Skip to main content

Advertisement

Log in

Soluble Factors from Human Olfactory Neural Stem/Progenitor Cells Influence the Fate Decisions of Hippocampal Neural Precursor Cells

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Neurogenesis plays a significant role during adulthood, and the observation that neural stem cells reside in the central nervous system and the olfactory epithelium has attracted attention due to their importance in neuronal regeneration. In addition, soluble factors (SFs) release by neural stem cells may modulate the neurogenic process. Thus, in this study, we identified the SFs released by olfactory human neural stem/progenitor cells (hNS/PCs-OE). These cells express Ki67, nestin, and βIII-tubulin, indicating their neural lineage. The hNS/PCs-OE also express PSD95 and tau proteins during proliferation, but increased levels are observed after differentiation. Thus, we evaluated the effects of SFs from hNS/PCs-OE on the viability, proliferation, and differentiation potential of adult murine hippocampal neural precursor cells (AHPCs). SFs from hNS/PCs-OE maintain cells in the precursor and proliferative stages and mainly promote the astrocytic differentiation of AHPCs. These effects involved the activation, as measured by phosphorylation, of several proteins (Erk1/2; Akt/PRAS40/GSK3β and JAK/STAT) involved in key events of the neurogenic process. Moreover, according to the results from the antibody-based microarray approach, among the soluble factors, hNS/PCs-OE produce interleukin-6 (IL-6) and neurotrophin 4 (NT4). However, residual epidermal growth factor (EGF) was also detected. These proteins partially reproduced the effects of SFs from hNS/PCs-OE on AHPCs, and the mechanism underlying these effects is mediated by Src proteins, which have been implicated in EGF-induced transactivation of TrkB receptor. The results of the present study suggest the potential use of SFs from hNS/PCs-OE in controlling the differentiation potential of AHPCs. Thus, the potential clinical relevance of hNS/PCs-OE is worth pursuing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Kempermann G, Kuhn HG, Gage FH (1997) More hippocampal neurons in adult mice living in an enriched environment. Nature 386(6624):493–495. https://doi.org/10.1038/386493a0

    Article  PubMed  CAS  Google Scholar 

  2. Doetsch F, Caille I, Lim DA, Garcia-Verdugo JM, Alvarez-Buylla A (1999) Subventricular zone astrocytes are neural stem cells in the adult mammalian brain. Cell 97(6):703–716. https://doi.org/10.1016/S0092-8674(00)80783-7

    Article  PubMed  CAS  Google Scholar 

  3. Altman J, Das GD (1966) Autoradiographic and histological studies of postnatal neurogenesis. I. A longitudinal investigation of the kinetics, migration and transformation of cells incorporating tritiated thymidine in neonate rats, with special reference to postnatal neurogenesis in some brain regions. J Comp Neurol 126(3):337–389

    Article  PubMed  CAS  Google Scholar 

  4. Kempermann G, Song H, Gage FH (2015) Neurogenesis in the adult hippocampus. Cold Spring Harb Perspect Biol 7(9):a018812. https://doi.org/10.1101/cshperspect.a018812

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  5. Lim DA, Alvarez-Buylla A (2016) The adult ventricular-subventricular zone (V-SVZ) and olfactory bulb (OB) neurogenesis. Cold Spring Harb Perspect Biol 8(5). https://doi.org/10.1101/cshperspect.a018820

  6. Riquelme PA, Drapeau E, Doetsch F (2008) Brain micro-ecologies: neural stem cell niches in the adult mammalian brain. Philos Trans R Soc Lond Ser B Biol Sci 363(1489):123–137. https://doi.org/10.1098/rstb.2006.2016

    Article  Google Scholar 

  7. Batiz LF, Castro MA, Burgos PV, Velasquez ZD, Munoz RI, Lafourcade CA, Troncoso-Escudero P, Wyneken U (2015) Exosomes as novel regulators of adult neurogenic niches. Front Cell Neurosci 9:501. https://doi.org/10.3389/fncel.2015.00501

    Article  PubMed  CAS  Google Scholar 

  8. Duan X, Chang JH, Ge S, Faulkner RL, Kim JY, Kitabatake Y, Liu XB, Yang CH et al (2007) Disrupted-in-schizophrenia 1 regulates integration of newly generated neurons in the adult brain. Cell 130(6):1146–1158. https://doi.org/10.1016/j.cell.2007.07.010

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. Walter C, Murphy BL, Pun RY, Spieles-Engemann AL, Danzer SC (2007) Pilocarpine-induced seizures cause selective time-dependent changes to adult-generated hippocampal dentate granule cells. J Neurosci 27(28):7541–7552. https://doi.org/10.1523/JNEUROSCI.0431-07.2007

    Article  PubMed  CAS  Google Scholar 

  10. Rodriguez JJ, Jones VC, Tabuchi M, Allan SM, Knight EM, LaFerla FM, Oddo S, Verkhratsky A (2008) Impaired adult neurogenesis in the dentate gyrus of a triple transgenic mouse model of Alzheimer’s disease. PLoS One 3(8):e2935. https://doi.org/10.1371/journal.pone.0002935

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. Niv F, Keiner S, Krishna WOW, Lie DC, Redecker C (2012) Aberrant neurogenesis after stroke: a retroviral cell labeling study. Stroke 43(9):2468–2475. https://doi.org/10.1161/STROKEAHA.112.660977

    Article  PubMed  Google Scholar 

  12. Sakalem ME, Seidenbecher T, Zhang M, Saffari R, Kravchenko M, Wordemann S, Diederich K, Schwamborn JC et al (2017) Environmental enrichment and physical exercise revert behavioral and electrophysiological impairments caused by reduced adult neurogenesis. Hippocampus 27(1):36–51. https://doi.org/10.1002/hipo.22669

    Article  PubMed  Google Scholar 

  13. Herrera-Arozamena C, Marti-Mari O, Estrada M, de la Fuente Revenga M, Rodriguez-Franco MI (2016) Recent advances in neurogenic small molecules as innovative treatments for neurodegenerative diseases. Molecules 21(9). https://doi.org/10.3390/molecules21091165

  14. Cui Y, Ma S, Zhang C, Cao W, Liu M, Li D, Lv P, Xing Q et al (2016) Human umbilical cord mesenchymal stem cells transplantation improves cognitive function in Alzheimer’s disease mice by decreasing oxidative stress and promoting hippocampal neurogenesis. Behav Brain Res 320:291–301. https://doi.org/10.1016/j.bbr.2016.12.021

    Article  PubMed  CAS  Google Scholar 

  15. Teixeira FG, Panchalingam KM, Assuncao-Silva R, Serra SC, Mendes-Pinheiro B, Patricio P, Jung S, Anjo SI et al (2016) Modulation of the mesenchymal stem cell secretome using computer-controlled bioreactors: impact on neuronal cell proliferation, survival and differentiation. Sci Rep 6(1):27791. https://doi.org/10.1038/srep27791

    Article  PubMed  PubMed Central  Google Scholar 

  16. Zhang Y, Chopp M, Zhang ZG, Katakowski M, Xin H, Qu C, Ali M, Mahmood A et al (2016) Systemic administration of cell-free exosomes generated by human bone marrow derived mesenchymal stem cells cultured under 2D and 3D conditions improves functional recovery in rats after traumatic brain injury. Neurochem Int 111:69–81. https://doi.org/10.1016/j.neuint.2016.08.003

    Article  PubMed  CAS  Google Scholar 

  17. Drago D, Cossetti C, Iraci N, Gaude E, Musco G, Bachi A, Pluchino S (2013) The stem cell secretome and its role in brain repair. Biochimie 95(12):2271–2285. https://doi.org/10.1016/j.biochi.2013.06.020

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. Tran C, Damaser MS (2015) Stem cells as drug delivery methods: application of stem cell secretome for regeneration. Adv Drug Deliv Rev 82-83:1–11. https://doi.org/10.1016/j.addr.2014.10.007

    Article  PubMed  CAS  Google Scholar 

  19. Marconi S, Bonaconsa M, Scambi I, Squintani GM, Rui W, Turano E, Ungaro D, D’Agostino S et al (2013) Systemic treatment with adipose-derived mesenchymal stem cells ameliorates clinical and pathological features in the amyotrophic lateral sclerosis murine model. Neuroscience 248:333–343. https://doi.org/10.1016/j.neuroscience.2013.05.034

    Article  PubMed  CAS  Google Scholar 

  20. Mita T, Furukawa-Hibi Y, Takeuchi H, Hattori H, Yamada K, Hibi H, Ueda M, Yamamoto A (2015) Conditioned medium from the stem cells of human dental pulp improves cognitive function in a mouse model of Alzheimer’s disease. Behav Brain Res 293:189–197. https://doi.org/10.1016/j.bbr.2015.07.043

    Article  PubMed  CAS  Google Scholar 

  21. Herrick DB, Lin B, Peterson J, Schnittke N, Schwob JE (2017) Notch1 maintains dormancy of olfactory horizontal basal cells, a reserve neural stem cell. Proc Natl Acad Sci U S A 114(28):E5589–E5598. https://doi.org/10.1073/pnas.1701333114

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. Franco I, Ortiz-Lopez L, Roque-Ramirez B, Ramirez-Rodriguez GB, Lamas M (2017) Pharmacological inhibition of DNA methyltransferase 1 promotes neuronal differentiation from rodent and human nasal olfactory stem/progenitor cell cultures. Int JDev Neurosci 58:65–73. https://doi.org/10.1016/j.ijdevneu.2017.01.013

    Article  CAS  Google Scholar 

  23. Jimenez-Vaca AL, Benitez-King G, Ruiz V, Ramirez-Rodriguez GB, Hernandez-de la Cruz B, Salamanca-Gomez FA, Gonzalez-Marquez H, Ramirez-Sanchez I et al (2017) Exfoliated human olfactory neuroepithelium: a source of neural progenitor cells. Mol Neurobiol. https://doi.org/10.1007/s12035-017-0500-z

  24. Ortiz-Lopez L, Gonzalez-Olvera JJ, Vega-Rivera NM, Garcia-Anaya M, Carapia-Hernandez AK, Velazquez-Escobar JC, Ramirez-Rodriguez GB (2017) Human neural stem/progenitor cells derived from the olfactory epithelium express the TrkB receptor and migrate in response to BDNF. Neuroscience 355:84–100. https://doi.org/10.1016/j.neuroscience.2017.04.047

    Article  PubMed  CAS  Google Scholar 

  25. Moriwaki T, Iwatsuki K, Mochizuki-Oda N, Ohnishi Y, Ishihara M, Umegaki M, Ninomiya K, Yoshimine T (2014) Presence of trans-synaptic neurons derived from olfactory mucosa transplanted after spinal cord injury. Spine 39(16):1267–1273. https://doi.org/10.1097/BRS.0000000000000386

    Article  PubMed  Google Scholar 

  26. Tabakow P, Jarmundowicz W, Czapiga B, Fortuna W, Miedzybrodzki R, Czyz M, Huber J, Szarek D et al (2013) Transplantation of autologous olfactory ensheathing cells in complete human spinal cord injury. Cell Transplant 22(9):1591–1612. https://doi.org/10.3727/096368912X663532

    Article  PubMed  Google Scholar 

  27. Wang M, Lu C, Roisen F (2012) Adult human olfactory epithelial-derived progenitors: a potential autologous source for cell-based treatment for Parkinson’s disease. Stem Cells Transl Med 1(6):492–502. https://doi.org/10.5966/sctm.2012-0012

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. Schwob JE (2002) Neural regeneration and the peripheral olfactory system. Anat Rec 269(1):33–49. https://doi.org/10.1002/ar.10047

    Article  PubMed  Google Scholar 

  29. Graziadei PP, Graziadei GA (1979) Neurogenesis and neuron regeneration in the olfactory system of mammals. I morphological aspects of differentiation and structural organization of the olfactory sensory neurons. J Neurocytology 8(1):1–18. https://doi.org/10.1007/BF01206454

    Article  CAS  Google Scholar 

  30. Schwartz Levey M, Chikaraishi DM, Kauer JS (1991) Characterization of potential precursor populations in the mouse olfactory epithelium using immunocytochemistry and autoradiography. J Neurosci 11(11):3556–3564

    Article  PubMed  CAS  Google Scholar 

  31. Jang W, Chen X, Flis D, Harris M, Schwob JE (2014) Label-retaining, quiescent globose basal cells are found in the olfactory epithelium. J Comp Neurol 522(4):731–749. https://doi.org/10.1002/cne.23470

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. Duan D, Lu M (2015) Olfactory mucosa: a rich source of cell therapy for central nervous system repair. Rev Neurosci 26(3):281–293. https://doi.org/10.1515/revneuro-2014-0065

    Article  PubMed  Google Scholar 

  33. Urdzikova LM, Ruzicka J, LaBagnara M, Karova K, Kubinova S, Jirakova K, Murali R, Sykova E et al (2014) Human mesenchymal stem cells modulate inflammatory cytokines after spinal cord injury in rat. Int J Mol Sci 15(7):11275–11293. https://doi.org/10.3390/ijms150711275

    Article  PubMed  CAS  Google Scholar 

  34. Murrell W, Wetzig A, Donnellan M, Feron F, Burne T, Meedeniya A, Kesby J, Bianco J et al (2008) Olfactory mucosa is a potential source for autologous stem cell therapy for Parkinson’s disease. Stem Cells 26(8):2183–2192. https://doi.org/10.1634/stemcells.2008-0074

    Article  PubMed  CAS  Google Scholar 

  35. Nivet E, Vignes M, Girard SD, Pierrisnard C, Baril N, Deveze A, Magnan J, Lante F et al (2011) Engraftment of human nasal olfactory stem cells restores neuroplasticity in mice with hippocampal lesions. J Clin Invest 121(7):2808–2820. https://doi.org/10.1172/JCI44489

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  36. Duan D, Rong M, Zeng Y, Teng X, Zhao Z, Liu B, Tao X, Zhou R et al (2011) Electrophysiological characterization of NSCs after differentiation induced by OEC conditioned medium. Acta Neurochir 153(10):2085–2090. https://doi.org/10.1007/s00701-011-0955-z

    Article  PubMed  Google Scholar 

  37. Wang L, Jiang M, Duan D, Zhao Z, Ge L, Teng X, Liu B, Liu B et al (2014) Hyperthermia-conditioned OECs serum-free-conditioned medium induce NSC differentiation into neuron more efficiently by the upregulation of HIF-1 alpha and binding activity. Transplantation 97(12):1225–1232. https://doi.org/10.1097/TP.0000000000000118

    Article  PubMed  CAS  Google Scholar 

  38. Getchell TV, Narla RK, Little S, Hyde JF, Getchell ML (2000) Horizontal basal cell proliferation in the olfactory epithelium of transforming growth factor-alpha transgenic mice. Cell Tissue Res 299(2):185–192

    PubMed  CAS  Google Scholar 

  39. Roisen FJ, Klueber KM, Lu CL, Hatcher LM, Dozier A, Shields CB, Maguire S (2001) Adult human olfactory stem cells. Brain Res 890(1):11–22. https://doi.org/10.1016/S0006-8993(00)03016-X

    Article  PubMed  CAS  Google Scholar 

  40. Ramirez-Rodriguez GB, Perera-Murcia GR, Ortiz-Lopez L, Vega-Rivera NM, Babu H, Garcia-Anaya M, Gonzalez-Olvera JJ (2017) Vascular endothelial growth factor influences migration and focal adhesions, but not proliferation or viability, of human neural stem/progenitor cells derived from olfactory epithelium. Neurochem Int 108:417–425. https://doi.org/10.1016/j.neuint.2017.06.001

    Article  PubMed  CAS  Google Scholar 

  41. Benitez-King G, Riquelme A, Ortiz-Lopez L, Berlanga C, Rodriguez-Verdugo MS, Romo F, Calixto E, Solis-Chagoyan H et al (2011) A non-invasive method to isolate the neuronal linage from the nasal epithelium from schizophrenic and bipolar diseases. J Neurosci Methods 201(1):35–45. https://doi.org/10.1016/j.jneumeth.2011.07.009

    Article  PubMed  CAS  Google Scholar 

  42. Babu H, Cheung G, Kettenmann H, Palmer TD, Kempermann G (2007) Enriched monolayer precursor cell cultures from micro-dissected adult mouse dentate gyrus yield functional granule cell-like neurons. PLoS One 2(4):e388. https://doi.org/10.1371/journal.pone.0000388

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  43. Babu H, Ramirez-Rodriguez G, Fabel K, Bischofberger J, Kempermann G (2009) Synaptic network activity induces neuronal differentiation of adult hippocampal precursor cells through BDNF signaling. Front Neurosci 3:49. https://doi.org/10.3389/neuro.22.001.2009

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  44. Babu H, Claasen JH, Kannan S, Runker AE, Palmer T, Kempermann G (2011) A protocol for isolation and enriched monolayer cultivation of neural precursor cells from mouse dentate gyrus. Front Neurosci 5:89. https://doi.org/10.3389/fnins.2011.00089

    Article  PubMed  PubMed Central  Google Scholar 

  45. Liu Y, Bishop A, Witucki L, Kraybill B, Shimizu E, Tsien J, Ubersax J, Blethrow J et al (1999) Structural basis for selective inhibition of Src family kinases by PP1. Chem Biol 6(9):671–678. https://doi.org/10.1016/S1074-5521(99)80118-5

    Article  PubMed  CAS  Google Scholar 

  46. Puehringer D, Orel N, Luningschror P, Subramanian N, Herrmann T, Chao MV, Sendtner M (2013) EGF transactivation of Trk receptors regulates the migration of newborn cortical neurons. Nat Neurosci 16(4):407–415. https://doi.org/10.1038/nn.3333

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  47. Nakanishi M, Niidome T, Matsuda S, Akaike A, Kihara T, Sugimoto H (2007) Microglia-derived interleukin-6 and leukaemia inhibitory factor promote astrocytic differentiation of neural stem/progenitor cells. Eur J Neurosci 25(3):649–658. https://doi.org/10.1111/j.1460-9568.2007.05309.x

    Article  PubMed  Google Scholar 

  48. Islam O, Gong X, Rose-John S, Heese K (2009) Interleukin-6 and neural stem cells: more than gliogenesis. Mol Biol Cell 20(1):188–199. https://doi.org/10.1091/mbc.E08-05-0463

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  49. Burrows RC, Wancio D, Levitt P, Lillien L (1997) Response diversity and the timing of progenitor cell maturation are regulated by developmental changes in EGFR expression in the cortex. Neuron 19(2):251–267. https://doi.org/10.1016/S0896-6273(00)80937-X

    Article  PubMed  CAS  Google Scholar 

  50. Steinbeck JA, Koch P, Derouiche A, Brustle O (2012) Human embryonic stem cell-derived neurons establish region-specific, long-range projections in the adult brain. Cell Molelife Sci 69(3):461–470. https://doi.org/10.1007/s00018-011-0759-6

    Article  CAS  Google Scholar 

  51. Mori T, Shimizu K, Hayashi M (2004) Differential expression patterns of TrkB ligands in the macaque monkey brain. Neuroreport 15(16):2507–2511. https://doi.org/10.1097/00001756-200411150-00015

    Article  PubMed  CAS  Google Scholar 

  52. Montano JA, Calavia MG, Garcia-Suarez O, Suarez-Quintanilla JA, Galvez A, Perez-Pinera P, Cobo J, Vega JA (2009) The expression of ENa+C and ASIC2 proteins in Pacinian corpuscles is differently regulated by TrkB and its ligands BDNF and NT-4. Neurosci Lett 463(2):114–118. https://doi.org/10.1016/j.neulet.2009.07.073

    Article  PubMed  CAS  Google Scholar 

  53. Kempermann G, Jessberger S, Steiner B, Kronenberg G (2004) Milestones of neuronal development in the adult hippocampus. Trends Neurosci 27(8):447–452. https://doi.org/10.1016/j.tins.2004.05.013

    Article  PubMed  CAS  Google Scholar 

  54. Schwob JE, Jang W, Holbrook EH, Lin B, Herrick DB, Peterson JN, Hewitt Coleman J (2017) Stem and progenitor cells of the mammalian olfactory epithelium: taking poietic license. J Comp Neurol 525(4):1034–1054. https://doi.org/10.1002/cne.24105

    Article  PubMed  CAS  Google Scholar 

  55. Galvan-Arrieta T, Trueta C, Cercos MG, Valdes-Tovar M, Alarcon S, Oikawa J, Zamudio-Meza H, Benitez-King G (2017) The role of melatonin in the neurodevelopmental etiology of schizophrenia: a study in human olfactory neuronal precursors. J Pineal Res 63(3). https://doi.org/10.1111/jpi.12421

  56. Matigian N, Abrahamsen G, Sutharsan R, Cook AL, Vitale AM, Nouwens A, Bellette B, An J et al (2010) Disease-specific, neurosphere-derived cells as models for brain disorders. Dis Model Mech 3(11–12):785–798. https://doi.org/10.1242/dmm.005447

    Article  PubMed  CAS  Google Scholar 

  57. Nourbakhsh N, Soleimani M, Taghipour Z, Karbalaie K, Mousavi SB, Talebi A, Nadali F, Tanhaei S et al (2011) Induced in vitro differentiation of neural-like cells from human exfoliated deciduous teeth-derived stem cells. Int J Dev Biol 55(2):189–195. https://doi.org/10.1387/ijdb.103090nn

    Article  PubMed  CAS  Google Scholar 

  58. Park CW, Kim KS, Bae S, Son HK, Myung PK, Hong HJ, Kim H (2009) Cytokine secretion profiling of human mesenchymal stem cells by antibody array. Int JStem Cells 2(1):59–68. https://doi.org/10.15283/ijsc.2009.2.1.59

    Article  CAS  Google Scholar 

  59. Hofer HR, Tuan RS (2016) Secreted trophic factors of mesenchymal stem cells support neurovascular and musculoskeletal therapies. Stem Cell Res Ther 7(1):131. https://doi.org/10.1186/s13287-016-0394-0

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  60. Skalnikova H, Motlik J, Gadher SJ, Kovarova H (2011) Mapping of the secretome of primary isolates of mammalian cells, stem cells and derived cell lines. Proteomics 11(4):691–708. https://doi.org/10.1002/pmic.201000402

    Article  PubMed  CAS  Google Scholar 

  61. Ge L, Jiang M, Duan D, Wang Z, Qi L, Teng X, Zhao Z, Wang L et al (2016) Secretome of olfactory mucosa mesenchymal stem cell, a multiple potential stem cell. Stem Cells Int 2016:1243659–1243616. https://doi.org/10.1155/2016/1243659

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  62. Moore CS, Milner R, Nishiyama A, Frausto RF, Serwanski DR, Pagarigan RR, Whitton JL, Miller RH et al (2011) Astrocytic tissue inhibitor of metalloproteinase-1 (TIMP-1) promotes oligodendrocyte differentiation and enhances CNS myelination. J Neurosci 31(16):6247–6254. https://doi.org/10.1523/JNEUROSCI.5474-10.2011

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  63. Perez-Martinez L, Jaworski DM (2005) Tissue inhibitor of metalloproteinase-2 promotes neuronal differentiation by acting as an anti-mitogenic signal. J Neurosci 25(20):4917–4929. https://doi.org/10.1523/JNEUROSCI.5066-04.2005

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  64. Taga T, Fukuda S (2005) Role of IL-6 in the neural stem cell differentiation. Clin Rev Allergy Immunol 28(3):249–256. https://doi.org/10.1385/CRIAI:28:3:249

    Article  PubMed  CAS  Google Scholar 

  65. Weiss N, Deboux C, Chaverot N, Miller F, Baron-Van Evercooren A, Couraud PO, Cazaubon S (2010) IL8 and CXCL13 are potent chemokines for the recruitment of human neural precursor cells across brain endothelial cells. J Neuroimmunol 223(1–2):131–134. https://doi.org/10.1016/j.jneuroim.2010.03.009

    Article  PubMed  CAS  Google Scholar 

  66. Li H, Chang YW, Mohan K, Su HW, Ricupero CL, Baridi A, Hart RP, Grumet M (2008) Activated Notch1 maintains the phenotype of radial glial cells and promotes their adhesion to laminin by upregulating nidogen. Glia 56(6):646–658. https://doi.org/10.1002/glia.20643

    Article  PubMed  PubMed Central  Google Scholar 

  67. Tonti GA, Mannello F, Cacci E, Biagioni S (2009) Neural stem cells at the crossroads: MMPs may tell the way. Int JDev Biol 53(1):1–17. https://doi.org/10.1387/ijdb.082573gt

    Article  CAS  Google Scholar 

  68. Gordon RJ, Mehrabi NF, Maucksch C, Connor B (2012) Chemokines influence the migration and fate of neural precursor cells from the young adult and middle-aged rat subventricular zone. Exp Neurol 233(1):587–594. https://doi.org/10.1016/j.expneurol.2011.11.029

    Article  PubMed  CAS  Google Scholar 

  69. Clemmons DR (2016) Role of IGF binding proteins in regulating metabolism. Trends Endocrinol Metab 27(6):375–391. https://doi.org/10.1016/j.tem.2016.03.019

    Article  PubMed  CAS  Google Scholar 

  70. Sancak Y, Thoreen CC, Peterson TR, Lindquist RA, Kang SA, Spooner E, Carr SA, Sabatini DM (2007) PRAS40 is an insulin-regulated inhibitor of the mTORC1 protein kinase. Mol Cell 25(6):903–915. https://doi.org/10.1016/j.molcel.2007.03.003

    Article  PubMed  CAS  Google Scholar 

  71. Wang H, Zhang Q, Wen Q, Zheng Y, Lazarovici P, Jiang H, Lin J, Zheng W (2012) Proline-rich Akt substrate of 40kDa (PRAS40): a novel downstream target of PI3k/Akt signaling pathway. Cell Signal 24(1):17–24. https://doi.org/10.1016/j.cellsig.2011.08.010

    Article  PubMed  CAS  Google Scholar 

  72. Fukuda S, Abematsu M, Mori H, Yanagisawa M, Kagawa T, Nakashima K, Yoshimura A, Taga T (2007) Potentiation of astrogliogenesis by STAT3-mediated activation of bone morphogenetic protein-Smad signaling in neural stem cells. Mol Cell Biol 27(13):4931–4937. https://doi.org/10.1128/MCB.02435-06

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  73. Namihira M, Nakashima K (2013) Mechanisms of astrocytogenesis in the mammalian brain. Curr Opin Neurobiol 23(6):921–927. https://doi.org/10.1016/j.conb.2013.06.002

    Article  PubMed  CAS  Google Scholar 

  74. Oh J, McCloskey MA, Blong CC, Bendickson L, Nilsen-Hamilton M, Sakaguchi DS (2010) Astrocyte-derived interleukin-6 promotes specific neuronal differentiation of neural progenitor cells from adult hippocampus. J Neurosci Res 88(13):2798–2809. https://doi.org/10.1002/jnr.22447

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  75. Song H, Stevens CF, Gage FH (2002) Astroglia induce neurogenesis from adult neural stem cells. Nature 417(6884):39–44. https://doi.org/10.1038/417039a

    Article  PubMed  CAS  Google Scholar 

  76. Matsui T, Omuro H, Liu YF, Soya M, Shima T, McEwen BS, Soya H (2017) Astrocytic glycogen-derived lactate fuels the brain during exhaustive exercise to maintain endurance capacity. Proc Natl Acad Sci U S A 114(24):6358–6363. https://doi.org/10.1073/pnas.1702739114

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  77. Sims NR, Yew WP (2017) Reactive astrogliosis in stroke: contributions of astrocytes to recovery of neurological function. Neurochem Int 107:88–103. https://doi.org/10.1016/j.neuint.2016.12.016

    Article  PubMed  CAS  Google Scholar 

  78. Liu Z, Chopp M (2016) Astrocytes, therapeutic targets for neuroprotection and neurorestoration in ischemic stroke. Prog Neurobiol 144:103–120. https://doi.org/10.1016/j.pneurobio.2015.09.008

    Article  PubMed  CAS  Google Scholar 

  79. Nakagaito Y, Satoh M, Kuno H, Iwama T, Takeuchi M, Hakura A, Yoshida T (1998) Establishment of an epidermal growth factor-dependent, multipotent neural precursor cell line. In Vitro Cellular Dev Biol Anim 34(7):585–592. https://doi.org/10.1007/s11626-998-0119-5

    Article  CAS  Google Scholar 

  80. Ayuso-Sacido A, Moliterno JA, Kratovac S, Kapoor GS, O'Rourke DM, Holland EC, Garcia-Verdugo JM, Roy NS et al (2010) Activated EGFR signaling increases proliferation, survival, and migration and blocks neuronal differentiation in post-natal neural stem cells. J Neuro-Oncol 97(3):323–337. https://doi.org/10.1007/s11060-009-0035-x

    Article  CAS  Google Scholar 

  81. Kirby ED, Kuwahara AA, Messer RL, Wyss-Coray T (2015) Adult hippocampal neural stem and progenitor cells regulate the neurogenic niche by secreting VEGF. Proc Natl Acad Sci U S A 112(13):4128–4133. https://doi.org/10.1073/pnas.1422448112

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  82. Ka M, Kook YH, Liao K, Buch S, Kim WY (2016) Transactivation of TrkB by Sigma-1 receptor mediates cocaine-induced changes in dendritic spine density and morphology in hippocampal and cortical neurons. Cell Death Dis 7(10):e2414. https://doi.org/10.1038/cddis.2016.319

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  83. Wang W, Kantorovich S, Babayan AH, Hou B, Gall CM, Lynch G (2016) Estrogen’s effects on excitatory synaptic transmission entail integrin and TrkB transactivation and depend upon beta1-integrin function. Neuropsychopharmacology 41(11):2723–2732. https://doi.org/10.1038/npp.2016.83

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  84. Gao WQ, Zheng JL, Karihaloo M (1995) Neurotrophin-4/5 (NT-4/5) and brain-derived neurotrophic factor (BDNF) act at later stages of cerebellar granule cell differentiation. J Neurosci 15(4):2656–2667

    Article  PubMed  CAS  Google Scholar 

  85. Rajagopal R, Chen ZY, Lee FS, Chao MV (2004) Transactivation of Trk neurotrophin receptors by G-protein-coupled receptor ligands occurs on intracellular membranes. J Neurosci 24(30):6650–6658. https://doi.org/10.1523/JNEUROSCI.0010-04.2004

    Article  PubMed  CAS  Google Scholar 

  86. Bain J, Plater L, Elliott M, Shpiro N, Hastie CJ, McLauchlan H, Klevernic I, Arthur JS et al (2007) The selectivity of protein kinase inhibitors: a further update. Biochem Iournal 408(3):297–315. https://doi.org/10.1042/BJ20070797

    Article  CAS  Google Scholar 

  87. Aguirre A, Rubio ME, Gallo V (2010) Notch and EGFR pathway interaction regulates neural stem cell number and self-renewal. Nature 467(7313):323–327. https://doi.org/10.1038/nature09347

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  88. Bartkowska K, Paquin A, Gauthier AS, Kaplan DR, Miller FD (2007) Trk signaling regulates neural precursor cell proliferation and differentiation during cortical development. Development 134(24):4369–4380. https://doi.org/10.1242/dev.008227

    Article  PubMed  CAS  Google Scholar 

  89. Li Y, Luikart BW, Birnbaum S, Chen J, Kwon CH, Kernie SG, Bassel-Duby R, Parada LF (2008) TrkB regulates hippocampal neurogenesis and governs sensitivity to antidepressive treatment. Neuron 59(3):399–412. https://doi.org/10.1016/j.neuron.2008.06.023

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  90. Jorissen RN, Walker F, Pouliot N, Garrett TP, Ward CW, Burgess AW (2003) Epidermal growth factor receptor: mechanisms of activation and signalling. Exp Cell Res 284(1):31–53. https://doi.org/10.1016/S0014-4827(02)00098-8

    Article  PubMed  CAS  Google Scholar 

  91. Huang EJ, Reichardt LF (2001) Neurotrophins: roles in neuronal development and function. Annu Rev Neurosci 24(1):677–736. https://doi.org/10.1146/annurev.neuro.24.1.677

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgements

LGV received a fellowship from CONACYT (262898) as part of the “Programa de Biomedicina” at the “Departamento de Biomedicina-CINVESTAV.” The present work was edited for proper English language (JS9VS9ZS).

Funding

This work was supported by grants from the “Consejo Nacional de Ciencia y Tecnología (CONACYT)” FOSISSS 262307 (GBRR) and SEP-CONACYT 222193 (MAMR), the “Instituto Nacional de Psiquiatría Ramón de la Fuente” (GBRR) and CINVESTAV (MAMR). Some of the equipment used in the present study was kindly financed by CONACYT (Grant Infraestructura 2015 Number 254773 to GBRR). CONACYT did not participate in the study design; data collection, analysis, or interpretation of data; the writing of the report; or the decision to submit the paper for publication.

Author information

Authors and Affiliations

Authors

Contributions

All authors participated in the preparation of the article and approved the final version. GBRR conceived the idea of the study, and GBRR together with LGV and MAMR carried out its design. LOL isolated and provided murine AHPCs and human NS/PCs-OE. CST provided reagents and equipment to perform the experiments. LGV performed the experiments and collected and analyzed the data. LGV, MAMR, and GBRR wrote the manuscript and interpreted the data. LGV, MAMR, and GBRR prepared the final figures.

Corresponding authors

Correspondence to Gerardo Bernabé Ramírez-Rodríguez or Marco Antonio Meraz-Ríos.

Ethics declarations

The Ethical Committee of the National Institute of Psychiatry approved this study (CEI/C/084/2015-CEI/C/077/2016).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gómez-Virgilio, L., Ramírez-Rodríguez, G.B., Sánchez-Torres, C. et al. Soluble Factors from Human Olfactory Neural Stem/Progenitor Cells Influence the Fate Decisions of Hippocampal Neural Precursor Cells. Mol Neurobiol 55, 8014–8037 (2018). https://doi.org/10.1007/s12035-018-0906-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-018-0906-2

Keywords

Navigation