Skip to main content

Advertisement

Log in

Metabolomic Estimation of the Diagnosis and Onset Time of Permanent and Transient Cerebral Ischemia

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Determining the time of stroke onset in order to apply recanalization therapies within the accepted therapeutic window and the correct diagnosis of transient ischemic attack (TIA) are two common clinical problems in acute cerebral ischemia management. Therefore, biomarkers helping in this conundrum could be very helpful. We developed mouse models of distal middle cerebral artery occlusion mimicking TIA and ischemic stroke (IS), respectively. Plasma samples were analyzed by metabolomics at 6, 12, 24, and 48 h post onset in order to find TIA- and time-related stroke biomarkers. The results were validated in a second experimental cohort. Plasma metabolomic profiles identified time after stroke events with a very high accuracy. Specific metabolites pointing to a recent event (< 6 h) were identified. A multivariate (partial least square discriminant analyses [PLS-DA]) model was also able to separate samples from TIA, IS, and sham events with high accuracy and to obtain specific metabolites for each time point. The combination of mice models of focal ischemia with plasma metabolomics allows the discovery of candidate biomarkers for the diagnosis and estimation of onset time of stroke and TIA diagnosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Emberson J, Lees KR, Lyden P, Blackwell L, Albers G, Bluhmki E, Brott T, Cohen G et al (2015) Effect of treatment delay, age, and stroke severity on the effects of intravenous thrombolysis with alteplase for acute ischaemic stroke: a meta-analysis of individual patient data from randomised trials. Lancet 384(9958):1929–1935. https://doi.org/10.1016/S0140-6736(14)60584-5

    Article  CAS  Google Scholar 

  2. Goyal M, Menon BK, van Zwam WH, Dippel DW, Mitchell PJ, Demchuk AM, Davalos A, Majoie CB, van der Lugt A, de Miquel MA, Donnan GA, Roos YB, Bonafe A, Jahan R, Diener HC, van den Berg LA, Levy EI, Berkhemer OA, Pereira VM, Rempel J, Millan M, Davis SM, Roy D, Thornton J, Roman LS, Ribo M, Beumer D, Stouch B, Brown S, Campbell BC, van Oostenbrugge RJ, Saver JL, Hill MD, Jovin TG, collaborators H (2016) Endovascular thrombectomy after large-vessel ischaemic stroke: a meta-analysis of individual patient data from five randomised trials. Lancet 387 (10029):1723–1731. doi:https://doi.org/10.1016/S0140-6736(16)00163-X

  3. Bornstein NM, Gur AY, Fainshtein P, Korczyn AD (1999) Stroke during sleep: epidemiological and clinical features. Cerebrovasc Dis 9 (6):320–322. doi:16005

  4. Serena J, Davalos A, Segura T, Mostacero E, Castillo J (2003) Stroke on awakening: looking for a more rational management. Cerebrovasc Dis 16(2):128–133. https://doi.org/10.1159/000070592

    Article  PubMed  Google Scholar 

  5. Jimenez-Conde J, Ois A, Rodriguez-Campello A, Gomis M, Roquer J (2007) Does sleep protect against ischemic stroke? Less frequent ischemic strokes but more severe ones. J Neurol 254(6):782–788. https://doi.org/10.1007/s00415-006-0438-y

    Article  PubMed  Google Scholar 

  6. Rimmele DL, Thomalla G (2014) Wake-up stroke: clinical characteristics, imaging findings, and treatment option—an update. Front Neurol 5:35. https://doi.org/10.3389/fneur.2014.00035

    Article  PubMed  PubMed Central  Google Scholar 

  7. Amort M, Fluri F, Schafer J, Weisskopf F, Katan M, Burow A, Bucher HC, Bonati LH et al (2011) Transient ischemic attack versus transient ischemic attack mimics: frequency, clinical characteristics and outcome. Cerebrovasc Dis 32(1):57–64. https://doi.org/10.1159/000327034

    Article  PubMed  Google Scholar 

  8. Arsava EM, Gurer G, Gursoy-Ozdemir Y, Karatas H, Dalkara T (2009) A new model of transient focal cerebral ischemia for inducing selective neuronal necrosis. Brain Res Bull 78(4–5):226–231. https://doi.org/10.1016/j.brainresbull.2008.11.005

    Article  PubMed  CAS  Google Scholar 

  9. Mauri-Capdevila G, Jove M, Suarez-Luis I, Portero-Otin M, Purroy F (2013) Metabolomics in ischaemic stroke, new diagnostic and prognostic biomarkers. Rev Neurol 57(1):29–36

    PubMed  Google Scholar 

  10. Jove M, Portero-Otin M, Naudi A, Ferrer I, Pamplona R (2014) Metabolomics of human brain aging and age-related neurodegenerative diseases. J Neuropathol Exp Neurol 73(7):640–657. https://doi.org/10.1097/NEN.0000000000000091

    Article  PubMed  CAS  Google Scholar 

  11. Purroy F, Cambray S, Mauri-Capdevila G, Jove M, Sanahuja J, Farre J, Benabdelhak I, Molina-Seguin J et al (2016) Metabolomics predicts neuroimaging characteristics of transient ischemic attack patients. EBioMedicine S2352-3964(16):30514-X. https://doi.org/10.1016/j.ebiom.2016.11.010

    Article  Google Scholar 

  12. Jove M, Mauri-Capdevila G, Suarez I, Cambray S, Sanahuja J, Quilez A, Farre J, Benabdelhak I et al (2015) Metabolomics predicts stroke recurrence after transient ischemic attack. Neurology 84(1):36–45. https://doi.org/10.1212/WNL.0000000000001093

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. Jove M, Naudi A, Ramirez-Nunez O, Portero-Otin M, Selman C, Withers DJ, Pamplona R (2014) Caloric restriction reveals a metabolomic and lipidomic signature in liver of male mice. Aging Cell 13(5):828–837. https://doi.org/10.1111/acel.12241

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. Sana TR, Roark JC, Li X, Waddell K, Fischer SM (2008) Molecular formula and METLIN Personal Metabolite Database matching applied to the identification of compounds generated by LC/TOF-MS. J Biomol Tech 19(4):258–266

    PubMed  PubMed Central  Google Scholar 

  15. Prabhakaran S, Silver AJ, Warrior L, McClenathan B, Lee VH (2008) Misdiagnosis of transient ischemic attacks in the emergency room. Cerebrovasc Dis 26(6):630–635. https://doi.org/10.1159/000166839

    Article  PubMed  Google Scholar 

  16. Brazzelli M, Chappell F, Miranda H, Shuler K, Dennis M, Sandercock P, Muir K, Wardlaw J (2014) Diffusion-weighted imaging and diagnosis of transient ischaemic attack. Ann Neurol 75(1):67–76. https://doi.org/10.1002/ana.24026

    Article  PubMed  PubMed Central  Google Scholar 

  17. Jensen MB, Chacon MR, Sattin JA, Aleu A, Lyden PD (2008) The promise and potential pitfalls of serum biomarkers for ischemic stroke and transient ischemic attack. Neurologist 14(4):243–246. https://doi.org/10.1097/NRL.0b013e31815a9945

    Article  PubMed  PubMed Central  Google Scholar 

  18. Harada K, Honmou O, Liu H, Bando M, Houkin K, Kocsis JD (2007) Magnetic resonance lactate and lipid signals in rat brain after middle cerebral artery occlusion model. Brain Res 1134(1):206–213. https://doi.org/10.1016/j.brainres.2006.11.075

    Article  PubMed  CAS  Google Scholar 

  19. Brouns R, Sheorajpanday R, Wauters A, De Surgeloose D, Marien P, De Deyn PP (2008) Evaluation of lactate as a marker of metabolic stress and cause of secondary damage in acute ischemic stroke or TIA. Clin Chim Acta 397(1–2):27–31. https://doi.org/10.1016/j.cca.2008.07.016

    Article  PubMed  CAS  Google Scholar 

  20. Wouters A, Dupont P, Norrving B, Laage R, Thomalla G, Albers GW, Thijs V, Lemmens R (2016) Prediction of stroke onset is improved by relative fluid-attenuated inversion recovery and perfusion imaging compared to the visual diffusion-weighted imaging/fluid-attenuated inversion recovery mismatch. Stroke 47(10):2559–2564. https://doi.org/10.1161/STROKEAHA.116.013903

    Article  PubMed  Google Scholar 

  21. Berthet C, Xin L, Buscemi L, Benakis C, Gruetter R, Hirt L, Lei H (2014) Non-invasive diagnostic biomarkers for estimating the onset time of permanent cerebral ischemia. J Cereb Blood Flow Metab 34(11):1848–1855. https://doi.org/10.1038/jcbfm.2014.155

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. Won S, Sayeed I, Peterson BL, Wali B, Kahn JS, Stein DG (2015) Vitamin D prevents hypoxia/reoxygenation-induced blood-brain barrier disruption via vitamin D receptor-mediated NF-kB signaling pathways. PLoS One 10(3):e0122821. https://doi.org/10.1371/journal.pone.0122821

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. Balden R, Selvamani A, Sohrabji F (2012) Vitamin D deficiency exacerbates experimental stroke injury and dysregulates ischemia-induced inflammation in adult rats. Endocrinology 153(5):2420–2435. https://doi.org/10.1210/en.2011-1783

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. Poulos A (1995) Very long chain fatty acids in higher animals—a review. Lipids 30(1):1–14. https://doi.org/10.1007/BF02537036

    Article  PubMed  CAS  Google Scholar 

  25. Sandhir R, Khan M, Chahal A, Singh I (1998) Localization of nervonic acid beta-oxidation in human and rodent peroxisomes: impaired oxidation in Zellweger syndrome and X-linked adrenoleukodystrophy. J Lipid Res 39(11):2161–2171

    PubMed  CAS  Google Scholar 

  26. Yamaguchi H, Kajitani K, Dan Y, Furuichi M, Ohno M, Sakumi K, Kang D, Nakabeppu Y (2006) MTH1, an oxidized purine nucleoside triphosphatase, protects the dopamine neurons from oxidative damage in nucleic acids caused by 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine. Cell Death Differ 13(4):551–563. https://doi.org/10.1038/sj.cdd.4401788

    Article  PubMed  CAS  Google Scholar 

  27. Berthet C, Lei H, Gruetter R, Hirt L (2011) Early predictive biomarkers for lesion after transient cerebral ischemia. Stroke 42(3):799–805. https://doi.org/10.1161/STROKEAHA.110.603647

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

S. Cambray—Design and conceptualization of the study. Analysis and interpretation of the data. Drafting and revising the manuscript for intellectual content.

M. Portero-Otín—Design and conceptualization of the study. Analysis and interpretation of the data. Drafting and revising the manuscript for intellectual content.

M. Jove—Design and conceptualization of the study. Analysis and interpretation of the data.

N. Torreguitart—Design and conceptualization of the study. Analysis and interpretation of the data.

L. Colàs-Campàs—Design and conceptualization of the study. Analysis and interpretation of the data.

A. Sanz—Design and conceptualization of the study. Analysis and interpretation of the data.

I. Benabdelhak—Design and conceptualization of the study. Analysis and interpretation of the data.

M. Yemisci, PhD—Design and conceptualization of the study. Revising the manuscript for intellectual content.

T. Dalkara, PhD—Design and conceptualization of the study. Revising the manuscript for intellectual content.

B. Dönmez-Demir—Design and conceptualization of the study.

J. Egea—Design and conceptualization of the study. Analysis and interpretation of the data. Drafting and revising the manuscript for intellectual content.

F. Purroy—Design and conceptualization of the study. Analysis and interpretation of the data. Drafting and revising the manuscript for intellectual content.

Corresponding authors

Correspondence to Joaquim Egea or Francisco Purroy.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflicts of interest.

Supplementary Material

ESM 1

(PDF 424 kb)

Supl. Fig. 1

Comparison of differential metabolites through different time points in cohort 1 (A) and cohort 2 (B). Common metabolites though different time points of second cohort are showed in C, with 1-Monopalmitin present from 12 to 48 h, and with greatest coincidences between 6 h and 12 h (16 common metabolites). (JPEG 89.1 kb)

Supl. Fig. 2

PLS-DA model was used to identify SHAM and TIA animals from second cohort at different time points. Both groups were clearly identified at 6 h (A), 12 h (B), 24 h (C) and 48 h (D). (JPEG 54.7 kb)

Supl. Fig. 3

PLS-DA model was used to identify SHAM and TIA animals from cohort 1 and cohort 2 together at different time points. Both groups were clearly identified at 6 h (A), 12 h (B), 24 h (C) and 48 h (D).” (JPEG 98 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cambray, S., Portero-Otin, M., Jové, M. et al. Metabolomic Estimation of the Diagnosis and Onset Time of Permanent and Transient Cerebral Ischemia. Mol Neurobiol 55, 6193–6200 (2018). https://doi.org/10.1007/s12035-017-0827-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-017-0827-5

Keywords

Navigation