PubMed  CAS  Google Scholar 

  44. Dang DK, Shin EJ, Mai AT, Jang CG, Nah SY, Jeong JH, Ledent C, Yamamoto T et al (2017) Genetic or pharmacological depletion of cannabinoid CB1 receptor protects against dopaminergic neurotoxicity induced by methamphetamine in mice. Free Radic Biol Med 108:204–224. https://doi.org/10.1016/j.freeradbiomed.2017.03.033

    Article  PubMed  CAS  Google Scholar 

  45. Volpi-Abadie J, Kaye AM, Kaye AD (2013) Serotonin syndrome. Ochsner J 13(4):533–540

    PubMed  PubMed Central  Google Scholar 

  46. Nisijima K (2000) Abnormal monoamine metabolism in cerebrospinal fluid in a case of serotonin syndrome. J Clin Psychopharmacol 20(1):107–108. https://doi.org/10.1097/00004714-200002000-00022

    Article  PubMed  CAS  Google Scholar 

  47. Iqbal MM, Basil MJ, Kaplan J, Iqbal MT (2012) Overview of serotonin syndrome. Ann Clin Psychiatry 24(4):310–318

    PubMed  Google Scholar 

  48. Shioda K, Nisijima K, Yoshino T, Kato S (2004) Extracellular serotonin, dopamine and glutamate levels are elevated in the hypothalamus in a serotonin syndrome animal model induced by tranylcypromine and fluoxetine. Prog Neuro-Psychopharmacol Biol Psychiatry 28(4):633–640. https://doi.org/10.1016/j.pnpbp.2004.01.013

    Article  CAS  Google Scholar 

  49. Watts SW, Morrison SF, Davis RP, Barman SM (2012) Serotonin and blood pressure regulation. Pharmacol Rev 64(2):359–388. https://doi.org/10.1124/pr.111.004697

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  50. Squires LN, Talbot KN, Rubakhin SS, Sweedler JV (2007) Serotonin catabolism in the central and enteric nervous systems of rats upon induction of serotonin syndrome. J Neurochem 103(1):174–180. https://doi.org/10.1111/j.1471-4159.2007.04739.x

    Article  PubMed  CAS  Google Scholar 

  51. Nisijima K, Yoshino T, Ishiguro T (2000) Risperidone counteracts lethality in an animal model of the serotonin syndrome. Psychopharmacology 150(1):9–14. https://doi.org/10.1007/s002130000397

    Article  PubMed  CAS  Google Scholar 

  52. Nisijima K, Nibuya M, Sugiyama H (2003) Abnormal CSF monoamine metabolism in serotonin syndrome. J Clin Psychopharmacol 23(5):528–531. https://doi.org/10.1097/01.jcp.0000088920.02635.5a

    Article  PubMed  Google Scholar 

  53. Sun-Edelstein C, Tepper SJ, Shapiro RE (2008) Drug-induced serotonin syndrome: a review. Expert Opin Drug Saf 7(5):587–596. https://doi.org/10.1517/14740338.7.5.587

    Article  PubMed  CAS  Google Scholar 

  54. Haberzettl R, Fink H, Bert B (2014) Role of 5-HT(1A)- and 5-HT(2A) receptors for the murine model of the serotonin syndrome. J Pharmacol Toxicol Methods 70(2):129–133. https://doi.org/10.1016/j.vascn.2014.07.003

    Article  PubMed  CAS  Google Scholar 

  55. Millan MJ, Bervoets K, Colpaert FC (1991) 5-Hydroxytryptamine (5-HT)1A receptors and the tail-flick response. I. 8-Hydroxy-2-(di-n-propylamino) tetralin HBr-induced spontaneous tail-flicks in the rat as an in vivo model of 5-HT1A receptor-mediated activity. J Pharmacol Exp Ther 256(3):973–982

    PubMed  CAS  Google Scholar 

  56. Bagdy G, To CT (1997) Comparison of relative potencies of i.v. and i.c.v. administered 8-OH-DPAT gives evidence of different sites of action for hypothermia, lower lip retraction and tail flicks. Eur J Pharmacol 323(1):53–58. https://doi.org/10.1016/S0014-2999(97)00021-6

    Article  PubMed  CAS  Google Scholar 

  57. Bervoets K, Rivet JM, Millan MJ (1993) 5-HT1A receptors and the tail-flick response. IV. Spinally localized 5-HT1A receptors postsynaptic to serotoninergic neurones mediate spontaneous tail-flicks in the rat. J Pharmacol Exp Ther 264(1):95–104

    PubMed  CAS  Google Scholar 

  58. Abdel-Fattah AF, Matsumoto K, el-Hady KA, Watanabe H (1995) 5-HT1A and 5-HT2 receptors mediate hypo- and hyperthermic effects of tryptophan in pargyline-pretreated rats. Pharmacol Biochem Behav 52(2):379–384. https://doi.org/10.1016/0091-3057(95)00122-D

    Article  PubMed  CAS  Google Scholar 

  59. Abdel-Fattah AF, Matsumoto K, Murakami Y, Adel-Khalek Gammaz H, Mohamed MF, Watanabe H (1997) Central serotonin level-dependent changes in body temperature following administration of tryptophan to pargyline- and harmaline-pretreated rats. Gen Pharmacol 28(3):405–409. https://doi.org/10.1016/S0306-3623(96)00300-X

    Article  PubMed  CAS  Google Scholar 

  60. Isbister GK, Buckley NA (2005) The pathophysiology of serotonin toxicity in animals and humans: implications for diagnosis and treatment. Clin Neuropharmacol 28(5):205–214. https://doi.org/10.1097/01.wnf.0000177642.89888.85

    Article  PubMed  CAS  Google Scholar 

  61. Squires LN, Jakubowski JA, Stuart JN, Rubakhin SS, Hatcher NG, Kim WS, Chen K, Shih JC et al (2006) Serotonin catabolism and the formation and fate of 5-hydroxyindole thiazolidine carboxylic acid. J Biol Chem 281(19):13463–13470. https://doi.org/10.1074/jbc.M602210200

    Article  PubMed  CAS  Google Scholar 

  62. Aoyama K, Nakaki T (2013) Impaired glutathione synthesis in neurodegeneration. Int J Mol Sci 14(10):21021–21044. https://doi.org/10.3390/ijms141021021

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  63. Johnson WM, Wilson-Delfosse AL, Mieyal JJ (2012) Dysregulation of glutathione homeostasis in neurodegenerative diseases. Nutrients 4(10):1399–1440. https://doi.org/10.3390/nu4101399

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  64. Lu SC (2009) Regulation of glutathione synthesis. Mol Asp Med 30(1–2):42–59. https://doi.org/10.1016/j.mam.2008.05.005

    Article  CAS  Google Scholar 

  65. Frye RE, James SJ (2014) Metabolic pathology of autism in relation to redox metabolism. Biomark Med 8(3):321–330. https://doi.org/10.2217/bmm.13.158

    Article  PubMed  CAS  Google Scholar 

  66. Gysin R, Kraftsik R, Sandell J, Bovet P, Chappuis C, Conus P, Deppen P, Preisig M et al (2007) Impaired glutathione synthesis in schizophrenia: convergent genetic and functional evidence. Proc Natl Acad Sci U S A 104(42):16621–16626. https://doi.org/10.1073/pnas.0706778104

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  67. Saharan S, Mandal PK (2014) The emerging role of glutathione in Alzheimer’s disease. J Alzheimers Dis 40(3):519–529. https://doi.org/10.3233/JAD-132483

    Article  PubMed  CAS  Google Scholar 

  68. Smeyne M, Smeyne RJ (2013) Glutathione metabolism and Parkinson’s disease. Free Radic Biol Med 62:13–25. https://doi.org/10.1016/j.freeradbiomed.2013.05.001

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  69. Pileblad E, Magnusson T (1989) Intracerebroventricular administration of L-buthionine sulfoximine: a method for depleting brain glutathione. J Neurochem 53(6):1878–1882. https://doi.org/10.1111/j.1471-4159.1989.tb09256.x

    Article  PubMed  CAS  Google Scholar 

  70. Jacobsen JP, Rodriguiz RM, Mork A, Wetsel WC (2005) Monoaminergic dysregulation in glutathione-deficient mice: possible relevance to schizophrenia? Neuroscience 132(4):1055–1072. https://doi.org/10.1016/j.neuroscience.2005.01.059

    Article  PubMed  CAS  Google Scholar 

  71. Bryan HK, Olayanju A, Goldring CE, Park BK (2013) The Nrf2 cell defence pathway: Keap1-dependent and -independent mechanisms of regulation. Biochem Pharmacol 85(6):705–717. https://doi.org/10.1016/j.bcp.2012.11.016

    Article  PubMed  CAS  Google Scholar 

  72. Itoh K, Wakabayashi N, Katoh Y, Ishii T, Igarashi K, Engel JD, Yamamoto M (1999) Keap1 represses nuclear activation of antioxidant responsive elements by Nrf2 through binding to the amino-terminal Neh2 domain. Genes Dev 13(1):76–86. https://doi.org/10.1101/gad.13.1.76

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  73. Huang HC, Nguyen T, Pickett CB (2000) Regulation of the antioxidant response element by protein kinase C-mediated phosphorylation of NF-E2-related factor 2. Proc Natl Acad Sci U S A 97(23):12475–12480. https://doi.org/10.1073/pnas.220418997

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  74. Huang HC, Nguyen T, Pickett CB (2002) Phosphorylation of Nrf2 at Ser-40 by protein kinase C regulates antioxidant response element-mediated transcription. J Biol Chem 277(45):42769–42774. https://doi.org/10.1074/jbc.M206911200

    Article  PubMed  CAS  Google Scholar 

  75. Bloom DA, Jaiswal AK (2003) Phosphorylation of Nrf2 at Ser40 by protein kinase C in response to antioxidants leads to the release of Nrf2 from INrf2, but is not required for Nrf2 stabilization/accumulation in the nucleus and transcriptional activation of antioxidant response element-mediated NAD(P)H:quinone oxidoreductase-1 gene expression. J Biol Chem 278(45):44675–44682. https://doi.org/10.1074/jbc.M307633200

    Article  PubMed  CAS  Google Scholar 

  76. Li Y, Paonessa JD, Zhang Y (2012) Mechanism of chemical activation of Nrf2. PLoS One 7(4):e35122. https://doi.org/10.1371/journal.pone.0035122

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  77. Gopalakrishna R, Jaken S (2000) Protein kinase C signaling and oxidative stress. Free Radic Biol Med 28(9):1349–1361. https://doi.org/10.1016/S0891-5849(00)00221-5

    Article  PubMed  CAS  Google Scholar 

  78. Tran TV, Shin EJ, Nguyen LTT, Lee Y, Kim DJ, Jeong JH, Jang CG, Nah SY et al (2017) Protein kinase C delta gene depletion protects against methamphetamine-induced impairments in recognition memory and ERK1/2 signaling via upregulation of glutathione peroxidase-1 gene. Mol Neurobiol. https://doi.org/10.1007/s12035-017-0638-8

  79. Ward NE, Pierce DS, Chung SE, Gravitt KR, O'Brian CA (1998) Irreversible inactivation of protein kinase C by glutathione. J Biol Chem 273(20):12558–12566. https://doi.org/10.1074/jbc.273.20.12558

    Article  PubMed  CAS  Google Scholar 

  80. Domenicotti C, Marengo B, Nitti M, Verzola D, Garibotto G, Cottalasso D, Poli G, Melloni E et al (2003) A novel role of protein kinase C delta in cell signaling triggered by glutathione depletion. Biochem Pharmacol 66(8):1521–1526. https://doi.org/10.1016/S0006-2952(03)00507-0

    Article  PubMed  CAS  Google Scholar 

  81. Domenicotti C, Marengo B, Verzola D, Garibotto G, Traverso N, Patriarca S, Maloberti G, Cottalasso D et al (2003) Role of PKC delta activity in glutathione-depleted neuroblastoma cells. Free Radic Biol Med 35(5):504–516. https://doi.org/10.1016/S0891-5849(03)00332-0

    Article  PubMed  CAS  Google Scholar 

  82. Ishii T, Itoh K, Takahashi S, Sato H, Yanagawa T, Katoh Y, Bannai S, Yamamoto M (2000) Transcription factor Nrf2 coordinately regulates a group of oxidative stress-inducible genes in macrophages. J Biol Chem 275(21):16023–16029. https://doi.org/10.1074/jbc.275.21.16023

    Article  PubMed  CAS  Google Scholar 

  83. Lee JM, Shih AY, Murphy TH, Johnson JA (2003) NF-E2-related factor-2 mediates neuroprotection against mitochondrial complex I inhibitors and increased concentrations of intracellular calcium in primary cortical neurons. J Biol Chem 278(39):37948–37956. https://doi.org/10.1074/jbc.M305204200

    Article  PubMed  CAS  Google Scholar 

  84. Sasaki H, Sato H, Kuriyama-Matsumura K, Sato K, Maebara K, Wang H, Tamba M, Itoh K et al (2002) Electrophile response element-mediated induction of the cystine/glutamate exchange transporter gene expression. J Biol Chem 277(47):44765–44771. https://doi.org/10.1074/jbc.M208704200

    Article  PubMed  CAS  Google Scholar 

  85. Shih AY, Johnson DA, Wong G, Kraft AD, Jiang L, Erb H, Johnson JA, Murphy TH (2003) Coordinate regulation of glutathione biosynthesis and release by Nrf2-expressing glia potently protects neurons from oxidative stress. J Neurosci 23(8):3394–3406

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This study was supported by a grant (14182MFDS979) from the Korea Food and Drug Administration, by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Science and ICT (#NRF-2017R1A2B1003346 and #NRF-2016R1A1A1A05005201, Republic of Korea, and by a grant (17H04252) from the Japan Society for the Promotion of Science (JSPS), Japan. Hai-Quyen Tran was supported by the BK21 PLUS program, National Research Foundation of Korea, Republic of Korea. The English in this document has been checked by at least two professional editors, both native speakers of English.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Eun-Joo Shin or Hyoung-Chun Kim.

Ethics declarations

Conflicts of Interest

The authors declare that they have no conflicts of interest.

Electronic Supplementary Material

ESM 1

(DOCX 30 kb)

ESM 2

(PDF 71.4 kb)

ESM 3

(PDF 283 kb)

ESM 4

(PDF 280 kb)

ESM 5

(PDF 262 kb)

ESM 6

(PDF 275 kb)

ESM 7

(PDF 244 kb)

ESM 8

(PDF 300 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tran, HQ., Lee, Y., Shin, EJ. et al. PKCδ Knockout Mice Are Protected from Dextromethorphan-Induced Serotonergic Behaviors in Mice: Involvements of Downregulation of 5-HT1A Receptor and Upregulation of Nrf2-Dependent GSH Synthesis. Mol Neurobiol 55, 7802–7821 (2018). https://doi.org/10.1007/s12035-018-0938-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-018-0938-7

Keywords

Navigation