Skip to main content

Advertisement

Log in

p75NTR and TROY: Uncharted Roles of Nogo Receptor Complex in Experimental Autoimmune Encephalomyelitis

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Multiple sclerosis (MS) and its animal model, experimental autoimmune encephalomyelitis (EAE), have been on the forefront of drug discovery for most of the myelin inhibitory molecules implicated in axonal regenerative process. Nogo-A along with its putative receptor NgR and co-receptor LINGO-1 has paved the way for the production of pharmaceutical agents such as monoclonal antibodies, which are already put into handful of clinical trials. On the other side, little progress has been made towards clarifying the role of neurotrophin receptor p75 (p75NTR) and TROY in disease progression, other key players of the Nogo receptor complex. Previous work of our lab has shown that their exact location and type of expression is harmonized in a phase-dependent manner. Here, in this review, we outline their façade in normal and diseased central nervous system (CNS) and suggest a role for p75NTR in chronic axonal regeneration whereas TROY in acute inflammation of EAE intercourse.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Chen MS, Huber AB, van der Haar ME, Frank M, Schnell L, Spillmann AA, Christ F, Schwab ME (2000) Nogo-A is a myelin-associated neurite outgrowth inhibitor and an antigen for monoclonal antibody IN-1. Nature 403(6768):434–439. https://doi.org/10.1038/35000219

    Article  PubMed  CAS  Google Scholar 

  2. Domeniconi M, Cao Z, Spencer T, Sivasankaran R, Wang K, Nikulina E, Kimura N, Cai H et al (2002) Myelin-associated glycoprotein interacts with the Nogo66 receptor to inhibit neurite outgrowth. Neuron 35(2):283–290. https://doi.org/10.1016/S0896-6273(02)00770-5

    Article  PubMed  CAS  Google Scholar 

  3. Wang KC, Koprivica V, Kim JA, Sivasankaran R, Guo Y, Neve RL, He Z (2002) Oligodendrocyte-myelin glycoprotein is a Nogo receptor ligand that inhibits neurite outgrowth. Nature 417(6892):941–944. https://doi.org/10.1038/nature00867

    Article  PubMed  CAS  Google Scholar 

  4. Yiu G, He Z (2006) Glial inhibition of CNS axon regeneration. Nat Rev Neurosci 7(8):617–627. https://doi.org/10.1038/nrn1956

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  5. Hunt D, Coffin RS, Anderson PN (2002) The Nogo receptor, its ligands and axonal regeneration in the spinal cord; a review. J Neurocytol 31(2):93–120. https://doi.org/10.1023/A:1023941421781

    Article  PubMed  CAS  Google Scholar 

  6. Yamashita T, Higuchi H, Tohyama M (2002) The p75 receptor transduces the signal from myelin-associated glycoprotein to Rho. J Cell Biol 157(4):565–570. https://doi.org/10.1083/jcb.200202010

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  7. Park JB, Yiu G, Kaneko S, Wang J, Chang J, He XL, Garcia KC, He Z (2005) A TNF receptor family member, TROY, is a coreceptor with Nogo receptor in mediating the inhibitory activity of myelin inhibitors. Neuron 45(3):345–351. https://doi.org/10.1016/j.neuron.2004.12.040

    Article  PubMed  CAS  Google Scholar 

  8. Karnezis T, Mandemakers W, McQualter JL, Zheng B, Ho PP, Jordan KA, Murray BM, Barres B et al (2004) The neurite outgrowth inhibitor Nogo A is involved in autoimmune-mediated demyelination. Nat Neurosci 7(7):736–744. https://doi.org/10.1038/nn1261

    Article  PubMed  CAS  Google Scholar 

  9. GrandPre T, Li S, Strittmatter SM (2002) Nogo-66 receptor antagonist peptide promotes axonal regeneration. Nature 417(6888):547–551. https://doi.org/10.1038/417547a

    Article  PubMed  CAS  Google Scholar 

  10. Xu J, He J, He H, Peng R, Xi J (2016) Comparison of RNAi NgR and NEP1-40 in acting on axonal regeneration after spinal cord injury in rat models. Mol Neurobiol

  11. Zorner B, Schwab ME (2010) Anti-Nogo on the go: from animal models to a clinical trial. Ann N Y Acad Sci 1198(Suppl 1):E22–E34. https://doi.org/10.1111/j.1749-6632.2010.05566.x

    Article  PubMed  Google Scholar 

  12. Mi S, Pepinsky RB, Cadavid D (2013) Blocking LINGO-1 as a therapy to promote CNS repair: from concept to the clinic. CNS Drugs 27(7):493–503. https://doi.org/10.1007/s40263-013-0068-8

    Article  PubMed  CAS  Google Scholar 

  13. Meeker RB, Williams KS (2015) The p75 neurotrophin receptor: at the crossroad of neural repair and death. Neural Regen Res 10(5):721–725. https://doi.org/10.4103/1673-5374.156967

    Article  PubMed  PubMed Central  Google Scholar 

  14. Mandemakers WJ, Barres BA (2005) Axon regeneration: it’s getting crowded at the gates of TROY. Curr Biol 15(8):R302–R305. https://doi.org/10.1016/j.cub.2005.04.002

    Article  PubMed  CAS  Google Scholar 

  15. Fournier AE, GrandPre T, Strittmatter SM (2001) Identification of a receptor mediating Nogo-66 inhibition of axonal regeneration. Nature 409(6818):341–346. https://doi.org/10.1038/35053072

    Article  PubMed  CAS  Google Scholar 

  16. Hunt D, Mason MR, Campbell G, Coffin R, Anderson PN (2002) Nogo receptor mRNA expression in intact and regenerating CNS neurons. Mol Cell Neurosci 20(4):537–552. https://doi.org/10.1006/mcne.2002.1153

    Article  PubMed  CAS  Google Scholar 

  17. Pool M, Niino M, Rambaldi I, Robson K, Bar-Or A, Fournier AE (2009) Myelin regulates immune cell adhesion and motility. Exp Neurol 217(2):371–377. https://doi.org/10.1016/j.expneurol.2009.03.014

    Article  PubMed  CAS  Google Scholar 

  18. McDonald CL, Steinbach K, Kern F, Schweigreiter R, Martin R, Bandtlow CE, Reindl M (2011) Nogo receptor is involved in the adhesion of dendritic cells to myelin. J Neuroinflammation 8(1):113. https://doi.org/10.1186/1742-2094-8-113

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Mi S, Lee X, Shao Z, Thill G, Ji B, Relton J, Levesque M, Allaire N et al (2004) LINGO-1 is a component of the Nogo-66 receptor/p75 signaling complex. Nat Neurosci 7(3):221–228. https://doi.org/10.1038/nn1188

    Article  PubMed  CAS  Google Scholar 

  20. Mi S, Miller RH, Lee X, Scott ML, Shulag-Morskaya S, Shao Z, Chang J, Thill G et al (2005) LINGO-1 negatively regulates myelination by oligodendrocytes. Nat Neurosci 8(6):745–751. https://doi.org/10.1038/nn1460

    Article  PubMed  CAS  Google Scholar 

  21. Lee X, Yang Z, Shao Z, Rosenberg SS, Levesque M, Pepinsky RB, Qiu M, Miller RH et al (2007) NGF regulates the expression of axonal LINGO-1 to inhibit oligodendrocyte differentiation and myelination. J Neurosci 27(1):220–225. https://doi.org/10.1523/JNEUROSCI.4175-06.2007

    Article  PubMed  CAS  Google Scholar 

  22. Meeker R, Williams K (2014) Dynamic nature of the p75 neurotrophin receptor in response to injury and disease. J NeuroImmune Pharmacol 9(5):615–628. https://doi.org/10.1007/s11481-014-9566-9

    Article  PubMed  PubMed Central  Google Scholar 

  23. Nykjaer A, Lee R, Teng KK, Jansen P, Madsen P, Nielsen MS, Jacobsen C, Kliemannel M et al (2004) Sortilin is essential for proNGF-induced neuronal cell death. Nature 427(6977):843–848. https://doi.org/10.1038/nature02319

    Article  PubMed  CAS  Google Scholar 

  24. Friedman WJ (2000) Neurotrophins induce death of hippocampal neurons via the p75 receptor. J Neurosci 20(17):6340–6346

    Article  PubMed  CAS  Google Scholar 

  25. Teng KK, Hempstead BL (2004) Neurotrophins and their receptors: signaling trios in complex biological systems. Cell Mol Life Sci 61(1):35–48. https://doi.org/10.1007/s00018-003-3099-3

    Article  PubMed  CAS  Google Scholar 

  26. Wang KC, Kim JA, Sivasankaran R, Segal R, He Z (2002) P75 interacts with the Nogo receptor as a co-receptor for Nogo, MAG and OMgp. Nature 420(6911):74–78. https://doi.org/10.1038/nature01176

    Article  PubMed  CAS  Google Scholar 

  27. Wong ST, Henley JR, Kanning KC, Huang KH, Bothwell M, Poo MM (2002) A p75(NTR) and Nogo receptor complex mediates repulsive signaling by myelin-associated glycoprotein. Nat Neurosci 5(12):1302–1308. https://doi.org/10.1038/nn975

    Article  PubMed  CAS  Google Scholar 

  28. Park KJ, Grosso CA, Aubert I, Kaplan DR, Miller FD (2010) p75NTR-dependent, myelin-mediated axonal degeneration regulates neural connectivity in the adult brain. Nat Neurosci 13(5):559–566. https://doi.org/10.1038/nn.2513

    Article  PubMed  CAS  Google Scholar 

  29. Zhou XF, Li HY (2007) Roles of glial p75NTR in axonal regeneration. J Neurosci Res 85(8):1601–1605. https://doi.org/10.1002/jnr.21220

    Article  PubMed  CAS  Google Scholar 

  30. Barrette B, Vallieres N, Dube M, Lacroix S (2007) Expression profile of receptors for myelin-associated inhibitors of axonal regeneration in the intact and injured mouse central nervous system. Mol Cell Neurosci 34(4):519–538. https://doi.org/10.1016/j.mcn.2006.12.004

    Article  PubMed  CAS  Google Scholar 

  31. Lauren J, Airaksinen MS, Saarma M, Timmusk T (2003) Two novel mammalian Nogo receptor homologs differentially expressed in the central and peripheral nervous systems. Mol Cell Neurosci 24(3):581–594. https://doi.org/10.1016/S1044-7431(03)00199-4

    Article  PubMed  CAS  Google Scholar 

  32. Hisaoka T, Morikawa Y, Kitamura T, Senba E (2003) Expression of a member of tumor necrosis factor receptor superfamily, TROY, in the developing mouse brain. Brain Res Dev Brain Res 143(1):105–109. https://doi.org/10.1016/S0165-3806(03)00101-9

    Article  PubMed  CAS  Google Scholar 

  33. Shao Z, Browning JL, Lee X, Scott ML, Shulga-Morskaya S, Allaire N, Thill G, Levesque M et al (2005) TAJ/TROY, an orphan TNF receptor family member, binds Nogo-66 receptor 1 and regulates axonal regeneration. Neuron 45(3):353–359. https://doi.org/10.1016/j.neuron.2004.12.050

    Article  PubMed  CAS  Google Scholar 

  34. Borrie SC, Baeumer BE, Bandtlow CE (2012) The Nogo-66 receptor family in the intact and diseased CNS. Cell Tissue Res 349(1):105–117. https://doi.org/10.1007/s00441-012-1332-9

    Article  PubMed  CAS  Google Scholar 

  35. Mi S (2008) Troy/Taj and its role in CNS axon regeneration. Cytokine Growth Factor Rev 19(3-4):245–251. https://doi.org/10.1016/j.cytogfr.2008.04.007

    Article  PubMed  CAS  Google Scholar 

  36. McDonald CL, Bandtlow C, Reindl M (2011) Targeting the Nogo receptor complex in diseases of the central nervous system. Curr Med Chem 18(2):234–244. https://doi.org/10.2174/092986711794088326

    Article  PubMed  CAS  Google Scholar 

  37. Satoh J, Onoue H, Arima K, Yamamura T (2005) Nogo-A and nogo receptor expression in demyelinating lesions of multiple sclerosis. J Neuropathol Exp Neurol 64(2):129–138. https://doi.org/10.1093/jnen/64.2.129

    Article  PubMed  CAS  Google Scholar 

  38. Satoh J, Tabunoki H, Yamamura T, Arima K, Konno H (2007) TROY and LINGO-1 expression in astrocytes and macrophages/microglia in multiple sclerosis lesions. Neuropathol Appl Neurobiol 33(1):99–107. https://doi.org/10.1111/j.1365-2990.2006.00787.x

    Article  PubMed  CAS  Google Scholar 

  39. Grigoriadis N, Lourbopoulos A, Lagoudaki R, Frischer JM, Polyzoidou E, Touloumi O, Simeonidou C, Deretzi G et al (2011) Variable behavior and complications of autologous bone marrow mesenchymal stem cells transplanted in experimental autoimmune encephalomyelitis. Exp Neurol 230(1):78–89. https://doi.org/10.1016/j.expneurol.2011.02.021

    Article  PubMed  Google Scholar 

  40. Theotokis P, Kleopa KA, Touloumi O, Lagoudaki R, Lourbopoulos A, Nousiopoulou E, Kesidou E, Poulatsidou KN et al (2015) Connexin43 and connexin47 alterations after neural precursor cells transplantation in experimental autoimmune encephalomyelitis. Glia 63(10):1772–1783. https://doi.org/10.1002/glia.22843

    Article  PubMed  Google Scholar 

  41. Steinman L, Zamvil SS (2006) How to successfully apply animal studies in experimental allergic encephalomyelitis to research on multiple sclerosis. Ann Neurol 60(1):12–21. https://doi.org/10.1002/ana.20913

    Article  PubMed  CAS  Google Scholar 

  42. Piaton G, Gould RM, Lubetzki C (2010) Axon-oligodendrocyte interactions during developmental myelination, demyelination and repair. J Neurochem 114(5):1243–1260. https://doi.org/10.1111/j.1471-4159.2010.06831.x

    Article  PubMed  CAS  Google Scholar 

  43. Theotokis P, Lourbopoulos A, Touloumi O, Lagoudaki R, Kofidou E, Nousiopoulou E, Poulatsidou KN, Kesidou E et al (2012) Time course and spatial profile of Nogo-A expression in experimental autoimmune encephalomyelitis in C57BL/6 mice. J Neuropathol Exp Neurol 71(10):907–920. https://doi.org/10.1097/NEN.0b013e31826caebe

    Article  PubMed  CAS  Google Scholar 

  44. Theotokis P, Touloumi O, Lagoudaki R, Nousiopoulou E, Kesidou E, Siafis S, Tselios T, Lourbopoulos A et al (2016) Nogo receptor complex expression dynamics in the inflammatory foci of central nervous system experimental autoimmune demyelination. J Neuroinflammation 13(1):265. https://doi.org/10.1186/s12974-016-0730-4

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  45. Trifunovski A, Josephson A, Ringman A, Brene S, Spenger C, Olson L (2004) Neuronal activity-induced regulation of Lingo-1. Neuroreport 15(15):2397–2400. https://doi.org/10.1097/00001756-200410250-00019

    Article  PubMed  CAS  Google Scholar 

  46. Petratos S, Ozturk E, Azari MF, Kenny R, Lee JY, Magee KA, Harvey AR, McDonald C et al (2012) Limiting multiple sclerosis related axonopathy by blocking Nogo receptor and CRMP-2 phosphorylation. Brain 135(6):1794–1818. https://doi.org/10.1093/brain/aws100

    Article  PubMed  PubMed Central  Google Scholar 

  47. Lee JY, Petratos S (2013) Multiple sclerosis: does Nogo play a role? Neuroscientist 19(4):394–408. https://doi.org/10.1177/1073858413477207

    Article  PubMed  CAS  Google Scholar 

  48. Steinbach K, McDonald CL, Reindl M, Schweigreiter R, Bandtlow C, Martin R (2011) Nogo-receptors NgR1 and NgR2 do not mediate regulation of CD4 T helper responses and CNS repair in experimental autoimmune encephalomyelitis. PLoS One 6(11):e26341. https://doi.org/10.1371/journal.pone.0026341

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  49. Litwak SA, Payne NL, Campanale N, Ozturk E, Lee JY, Petratos S, Siatskas C, Bakhuraysah M et al (2013) Nogo-receptor 1 deficiency has no influence on immune cell repertoire or function during experimental autoimmune encephalomyelitis. PLoS One 8(12):e82101. https://doi.org/10.1371/journal.pone.0082101

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  50. Copray S, Kust B, Emmer B, Lin MY, Liem R, Amor S, de Vries H, Floris S et al (2004) Deficient p75 low-affinity neurotrophin receptor expression exacerbates experimental allergic encephalomyelitis in C57/BL6 mice. J Neuroimmunol 148(1-2):41–53. https://doi.org/10.1016/j.jneuroim.2003.11.008

    Article  PubMed  CAS  Google Scholar 

  51. Kust B, Mantingh-Otter I, Boddeke E, Copray S (2006) Deficient p75 low-affinity neurotrophin receptor expression does alter the composition of cellular infiltrate in experimental autoimmune encephalomyelitis in C57BL/6 mice. J Neuroimmunol 174(1-2):92–100. https://doi.org/10.1016/j.jneuroim.2006.01.020

    Article  PubMed  CAS  Google Scholar 

  52. Fry EJ, Ho C, David S (2007) A role for Nogo receptor in macrophage clearance from injured peripheral nerve. Neuron 53(5):649–662. https://doi.org/10.1016/j.neuron.2007.02.009

    Article  PubMed  CAS  Google Scholar 

  53. Kraemer BR, Yoon SO, Carter BD (2014) The biological functions and signaling mechanisms of the p75 neurotrophin receptor. Handb Exp Pharmacol 220:121–164. https://doi.org/10.1007/978-3-642-45106-5_6

    Article  PubMed  CAS  Google Scholar 

  54. Gentry JJ, Barker PA, Carter BD (2004) The p75 neurotrophin receptor: multiple interactors and numerous functions. Prog Brain Res 146:25–39. https://doi.org/10.1016/S0079-6123(03)46002-0

    Article  PubMed  CAS  Google Scholar 

  55. Barker PA (2004) p75NTR is positively promiscuous: novel partners and new insights. Neuron 42(4):529–533. https://doi.org/10.1016/j.neuron.2004.04.001

    Article  PubMed  CAS  Google Scholar 

  56. Ahmed Z, Mazibrada G, Seabright RJ, Dent RG, Berry M, Logan A (2006) TACE-induced cleavage of NgR and p75NTR in dorsal root ganglion cultures disinhibits outgrowth and promotes branching of neurites in the presence of inhibitory CNS myelin. FASEB J 20(11):1939–1941. https://doi.org/10.1096/fj.05-5339fje

    Article  PubMed  CAS  Google Scholar 

  57. Ibanez CF, Simi A (2012) p75 neurotrophin receptor signaling in nervous system injury and degeneration: paradox and opportunity. Trends Neurosci 35(7):431–440. https://doi.org/10.1016/j.tins.2012.03.007

    Article  PubMed  CAS  Google Scholar 

  58. Zhou XF, Rush RA, McLachlan EM (1996) Differential expression of the p75 nerve growth factor receptor in glia and neurons of the rat dorsal root ganglia after peripheral nerve transection. J Neurosci 16(9):2901–2911

    Article  PubMed  CAS  Google Scholar 

  59. Johnson H, Hokfelt T, Ulfhake B (1999) Expression of p75(NTR), trkB and trkC in nonmanipulated and axotomized motoneurons of aged rats. Brain Res Mol Brain Res 69(1):21–34. https://doi.org/10.1016/S0169-328X(99)00068-6

    Article  PubMed  CAS  Google Scholar 

  60. Provenzano MJ, Xu N, Ver Meer MR, Clark JJ, Hansen MR (2008) p75NTR and sortilin increase after facial nerve injury. Laryngoscope 118(1):87–93. https://doi.org/10.1097/MLG.0b013e31814b8d9f

    Article  PubMed  CAS  Google Scholar 

  61. Gai WP, Zhou XF, Rush RA (1996) Analysis of low affinity neurotrophin receptor (p75) expression in glia of the CNS-PNS transition zone following dorsal root transection. Neuropathol Appl Neurobiol 22(5):434–439. https://doi.org/10.1111/j.1365-2990.1996.tb00917.x

    Article  PubMed  CAS  Google Scholar 

  62. Cragnolini AB, Huang Y, Gokina P, Friedman WJ (2009) Nerve growth factor attenuates proliferation of astrocytes via the p75 neurotrophin receptor. Glia 57(13):1386–1392. https://doi.org/10.1002/glia.20857

    Article  PubMed  PubMed Central  Google Scholar 

  63. Petratos S, Gonzales MF, Azari MF, Marriott M, Minichiello RA, Shipham KA, Profyris C, Nicolaou A et al (2004) Expression of the low-affinity neurotrophin receptor, p75(NTR), is upregulated by oligodendroglial progenitors adjacent to the subventricular zone in response to demyelination. Glia 48(1):64–75. https://doi.org/10.1002/glia.20056

    Article  PubMed  Google Scholar 

  64. Beattie MS, Harrington AW, Lee R, Kim JY, Boyce SL, Longo FM, Bresnahan JC, Hempstead BL et al (2002) ProNGF induces p75-mediated death of oligodendrocytes following spinal cord injury. Neuron 36(3):375–386. https://doi.org/10.1016/S0896-6273(02)01005-X

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  65. Dowling P, Ming X, Raval S, Husar W, Casaccia-Bonnefil P, Chao M, Cook S, Blumberg B (1999) Up-regulated p75NTR neurotrophin receptor on glial cells in MS plaques. Neurology 53(8):1676–1682. https://doi.org/10.1212/WNL.53.8.1676

    Article  PubMed  CAS  Google Scholar 

  66. Wong I, Liao H, Bai X, Zaknic A, Zhong J, Guan Y, Li HY, Wang YJ et al (2010) ProBDNF inhibits infiltration of ED1+ macrophages after spinal cord injury. Brain Behav Immun 24(4):585–597. https://doi.org/10.1016/j.bbi.2010.01.001

    Article  PubMed  CAS  Google Scholar 

  67. Lowry KS, Murray SS, McLean CA, Talman P, Mathers S, Lopes EC, Cheema SS (2001) A potential role for the p75 low-affinity neurotrophin receptor in spinal motor neuron degeneration in murine and human amyotrophic lateral sclerosis. Amyotroph Lateral Scler Other Motor Neuron Disord 2(3):127–134. https://doi.org/10.1080/146608201753275463

    Article  PubMed  CAS  Google Scholar 

  68. Schwab ME (2004) Nogo and axon regeneration. Curr Opin Neurobiol 14(1):118–124. https://doi.org/10.1016/j.conb.2004.01.004

    Article  PubMed  CAS  Google Scholar 

  69. Domeniconi M, Zampieri N, Spencer T, Hilaire M, Mellado W, Chao MV, Filbin MT (2005) MAG induces regulated intramembrane proteolysis of the p75 neurotrophin receptor to inhibit neurite outgrowth. Neuron 46(6):849–855. https://doi.org/10.1016/j.neuron.2005.05.029

    Article  PubMed  CAS  Google Scholar 

  70. Yamashita T, Tohyama M (2003) The p75 receptor acts as a displacement factor that releases Rho from Rho-GDI. Nat Neurosci 6(5):461–467. https://doi.org/10.1038/nn1045

    Article  PubMed  CAS  Google Scholar 

  71. Yamashita T, Tucker KL, Barde YA (1999) Neurotrophin binding to the p75 receptor modulates Rho activity and axonal outgrowth. Neuron 24(3):585–593. https://doi.org/10.1016/S0896-6273(00)81114-9

    Article  PubMed  CAS  Google Scholar 

  72. Ahmed Z, Douglas MR, John G, Berry M, Logan A (2013) AMIGO3 is an NgR1/p75 co-receptor signalling axon growth inhibition in the acute phase of adult central nervous system injury. PLoS One 8(4):e61878. https://doi.org/10.1371/journal.pone.0061878

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  73. Vilar M, Sung TC, Chen Z, Garcia-Carpio I, Fernandez EM, Xu J, Riek R, Lee KF (2014) Heterodimerization of p45-p75 modulates p75 signaling: structural basis and mechanism of action. PLoS Biol 12(8):e1001918. https://doi.org/10.1371/journal.pbio.1001918

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  74. Paintlia AS, Paintlia MK, Singh AK, Singh I (2008) Inhibition of rho family functions by lovastatin promotes myelin repair in ameliorating experimental autoimmune encephalomyelitis. Mol Pharmacol 73(5):1381–1393. https://doi.org/10.1124/mol.107.044230

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  75. Zhang Z, Schittenhelm J, Meyermann R, Schluesener HJ (2008) Lesional accumulation of RhoA(+) cells in brains of experimental autoimmune encephalomyelitis and multiple sclerosis. Neuropathol Appl Neurobiol 34(2):231–240. https://doi.org/10.1111/j.1365-2990.2007.00892.x

    Article  PubMed  CAS  Google Scholar 

  76. Takata M, Tanaka H, Kimura M, Nagahara Y, Tanaka K, Kawasaki K, Seto M, Tsuruma K et al (2013) Fasudil, a rho kinase inhibitor, limits motor neuron loss in experimental models of amyotrophic lateral sclerosis. Br J Pharmacol 170(2):341–351. https://doi.org/10.1111/bph.12277

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  77. David S, Fry EJ, Lopez-Vales R (2008) Novel roles for Nogo receptor in inflammation and disease. Trends Neurosci 31(5):221–226. https://doi.org/10.1016/j.tins.2008.02.002

    Article  PubMed  CAS  Google Scholar 

  78. Yan J, Zhou X, Guo JJ, Mao L, Wang YJ, Sun J, Sun LX, Zhang LY et al (2012) Nogo-66 inhibits adhesion and migration of microglia via GTPase Rho pathway in vitro. J Neurochem 120(5):721–731. https://doi.org/10.1111/j.1471-4159.2011.07619.x

    Article  PubMed  CAS  Google Scholar 

  79. Zhu Z, Ni B, Yin G, Zhou F, Liu J, Guo Q, Guo X (2010) NgR expression in macrophages promotes nerve regeneration after spinal cord injury in rats. Arch Orthop Trauma Surg 130(7):945–951. https://doi.org/10.1007/s00402-010-1065-8

    Article  PubMed  Google Scholar 

  80. Locksley RM, Killeen N, Lenardo MJ (2001) The TNF and TNF receptor superfamilies: integrating mammalian biology. Cell 104(4):487–501. https://doi.org/10.1016/S0092-8674(01)00237-9

    Article  PubMed  CAS  Google Scholar 

  81. Lu Y, Liu X, Zhou J, Huang A, He C (2013) TROY interacts with Rho guanine nucleotide dissociation inhibitor alpha (RhoGDIalpha) to mediate Nogo-induced inhibition of neurite outgrowth. J Biol Chem 288(47):34276–34286. https://doi.org/10.1074/jbc.M113.519744

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  82. Paulino VM, Yang Z, Kloss J, Ennis MJ, Armstrong BA, Loftus JC, Tran NL (2010) TROY (TNFRSF19) is overexpressed in advanced glial tumors and promotes glioblastoma cell invasion via Pyk2-Rac1 signaling. Mol Cancer Res 8(11):1558–1567. https://doi.org/10.1158/1541-7786.MCR-10-0334

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  83. Jacobs VL, Liu Y, De Leo JA (2012) Propentofylline targets TROY, a novel microglial signaling pathway. PLoS One 7(5):e37955. https://doi.org/10.1371/journal.pone.0037955

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  84. Hisaoka T, Morikawa Y, Senba E (2006) Characterization of TROY/TNFRSF19/TAJ-expressing cells in the adult mouse forebrain. Brain Res 1110(1):81–94. https://doi.org/10.1016/j.brainres.2006.06.068

    Article  PubMed  CAS  Google Scholar 

  85. Greenhalgh AD, David S (2014) Differences in the phagocytic response of microglia and peripheral macrophages after spinal cord injury and its effects on cell death. J Neurosci 34(18):6316–6322. https://doi.org/10.1523/JNEUROSCI.4912-13.2014

    Article  PubMed  CAS  Google Scholar 

  86. David S, Greenhalgh AD, Kroner A (2015) Macrophage and microglial plasticity in the injured spinal cord. Neuroscience 307:311–318. https://doi.org/10.1016/j.neuroscience.2015.08.064

    Article  PubMed  CAS  Google Scholar 

  87. Lassmann H, Schmied M, Vass K, Hickey WF (1993) Bone marrow derived elements and resident microglia in brain inflammation. Glia 7(1):19–24. https://doi.org/10.1002/glia.440070106

    Article  PubMed  CAS  Google Scholar 

  88. Constantinescu CS, Farooqi N, O’Brien K, Gran B (2011) Experimental autoimmune encephalomyelitis (EAE) as a model for multiple sclerosis (MS). Br J Pharmacol 164(4):1079–1106. https://doi.org/10.1111/j.1476-5381.2011.01302.x

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  89. Ineichen BV, Plattner PS, Good N, Martin R, Linnebank M, Schwab ME (2017) Nogo-A antibodies for progressive multiple sclerosis. CNS Drugs 31(3):187–198. https://doi.org/10.1007/s40263-017-0407-2

    Article  PubMed  CAS  Google Scholar 

  90. Motavaf M, Sadeghizadeh M, Javan M (2017) Attempts to overcome remyelination failure: toward opening new therapeutic avenues for multiple sclerosis. Cell Mol Neurobiol 37(8):1335–1348. https://doi.org/10.1007/s10571-017-0472-6

    Article  PubMed  CAS  Google Scholar 

  91. Meininger V, Pradat PF, Corse A, Al-Sarraj S, Rix Brooks B, Caress JB, Cudkowicz M, Kolb SJ et al (2014) Safety, pharmacokinetic, and functional effects of the nogo-a monoclonal antibody in amyotrophic lateral sclerosis: a randomized, first-in-human clinical trial. PLoS One 9(5):e97803. https://doi.org/10.1371/journal.pone.0097803

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  92. Berges A, Bullman J, Bates S, Krull D, Williams N, Chen C (2015) Ozanezumab dose selection for amyotrophic lateral sclerosis by pharmacokinetic-pharmacodynamic modelling of immunohistochemistry data from patient muscle biopsies. PLoS One 10(2):e0117355. https://doi.org/10.1371/journal.pone.0117355

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  93. Meininger V, Genge A, van den Berg LH, Robberecht W, Ludolph A, Chio A, Kim SH, Leigh PN et al (2017) Safety and efficacy of ozanezumab in patients with amyotrophic lateral sclerosis: a randomised, double-blind, placebo-controlled, phase 2 trial. Lancet Neurol 16(3):208–216. https://doi.org/10.1016/S1474-4422(16)30399-4

    Article  PubMed  CAS  Google Scholar 

  94. Tran JQ, Rana J, Barkhof F, Melamed I, Gevorkyan H, Wattjes MP, de Jong R, Brosofsky K et al (2014) Randomized phase I trials of the safety/tolerability of anti-LINGO-1 monoclonal antibody BIIB033. Neurol Neuroimmunol Neuroinflamm 1(2):e18. https://doi.org/10.1212/NXI.0000000000000018

    Article  PubMed  PubMed Central  Google Scholar 

  95. Li X, Zhang Y, Yan Y, Ciric B, Ma CG, Chin J, Curtis M, Rostami A, Zhang GX (2016) LINGO-1-Fc-transduced neural stem cells are effective therapy for chronic stage experimental autoimmune encephalomyelitis. Mol Neurobiol.

  96. Xiao J, Yang R, Biswas S, Zhu Y, Qin X, Zhang M, Zhai L, Luo Y et al (2017) Neural stem cell-based regenerative approaches for the treatment of multiple sclerosis. Mol Neurobiol. https://doi.org/10.1007/s12035-017-0566-7

  97. Kurihara Y, Iketani M, Ito H, Nishiyama K, Sakakibara Y, Goshima Y, Takei K (2014) LOTUS suppresses axon growth inhibition by blocking interaction between Nogo receptor-1 and all four types of its ligand. Mol Cell Neurosci 61:211–218. https://doi.org/10.1016/j.mcn.2014.07.001

    Article  PubMed  CAS  Google Scholar 

  98. Pourabdolhossein F, Mozafari S, Morvan-Dubois G, Mirnajafi-Zadeh J, Lopez-Juarez A, Pierre-Simons J, Demeneix BA, Javan M (2014) Nogo receptor inhibition enhances functional recovery following lysolecithin-induced demyelination in mouse optic chiasm. PLoS One 9(9):e106378. https://doi.org/10.1371/journal.pone.0106378

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  99. Longo FM, Massa SM (2013) Small-molecule modulation of neurotrophin receptors: a strategy for the treatment of neurological disease. Nat Rev Drug Discov 12(7):507–525. https://doi.org/10.1038/nrd4024

    Article  PubMed  CAS  Google Scholar 

  100. Sun L, Liu S, Sun Q, Li Z, Xu F, Hou C, Harada T, Chu M et al (2014) Inhibition of TROY promotes OPC differentiation and increases therapeutic efficacy of OPC graft for spinal cord injury. Stem Cells Dev 23(17):2104–2118. https://doi.org/10.1089/scd.2013.0563

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Funding

This work was supported by an unrestricted grant of Νovartis (Hellas) A.E.B.E. via the Aristotle University Research Committee.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nikolaos Grigoriadis.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Theotokis, P., Grigoriadis, N. p75NTR and TROY: Uncharted Roles of Nogo Receptor Complex in Experimental Autoimmune Encephalomyelitis. Mol Neurobiol 55, 6329–6336 (2018). https://doi.org/10.1007/s12035-017-0841-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-017-0841-7

Keywords

Navigation