Skip to main content

Advertisement

Log in

Therapeutic Strategies Under Development Targeting Inflammatory Mechanisms in Amyotrophic Lateral Sclerosis

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Amyotrophic lateral sclerosis (ALS) is a neurological disease characterized by the progressive loss of cortical, bulbar, and spinal motor neurons (MNs). The cardinal manifestation of ALS is a progressive paralysis which leads to death within a time span of 3 to 5 years after disease onset. Despite similar final output of neuronal death, the underlying pathogenic causes are various and no common cause of neuronal damage has been identified to date. Inflammation-mediated neuronal injury is increasingly recognized as a major factor that promotes disease progression and amplifies the MN death-inducing processes. The neuroimmune activation is not only a physiological reaction to cell-autonomous death but is an active component of nonautonomous cell death. Such injury-perpetuating phenomenon is now proved to be a common mechanism in many human disorders characterized by progressive neurodegeneration. Therefore, it represents an interesting therapeutic target. To date, no single cell population has been proved to play a major role. The existing evidence points to a complex cross talk between resident immune cells and nonresident cells, like monocytes and T lymphocytes, and to a dysregulation in cytokine profile and in phenotype commitment. After a summary of the most important mechanisms involved in the inflammatory reaction in ALS, this review will focus on novel therapeutic tools that rely on tackling inflammation to improve motor function and survival. Herein, completed, ongoing, or planned clinical trials, which aim to modify the rapidly fatal course of this disease, are discussed. Anti-inflammatory compounds that are currently undergoing preclinical study and novel suitable molecular targets are also mentioned.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

ALS:

Amyotrophic lateral sclerosis

A-SMase:

Acid sphingomyelinase

ABC:

ATP-binding cassette

ALSFRS-R:

ALS function rating scale revised

AMPA:

α-Amino-3-hydroxy-5-methyl-4-isoxazole propionic acid

AP1:

Activator protein 1

APP:

Amyloid precursor protein

Arg1:

Arginase 1

ATP:

Adenosine triphosphate

AUC:

Area under curve

BDNF:

Brain-derived neurotrophic factor

KIT:

Receptor tyrosine-kinase

C(max):

Maximum serum concentration

C/EBP:

CCAAT-enhancer-binding protein

C9ORF72:

Chromosome 9 open reading frame 72

CAFS:

Combined assessment of function and survival

CB2:

Cannabinoid receptor 2

CCAAT:

Cytidine-cytidine-adenosine-adenosine-thymidine

CD:

Cluster of differentiation

Chi3l3:

Chitinase-3-like-3

CNS:

Central nervous system

COX:

Cyclooxygenase

CRP:

C-reactive protein

CSF1:

Colony-stimulating factor 1

CSF1R:

Colony-stimulating factor 1 receptor

CysGly:

Cysteinylglycine

EAAT/GLAST:

Excitatory amino acid transporter/glutamate aspartate transporter

EAAT/GLT1:

Excitatory amino acid transporter/glutamate transporter 1

EDSS:

Expanded Disability Status Scale

EMA:

European Medical Agency

ER:

Endoplasmatic reticulum

ERK:

Extracellular signal-regulated kinases

FACS:

Fluorescence-activated cell sorting

FADD:

Fas-associated protein with death domain

fALS:

Familial amyotrophic lateral sclerosis

FAS:

Fas cell surface death receptor

FasL:

Fas ligand

FDA:

Food and Drug Administration

FEV1:

Forced expiratory volume in the 1st second

FGF:

Fibroblast growth factor

FIZZ1:

Found in inflammatory zone 1

FoxP3:

Forkhead box P3

FTD:

Frontotemporal dementia

FUS:

Fused in sarcoma

FVC:

Forced vital capacity

GDNF:

Glial cell-derived neurotrophic factor

GIST:

Gastrointestinal stromal tumor

HHD:

Hand-held dynamometry

HLA:

Human leukocyte antigens

HMGB1:

High mobility group box 1

HSE:

Herpes simplex encephalitis

HSP:

Heat shock protein

IFN:

Interferon

IGF:

Insulin-like growth factor

IkB:

Inhibitor of kB

IL:

Interleukin

iNOS:

Inducible nitric oxide synthase

iPSC:

Induced pluripotent stem cells

IRAK:

Interleukin-1 receptor-associated kinase

IRF:

Interferon regulatory factor

JNK:

c-Jun N-terminal kinase

KIR3DL2:

Killer cell immunoglobulin-like receptor 3DL2

LMN:

Lower motor neuron

LPS:

Lipopolysaccharide

LTP:

Long-term potentiation

Mal:

MyD88-adapter-like

MAPK:

Mitogen-activated protein kinase

MCP:

Monocyte chemoattractant protein

mGluR:

Metabotropic glutamate receptor

MHC:

Major histocompatibility complex

MIF:

Migration inhibitory factor

MIP:

Maximum inspiratory pressure

MLKL:

Mixed lineage kinase domain-like protein

MMT:

Manual muscle testing

MN:

Motor neuron

MnSOD:

Manganese-dependent superoxide dismutase

MRI:

Magnetic resonance imaging

mRNA:

Messenger RNA

MS:

Multiple sclerosis

mSOD1:

Mutant SOD1

MyD88:

Myeloid differentiation primary response gene 88

N-SMase:

Neutral sphingomyelinase

NCAM:

Neural cell adhesion molecule

Nec-1:

Necrostatin-1

NF-kB:

Nuclear factor kappa-light chain-enhancer of activated B cells

NFAT:

Nuclear factor of activated T cells

NIV:

Noninvasive ventilation

NMDA:

N-methyl-D-aspartate

NO:

Nitric oxide

NOD:

Nucleotide oligomerization domain

NTG:

Normal tension glaucoma

OPTN:

Optineurin

PDGFR:

Platelet-derived growth factor receptor

PET:

Positron emission tomography

PG:

Prostaglandin

PI3K:

Phosphatidylinositol 3-kinase

PKA:

Protein kinase A

PML:

Progressive multifocal encephalitis

PPAR:

Peroxisome proliferator-activated receptor

RAGE:

Receptors for advanced glycation end products

RIG:

Retinoic acid-inducible gene

RIP:

Receptor-interacting protein

RIPK:

Receptor-interacting serine/threonine kinase

ROS:

Reactive oxygen species

RUNX:

Runt-related transcription factor

S1P:

Sphingosine-1-phosphate

sALS:

Sporadic amyotrophic lateral sclerosis

SCID:

Severe combined immunodeficiency

shRNA:

Short hairpin RNA

SOCS:

Suppressor of cytokine signaling

SOD1:

Superoxide dismutase 1

STAT:

Signal transducer and activator of transcription

SVC:

Slow vital capacity

TACE:

TNF-alpha converting enzyme

TANK:

TRAF family member-associated NF-kB activator

TARDBP:

Transactive response DNA-binding protein

TBK1:

TANK binding kinase 1

TDP-43:

Transactive response DNA-binding protein 43 kDa

TGF:

Transforming growth factor

Th:

T helper

TIR:

Toll/IL-1 receptor

TLR:

Toll-like receptor

TNF:

Tumor necrosis factor

TNFR:

Tumor necrosis factor receptor

TRADD:

TNFR1-associated death domain

TRAF2:

TNF receptor-associated factor 2

TRAIL:

TNF-related apoptosis-inducing ligand

Treg:

Regulatory T cells

TSPO:

Translocator protein 18 kDa

VEGF:

Vascular endothelial growth factor

VZV:

Varicella zoster virus

WT:

Wild type

[11C]PBR28:

[11C] peripheral benzodiazepine receptor 28

References

  1. Bucchia M, Ramirez A, Parente V, Simone C, Nizzardo M, Magri F, Dametti S, Corti S (2015) Therapeutic development in amyotrophic lateral sclerosis. Clin Ther 37(3):668–680. doi:10.1016/j.clinthera.2014.12.020

    Article  PubMed  Google Scholar 

  2. Ajroud-Driss S, Siddique T (2015) Sporadic and hereditary amyotrophic lateral sclerosis (ALS). Biochim Biophys Acta 1852(4):679–684. doi:10.1016/j.bbadis.2014.08.010

    Article  CAS  PubMed  Google Scholar 

  3. McGeer PL, McGeer EG (2002) Inflammatory processes in amyotrophic lateral sclerosis. Muscle Nerve 26(4):459–470. doi:10.1002/mus.10191

    Article  CAS  PubMed  Google Scholar 

  4. Malaspina A, Puentes F, Amor S (2015) Disease origin and progression in amyotrophic lateral sclerosis: an immunology perspective. Int Immunol 27(3):117–129. doi:10.1093/intimm/dxu099

    Article  CAS  PubMed  Google Scholar 

  5. Hooten KG, Beers DR, Zhao W, Appel SH (2015) Protective and toxic neuroinflammation in amyotrophic lateral sclerosis. Neurotherapeutics 12(2):364–375. doi:10.1007/s13311-014-0329-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Clement AM, Nguyen MD, Roberts EA, Garcia ML, Boillee S, Rule M, McMahon AP, Doucette W et al (2003) Wild-type nonneuronal cells extend survival of SOD1 mutant motor neurons in ALS mice. Science 302(5642):113–117. doi:10.1126/science.1086071

    Article  CAS  PubMed  Google Scholar 

  7. Graves MC, Fiala M, Dinglasan LA, Liu NQ, Sayre J, Chiappelli F, van Kooten C, Vinters HV (2004) Inflammation in amyotrophic lateral sclerosis spinal cord and brain is mediated by activated macrophages, mast cells and T cells. Amyotroph Lateral Scler Other Motor Neuron Disord 5(4):213–219

    Article  CAS  PubMed  Google Scholar 

  8. Cudkowicz ME, Shefner JM, Schoenfeld DA, Zhang H, Andreasson KI, Rothstein JD, Drachman DB (2006) Trial of celecoxib in amyotrophic lateral sclerosis. Ann Neurol 60(1):22–31. doi:10.1002/ana.20903

    Article  CAS  PubMed  Google Scholar 

  9. Goyal NA, Mozaffar T (2014) Experimental trials in amyotrophic lateral sclerosis: a review of recently completed, ongoing and planned trials using existing and novel drugs. Expert Opin Investig Drugs 23(11):1541–1551. doi:10.1517/13543784.2014.933807

    Article  CAS  PubMed  Google Scholar 

  10. Mitsumoto H, Brooks BR, Silani V (2014) Clinical trials in amyotrophic lateral sclerosis: why so many negative trials and how can trials be improved? Lancet Neurol 13(11):1127–1138. doi:10.1016/s1474-4422(14)70129-2

    Article  PubMed  Google Scholar 

  11. Scott S, Kranz JE, Cole J, Lincecum JM, Thompson K, Kelly N, Bostrom A, Theodoss J et al (2008) Design, power, and interpretation of studies in the standard murine model of ALS. Amyotroph Lateral Scler 9(1):4–15. doi:10.1080/17482960701856300

    Article  CAS  PubMed  Google Scholar 

  12. Orrell RW, Lane RJ, Ross M (2008) A systematic review of antioxidant treatment for amyotrophic lateral sclerosis/motor neuron disease. Amyotroph Lateral Scler 9(4):195–211. doi:10.1080/17482960801900032

    Article  CAS  PubMed  Google Scholar 

  13. Smith SA, Miller RG, Murphy JR, Ringel SP (1994) Treatment of ALS with high dose pulse cyclophosphamide. J Neurol Sci 124(Suppl):84–87

    Article  PubMed  Google Scholar 

  14. Werdelin L, Boysen G, Jensen TS, Mogensen P (1990) Immunosuppressive treatment of patients with amyotrophic lateral sclerosis. Acta Neurol Scand 82(2):132–134

    Article  CAS  PubMed  Google Scholar 

  15. Meininger V, Drory VE, Leigh PN, Ludolph A, Robberecht W, Silani V (2009) Glatiramer acetate has no impact on disease progression in ALS at 40 mg/day: a double-blind, randomized, multicentre, placebo-controlled trial. Amyotroph Lateral Scler 10(5–6):378–383. doi:10.3109/17482960902803432

    Article  CAS  PubMed  Google Scholar 

  16. Rizzo F, Riboldi G, Salani S, Nizzardo M, Simone C, Corti S, Hedlund E (2014) Cellular therapy to target neuroinflammation in amyotrophic lateral sclerosis. Cell Mol Life Sci 71(6):999–1015. doi:10.1007/s00018-013-1480-4

    Article  CAS  PubMed  Google Scholar 

  17. Philips T, Robberecht W (2011) Neuroinflammation in amyotrophic lateral sclerosis: role of glial activation in motor neuron disease. Lancet Neurol 10(3):253–263. doi:10.1016/s1474-4422(11)70015-1

    Article  CAS  PubMed  Google Scholar 

  18. Radford RA, Morsch M, Rayner SL, Cole NJ, Pountney DL, Chung RS (2015) The established and emerging roles of astrocytes and microglia in amyotrophic lateral sclerosis and frontotemporal dementia. Front Cell Neurosci:9. doi:10.3389/fncel.2015.00414

  19. Brettschneider J, Toledo JB, Van Deerlin VM, Elman L, McCluskey L, Lee VM, Trojanowski JQ (2012) Microglial activation correlates with disease progression and upper motor neuron clinical symptoms in amyotrophic lateral sclerosis. PLoS One 7(6):e39216. doi:10.1371/journal.pone.0039216

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Turner MR, Cagnin A, Turkheimer FE, Miller CC, Shaw CE, Brooks DJ, Leigh PN, Banati RB (2004) Evidence of widespread cerebral microglial activation in amyotrophic lateral sclerosis: an [11C](R)-PK11195 positron emission tomography study. Neurobiol Dis 15(3):601–609. doi:10.1016/j.nbd.2003.12.012

    Article  CAS  PubMed  Google Scholar 

  21. Albrecht DS, Granziera C, Hooker JM, Loggia ML (2016) In vivo imaging of human neuroinflammation. ACS Chem Neurosci 7(4):470–483. doi:10.1021/acschemneuro.6b00056

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Quartuccio N, Van Weehaeghe D, Cistaro A, Jonsson C, Van Laere K, Pagani M (2014) Positron emission tomography neuroimaging in amyotrophic lateral sclerosis: what is new? Q J Nucl Med Mol Imaging 58(4):344–354

    CAS  PubMed  Google Scholar 

  23. Vivash L, O'Brien TJ (2016) Imaging microglial activation with TSPO PET: lighting up neurologic diseases? J Nucl Med 57(2):165–168. doi:10.2967/jnumed.114.141713

    Article  CAS  PubMed  Google Scholar 

  24. Zurcher NR, Loggia ML, Lawson R, Chonde DB, Izquierdo-Garcia D, Yasek JE, Akeju O, Catana C et al (2015) Increased in vivo glial activation in patients with amyotrophic lateral sclerosis: assessed with [(11)C]-PBR28. Neuroimage Clin 7:409–414. doi:10.1016/j.nicl.2015.01.009

    Article  PubMed  PubMed Central  Google Scholar 

  25. Tang D, Kang R, Coyne CB, Zeh HJ, Lotze MT (2012) PAMPs and DAMPs: signal 0s that spur autophagy and immunity. Immunol Rev 249(1):158–175. doi:10.1111/j.1600-065X.2012.01146.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Gordon S, Martinez FO (2010) Alternative activation of macrophages: mechanism and functions. Immunity 32(5):593–604. doi:10.1016/j.immuni.2010.05.007

    Article  CAS  PubMed  Google Scholar 

  27. Zhao W, Xie W, Xiao Q, Beers DR, Appel SH (2006) Protective effects of an anti-inflammatory cytokine, interleukin-4, on motoneuron toxicity induced by activated microglia. J Neurochem 99(4):1176–1187. doi:10.1111/j.1471-4159.2006.04172.x

    Article  CAS  PubMed  Google Scholar 

  28. Beers DR, Zhao W, Liao B, Kano O, Wang J, Huang A, Appel SH, Henkel JS (2011) Neuroinflammation modulates distinct regional and temporal clinical responses in ALS mice. Brain Behav Immun 25(5):1025–1035. doi:10.1016/j.bbi.2010.12.008

    Article  CAS  PubMed  Google Scholar 

  29. Moisse K, Strong MJ (2006) Innate immunity in amyotrophic lateral sclerosis. Biochim Biophys Acta 1762(11–12):1083–1093. doi:10.1016/j.bbadis.2006.03.001

    Article  CAS  PubMed  Google Scholar 

  30. Allodi I, Comley L, Nichterwitz S, Nizzardo M, Simone C, Benitez JA, Cao M, Corti S et al (2016) Differential neuronal vulnerability identifies IGF-2 as a protective factor in ALS. Scientific reports 6:25960. doi:10.1038/srep25960

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Dodge JC, Haidet AM, Yang W, Passini MA, Hester M, Clarke J, Roskelley EM, Treleaven CM et al (2008) Delivery of AAV-IGF-1 to the CNS extends survival in ALS mice through modification of aberrant glial cell activity. Mol Ther 16(6):1056–1064. doi:10.1038/mt.2008.60

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Brohawn DG, O'Brien LC, Bennett JP Jr (2016) RNAseq analyses identify tumor necrosis factor-mediated inflammation as a major abnormality in ALS spinal cord. PLoS One 11(8):e0160520. doi:10.1371/journal.pone.0160520

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. Zhou Z, Peng X, Hagshenas J, Insolera R, Fink DJ, Mata M (2010) A novel cell-cell signaling by microglial transmembrane TNFalpha with implications for neuropathic pain. Pain 151(2):296–306. doi:10.1016/j.pain.2010.06.017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Dong Y, Fischer R, Naude PJ, Maier O, Nyakas C, Duffey M, Van der Zee EA, Dekens D et al (2016) Essential protective role of tumor necrosis factor receptor 2 in neurodegeneration. Proc Natl Acad Sci U S A 113(43):12304–12309. doi:10.1073/pnas.1605195113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Chen G, Goeddel DV (2002) TNF-R1 signaling: a beautiful pathway. Science 296(5573):1634–1635. doi:10.1126/science.1071924

    Article  CAS  PubMed  Google Scholar 

  36. Depuydt B, van Loo G, Vandenabeele P, Declercq W (2005) Induction of apoptosis by TNF receptor 2 in a T-cell hybridoma is FADD dependent and blocked by caspase-8 inhibitors. J Cell Sci 118(Pt 3):497–504. doi:10.1242/jcs.01640

    Article  CAS  PubMed  Google Scholar 

  37. Kaltsonoudis E, Voulgari PV, Konitsiotis S, Drosos AA (2014) Demyelination and other neurological adverse events after anti-TNF therapy. Autoimmun Rev 13(1):54–58. doi:10.1016/j.autrev.2013.09.002

    Article  CAS  PubMed  Google Scholar 

  38. Kuno R, Wang J, Kawanokuchi J, Takeuchi H, Mizuno T, Suzumura A (2005) Autocrine activation of microglia by tumor necrosis factor-alpha. J Neuroimmunol 162(1–2):89–96. doi:10.1016/j.jneuroim.2005.01.015

    Article  CAS  PubMed  Google Scholar 

  39. Taylor DL, Jones F, Kubota ES, Pocock JM (2005) Stimulation of microglial metabotropic glutamate receptor mGlu2 triggers tumor necrosis factor alpha-induced neurotoxicity in concert with microglial-derived Fas ligand. J Neurosci 25(11):2952–2964. doi:10.1523/jneurosci.4456-04.2005

    Article  CAS  PubMed  Google Scholar 

  40. Takeuchi H, Jin S, Wang J, Zhang G, Kawanokuchi J, Kuno R, Sonobe Y, Mizuno T et al (2006) Tumor necrosis factor-alpha induces neurotoxicity via glutamate release from hemichannels of activated microglia in an autocrine manner. J Biol Chem 281(30):21362–21368. doi:10.1074/jbc.M600504200

    Article  CAS  PubMed  Google Scholar 

  41. Olmos G, Llado J (2014) Tumor necrosis factor alpha: a link between neuroinflammation and excitotoxicity. Mediat Inflamm 2014:861231. doi:10.1155/2014/861231

    Article  CAS  Google Scholar 

  42. Zou JY, Crews FT (2005) TNF alpha potentiates glutamate neurotoxicity by inhibiting glutamate uptake in organotypic brain slice cultures: neuroprotection by NF kappa B inhibition. Brain Res 1034(1–2):11–24. doi:10.1016/j.brainres.2004.11.014

    Article  CAS  PubMed  Google Scholar 

  43. Sitcheran R, Gupta P, Fisher PB, Baldwin AS (2005) Positive and negative regulation of EAAT2 by NF-kappaB: a role for N-myc in TNFalpha-controlled repression. EMBO J 24(3):510–520. doi:10.1038/sj.emboj.7600555

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Tilleux S, Hermans E (2007) Neuroinflammation and regulation of glial glutamate uptake in neurological disorders. J Neurosci Res 85(10):2059–2070. doi:10.1002/jnr.21325

    Article  CAS  PubMed  Google Scholar 

  45. Howland DS, Liu J, She Y, Goad B, Maragakis NJ, Kim B, Erickson J, Kulik J et al (2002) Focal loss of the glutamate transporter EAAT2 in a transgenic rat model of SOD1 mutant-mediated amyotrophic lateral sclerosis (ALS). Proc Natl Acad Sci U S A 99(3):1604–1609. doi:10.1073/pnas.032539299

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Rothstein JD, Van Kammen M, Levey AI, Martin LJ, Kuncl RW (1995) Selective loss of glial glutamate transporter GLT-1 in amyotrophic lateral sclerosis. Ann Neurol 38(1):73–84. doi:10.1002/ana.410380114

    Article  CAS  PubMed  Google Scholar 

  47. Gelbard HA, Dzenko KA, DiLoreto D, del Cerro C, del Cerro M, Epstein LG (1993) Neurotoxic effects of tumor necrosis factor alpha in primary human neuronal cultures are mediated by activation of the glutamate AMPA receptor subtype: implications for AIDS neuropathogenesis. Dev Neurosci 15(6):417–422

    Article  CAS  PubMed  Google Scholar 

  48. Jara JH, Singh BB, Floden AM, Combs CK (2007) Tumor necrosis factor alpha stimulates NMDA receptor activity in mouse cortical neurons resulting in ERK-dependent death. J Neurochem 100(5):1407–1420. doi:10.1111/j.1471-4159.2006.04330.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Zhen Y, Ding C, Sun J, Wang Y, Li S, Dong L (2016) Activation of the calcium-sensing receptor promotes apoptosis by modulating the JNK/p38 MAPK pathway in focal cerebral ischemia-reperfusion in mice. Am J Transl Res 8(2):911–921

    PubMed  PubMed Central  Google Scholar 

  50. Walker DG, Lue LF (2015) Immune phenotypes of microglia in human neurodegenerative disease: challenges to detecting microglial polarization in human brains. Alzheimers Res Ther vol 7. vol 1. doi:10.1186/s13195-015-0139-9

  51. Shin WH, Lee DY, Park KW, Kim SU, Yang MS, Joe EH, Jin BK (2004) Microglia expressing interleukin-13 undergo cell death and contribute to neuronal survival in vivo. Glia 46(2):142–152. doi:10.1002/glia.10357

    Article  PubMed  Google Scholar 

  52. Gordon S (2003) Alternative activation of macrophages. Nat Rev Immunol 3(1):23–35. doi:10.1038/nri978

    Article  CAS  PubMed  Google Scholar 

  53. Colton CA (2009) Heterogeneity of microglial activation in the innate immune response in the brain. J NeuroImmune Pharmacol 4(4):399–418. doi:10.1007/s11481-009-9164-4

    Article  PubMed  PubMed Central  Google Scholar 

  54. Ponomarev ED, Maresz K, Tan Y, Dittel BN (2007) CNS-derived interleukin-4 is essential for the regulation of autoimmune inflammation and induces a state of alternative activation in microglial cells. J Neurosci 27(40):10714–10721. doi:10.1523/jneurosci.1922-07.2007

    Article  CAS  PubMed  Google Scholar 

  55. Lyons A, Downer EJ, Crotty S, Nolan YM, Mills KH, Lynch MA (2007) CD200 ligand receptor interaction modulates microglial activation in vivo and in vitro: a role for IL-4. J Neurosci 27(31):8309–8313. doi:10.1523/jneurosci.1781-07.2007

    Article  CAS  PubMed  Google Scholar 

  56. Morris SM Jr (2004) Recent advances in arginine metabolism. Curr Opin Clin Nutr Metab Care 7(1):45–51

    Article  CAS  PubMed  Google Scholar 

  57. Thomas T, Thomas TJ (2001) Polyamines in cell growth and cell death: molecular mechanisms and therapeutic applications. Cell Mol Life Sci 58(2):244–258. doi:10.1007/pl00000852

    Article  CAS  PubMed  Google Scholar 

  58. Jenkins CL, Bretscher LE, Guzei IA, Raines RT (2003) Effect of 3-hydroxyproline residues on collagen stability. J Am Chem Soc 125(21):6422–6427. doi:10.1021/ja034015j

    Article  CAS  PubMed  Google Scholar 

  59. Busch SA, Silver J (2007) The role of extracellular matrix in CNS regeneration. Curr Opin Neurobiol 17(1):120–127. doi:10.1016/j.conb.2006.09.004

    Article  CAS  PubMed  Google Scholar 

  60. Bronte V, Zanovello P (2005) Regulation of immune responses by L-arginine metabolism. Nat Rev Immunol 5(8):641–654. doi:10.1038/nri1668

    Article  CAS  PubMed  Google Scholar 

  61. Tang Y, Li T, Li J, Yang J, Liu H, Zhang XJ, Le W (2014) Jmjd3 is essential for the epigenetic modulation of microglia phenotypes in the immune pathogenesis of Parkinson’s disease. Cell Death Differ 21(3):369–380. doi:10.1038/cdd.2013.159

    Article  CAS  PubMed  Google Scholar 

  62. Roberts K, Zeineddine R, Corcoran L, Li W, Campbell IL, Yerbury JJ (2013) Extracellular aggregated Cu/Zn superoxide dismutase activates microglia to give a cytotoxic phenotype. Glia 61(3):409–419. doi:10.1002/glia.22444

    Article  PubMed  Google Scholar 

  63. Casula M, Iyer AM, Spliet WG, Anink JJ, Steentjes K, Sta M, Troost D, Aronica E (2011) Toll-like receptor signaling in amyotrophic lateral sclerosis spinal cord tissue. Neuroscience 179:233–243. doi:10.1016/j.neuroscience.2011.02.001

    Article  CAS  PubMed  Google Scholar 

  64. De Paola M, Mariani A, Bigini P, Peviani M, Ferrara G, Molteni M, Gemma S, Veglianese P et al (2012) Neuroprotective effects of toll-like receptor 4 antagonism in spinal cord cultures and in a mouse model of motor neuron degeneration. Mol Med 18:971–981. doi:10.2119/molmed.2012.00020

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Lee JY, Lee JD, Phipps S, Noakes PG, Woodruff TM (2015) Absence of toll-like receptor 4 (TLR4) extends survival in the hSOD1 G93A mouse model of amyotrophic lateral sclerosis. J Neuroinflammation 12:90. doi:10.1186/s12974-015-0310-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Jou I, Lee JH, Park SY, Yoon HJ, Joe EH, Park EJ (2006) Gangliosides trigger inflammatory responses via TLR4 in brain glia. Am J Pathol 168(5):1619–1630. doi:10.2353/ajpath.2006.050924

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Tang SC, Arumugam TV, Xu X, Cheng A, Mughal MR, Jo DG, Lathia JD, Siler DA et al (2007) Pivotal role for neuronal Toll-like receptors in ischemic brain injury and functional deficits. Proc Natl Acad Sci U S A 104(34):13798–13803. doi:10.1073/pnas.0702553104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Fitzgerald KA, Palsson-McDermott EM, Bowie AG, Jefferies CA, Mansell AS, Brady G, Brint E, Dunne A et al (2001) Mal (MyD88-adapter-like) is required for Toll-like receptor-4 signal transduction. Nature 413(6851):78–83. doi:10.1038/35092578

    Article  CAS  PubMed  Google Scholar 

  69. Frakes AE, Ferraiuolo L, Haidet-Phillips AM, Schmelzer L, Braun L, Miranda CJ, Ladner KJ, Bevan AK et al (2014) Microglia induce motor neuron death via the classical NF-kappaB pathway in amyotrophic lateral sclerosis. Neuron 81(5):1009–1023. doi:10.1016/j.neuron.2014.01.013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Swarup V, Phaneuf D, Dupre N, Petri S, Strong M, Kriz J, Julien JP (2011) Deregulation of TDP-43 in amyotrophic lateral sclerosis triggers nuclear factor kappaB-mediated pathogenic pathways. J Exp Med 208(12):2429–2447. doi:10.1084/jem.20111313

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Uranishi H, Tetsuka T, Yamashita M, Asamitsu K, Shimizu M, Itoh M, Okamoto T (2001) Involvement of the pro-oncoprotein TLS (translocated in liposarcoma) in nuclear factor-kappa B p65-mediated transcription as a coactivator. J Biol Chem 276(16):13395–13401. doi:10.1074/jbc.M011176200

    Article  CAS  PubMed  Google Scholar 

  72. Snow WM, Stoesz BM, Kelly DM, Albensi BC (2014) Roles for NF-kappaB and gene targets of NF-kappaB in synaptic plasticity, memory, and navigation. Mol Neurobiol 49(2):757–770. doi:10.1007/s12035-013-8555-y

    Article  CAS  PubMed  Google Scholar 

  73. Kaltschmidt B, Ndiaye D, Korte M, Pothion S, Arbibe L, Prullage M, Pfeiffer J, Lindecke A et al (2006) NF-kappaB regulates spatial memory formation and synaptic plasticity through protein kinase A/CREB signaling. Mol Cell Biol 26(8):2936–2946. doi:10.1128/mcb.26.8.2936-2946.2006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Mattson MP, Culmsee C, Yu Z, Camandola S (2000) Roles of nuclear factor kappaB in neuronal survival and plasticity. J Neurochem 74(2):443–456

    Article  CAS  PubMed  Google Scholar 

  75. Abel T, Nguyen PV, Barad M, Deuel TA, Kandel ER, Bourtchouladze R (1997) Genetic demonstration of a role for PKA in the late phase of LTP and in hippocampus-based long-term memory. Cell 88(5):615–626

    Article  CAS  PubMed  Google Scholar 

  76. Grilli M, Ribola M, Alberici A, Valerio A, Memo M, Spano P (1995) Identification and characterization of a kappa B/Rel binding site in the regulatory region of the amyloid precursor protein gene. J Biol Chem 270(45):26774–26777

    Article  CAS  PubMed  Google Scholar 

  77. Wang JH, Manning BJ, Wu QD, Blankson S, Bouchier-Hayes D, Redmond HP (2003) Endotoxin/lipopolysaccharide activates NF-kappa B and enhances tumor cell adhesion and invasion through a beta 1 integrin-dependent mechanism. J Immunol 170(2):795–804

    Article  CAS  PubMed  Google Scholar 

  78. Berggard T, Miron S, Onnerfjord P, Thulin E, Akerfeldt KS, Enghild JJ, Akke M, Linse S (2002) Calbindin D28k exhibits properties characteristic of a Ca2+ sensor. J Biol Chem 277(19):16662–16672. doi:10.1074/jbc.M200415200

    Article  CAS  PubMed  Google Scholar 

  79. Odero GL, Oikawa K, Glazner KA, Schapansky J, Grossman D, Thiessen JD, Motnenko A, Ge N et al (2010) Evidence for the involvement of calbindin D28k in the presenilin 1 model of Alzheimer’s disease. Neuroscience 169(1):532–543. doi:10.1016/j.neuroscience.2010.04.004

    Article  CAS  PubMed  Google Scholar 

  80. Marini AM, Jiang X, Wu X, Tian F, Zhu D, Okagaki P, Lipsky RH (2004) Role of brain-derived neurotrophic factor and NF-kappaB in neuronal plasticity and survival: from genes to phenotype. Restor Neurol Neurosci 22(2):121–130

    CAS  PubMed  Google Scholar 

  81. Kiningham KK, Xu Y, Daosukho C, Popova B, St Clair DK (2001) Nuclear factor kappaB-dependent mechanisms coordinate the synergistic effect of PMA and cytokines on the induction of superoxide dismutase 2. Biochem J 353(Pt 1):147–156

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Mattson MP, Goodman Y, Luo H, Fu W, Furukawa K (1997) Activation of NF-kappaB protects hippocampal neurons against oxidative stress-induced apoptosis: evidence for induction of manganese superoxide dismutase and suppression of peroxynitrite production and protein tyrosine nitration. J Neurosci Res 49(6):681–697. doi:10.1002/(sici)1097-4547(19970915)49:6<681::aid-jnr3>3.0.co;2-3

    Article  CAS  PubMed  Google Scholar 

  83. Ruszkiewicz J, Albrecht J (2015) Changes in the mitochondrial antioxidant systems in neurodegenerative diseases and acute brain disorders. Neurochem Int 88:66–72. doi:10.1016/j.neuint.2014.12.012

    Article  CAS  PubMed  Google Scholar 

  84. Sompol P, Xu Y, Ittarat W, Daosukho C, St Clair D (2006) NF-kappaB-associated MnSOD induction protects against beta-amyloid-induced neuronal apoptosis. J Mol Neurosci 29(3):279–288

    Article  CAS  Google Scholar 

  85. Sullivan PG, Bruce-Keller AJ, Rabchevsky AG, Christakos S, Clair DK, Mattson MP, Scheff SW (1999) Exacerbation of damage and altered NF-kappaB activation in mice lacking tumor necrosis factor receptors after traumatic brain injury. J Neurosci 19(15):6248–6256

    CAS  PubMed  Google Scholar 

  86. Lin CL, Bristol LA, Jin L, Dykes-Hoberg M, Crawford T, Clawson L, Rothstein JD (1998) Aberrant RNA processing in a neurodegenerative disease: the cause for absent EAAT2, a glutamate transporter, in amyotrophic lateral sclerosis. Neuron 20(3):589–602

    Article  CAS  PubMed  Google Scholar 

  87. Dringen R, Pfeiffer B, Hamprecht B (1999) Synthesis of the antioxidant glutathione in neurons: supply by astrocytes of CysGly as precursor for neuronal glutathione. J Neurosci 19(2):562–569

    CAS  PubMed  Google Scholar 

  88. Raoul C, Estevez AG, Nishimune H, Cleveland DW, deLapeyriere O, Henderson CE, Haase G, Pettmann B (2002) Motoneuron death triggered by a specific pathway downstream of Fas. Potentiation by ALS-linked SOD1 mutations. Neuron 35(6):1067–1083

    Article  CAS  PubMed  Google Scholar 

  89. Barbeito LH, Pehar M, Cassina P, Vargas MR, Peluffo H, Viera L, Estevez AG, Beckman JS (2004) A role for astrocytes in motor neuron loss in amyotrophic lateral sclerosis. Brain Res Brain Res Rev 47(1–3):263–274. doi:10.1016/j.brainresrev.2004.05.003

    Article  CAS  PubMed  Google Scholar 

  90. Chen H, Qian K, Chen W, Hu B, Blackbourn LWT, Du Z, Ma L, Liu H et al (2015) Human-derived neural progenitors functionally replace astrocytes in adult mice. J Clin Invest 125(3):1033–1042. doi:10.1172/jci69097

    Article  PubMed  PubMed Central  Google Scholar 

  91. Song S, Miranda CJ, Braun L, Meyer K, Frakes AE, Ferraiuolo L, Likhite S, Bevan AK et al (2016) Major histocompatibility complex class I molecules protect motor neurons from astrocyte-induced toxicity in amyotrophic lateral sclerosis. Nat Med 22(4):397–403. doi:10.1038/nm.4052

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Re DB, Le Verche V, Yu C, Amoroso MW, Politi KA, Phani S, Ikiz B, Hoffmann L et al (2014) Necroptosis drives motor neuron death in models of both sporadic and familial ALS. Neuron 81(5):1001–1008. doi:10.1016/j.neuron.2014.01.011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Degterev A, Hitomi J, Germscheid M, Ch'en IL, Korkina O, Teng X, Abbott D, Cuny GD et al (2008) Identification of RIP1 kinase as a specific cellular target of necrostatins. Nat Chem Biol 4(5):313–321. doi:10.1038/nchembio.83

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Park S, Kim HT, Yun S, Kim IS, Lee J, Lee IS, Park KI (2009) Growth factor-expressing human neural progenitor cell grafts protect motor neurons but do not ameliorate motor performance and survival in ALS mice. Exp Mol Med 41(7):487–500. doi:10.3858/emm.2009.41.7.054

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Rizvanov AA, Guseva DS, Salafutdinov II, Kudryashova NV, Bashirov FV, Kiyasov AP, Yalvac ME, Gazizov IM et al (2011) Genetically modified human umbilical cord blood cells expressing vascular endothelial growth factor and fibroblast growth factor 2 differentiate into glial cells after transplantation into amyotrophic lateral sclerosis transgenic mice. Exp Biol Med (Maywood) 236(1):91–98. doi:10.1258/ebm.2010.010172

    Article  CAS  Google Scholar 

  96. Lepore AC, Rauck B, Dejea C, Pardo AC, Rao MS, Rothstein JD, Maragakis NJ (2008) Focal transplantation-based astrocyte replacement is neuroprotective in a model of motor neuron disease. Nat Neurosci 11(11):1294–1301. doi:10.1038/nn.2210

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Boucherie C, Schafer S, Lavand'homme P, Maloteaux JM, Hermans E (2009) Chimerization of astroglial population in the lumbar spinal cord after mesenchymal stem cell transplantation prolongs survival in a rat model of amyotrophic lateral sclerosis. J Neurosci Res 87(9):2034–2046. doi:10.1002/jnr.22038

    Article  CAS  PubMed  Google Scholar 

  98. Chiu IM, Chen A, Zheng Y, Kosaras B, Tsiftsoglou SA, Vartanian TK, Brown RH Jr, Carroll MC (2008) T lymphocytes potentiate endogenous neuroprotective inflammation in a mouse model of ALS. Proc Natl Acad Sci U S A 105(46):17913–17918. doi:10.1073/pnas.0804610105

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Beers DR, Henkel JS, Zhao W, Wang J, Appel SH (2008) CD4+ T cells support glial neuroprotection, slow disease progression, and modify glial morphology in an animal model of inherited ALS. Proc Natl Acad Sci U S A 105(40):15558–15563. doi:10.1073/pnas.0807419105

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Zhao W, Beers DR, Liao B, Henkel JS, Appel SH (2012) Regulatory T lymphocytes from ALS mice suppress microglia and effector T lymphocytes through different cytokine-mediated mechanisms. Neurobiol Dis 48(3):418–428. doi:10.1016/j.nbd.2012.07.008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Savage ND, de Boer T, Walburg KV, Joosten SA, van Meijgaarden K, Geluk A, Ottenhoff TH (2008) Human anti-inflammatory macrophages induce Foxp3+ GITR+ CD25+ regulatory T cells, which suppress via membrane-bound TGFbeta-1. J Immunol 181(3):2220–2226

    Article  CAS  PubMed  Google Scholar 

  102. Henkel JS, Beers DR, Wen S, Rivera AL, Toennis KM, Appel JE, Zhao W, Moore DH et al (2013) Regulatory T-lymphocytes mediate amyotrophic lateral sclerosis progression and survival. EMBO Mol Med 5(1):64–79. doi:10.1002/emmm.201201544

    Article  CAS  PubMed  Google Scholar 

  103. Nie H, Zheng Y, Li R, Guo TB, He D, Fang L, Liu X, Xiao L et al (2013) Phosphorylation of FOXP3 controls regulatory T cell function and is inhibited by TNF-alpha in rheumatoid arthritis. Nat Med 19(3):322–328. doi:10.1038/nm.3085

    Article  CAS  PubMed  Google Scholar 

  104. Li L, Kim J, Boussiotis VA (2010) IL-1beta-mediated signals preferentially drive conversion of regulatory T cells but not conventional T cells into IL-17-producing cells. J Immunol 185(7):4148–4153. doi:10.4049/jimmunol.1001536

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Butovsky O, Siddiqui S, Gabriely G, Lanser AJ, Dake B, Murugaiyan G, Doykan CE, Wu PM et al (2012) Modulating inflammatory monocytes with a unique microRNA gene signature ameliorates murine ALS. J Clin Invest 122(9):3063–3087. doi:10.1172/jci62636

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Chiu IM, Morimoto ET, Goodarzi H, Liao JT, O'Keeffe S, Phatnani HP, Muratet M, Carroll MC et al (2013) A neurodegeneration-specific gene-expression signature of acutely isolated microglia from an amyotrophic lateral sclerosis mouse model. Cell Rep 4(2):385–401. doi:10.1016/j.celrep.2013.06.018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Kano O, Beers DR, Henkel JS, Appel SH (2012) Peripheral nerve inflammation in ALS mice: cause or consequence. Neurology 78(11):833–835. doi:10.1212/WNL.0b013e318249f776

    Article  PubMed  PubMed Central  Google Scholar 

  108. Mantovani S, Garbelli S, Pasini A, Alimonti D, Perotti C, Melazzini M, Bendotti C, Mora G (2009) Immune system alterations in sporadic amyotrophic lateral sclerosis patients suggest an ongoing neuroinflammatory process. J Neuroimmunol 210(1–2):73–79. doi:10.1016/j.jneuroim.2009.02.012

    Article  CAS  PubMed  Google Scholar 

  109. Dubreuil P, Letard S, Ciufolini M, Gros L, Humbert M, Casteran N, Borge L, Hajem B et al (2009) Masitinib (AB1010), a potent and selective tyrosine kinase inhibitor targeting KIT. PLoS One 4(9):e7258. doi:10.1371/journal.pone.0007258

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  110. Paul C, Sans B, Suarez F, Casassus P, Barete S, Lanternier F, Grandpeix-Guyodo C, Dubreuil P et al (2010) Masitinib for the treatment of systemic and cutaneous mastocytosis with handicap: a phase 2a study. Am J Hematol 85(12):921–925. doi:10.1002/ajh.21894

    Article  CAS  PubMed  Google Scholar 

  111. Trias E, Ibarburu S, Barreto-Nunez R, Babdor J, Maciel TT, Guillo M, Gros L, Dubreuil P et al (2016) Post-paralysis tyrosine kinase inhibition with masitinib abrogates neuroinflammation and slows disease progression in inherited amyotrophic lateral sclerosis. J Neuroinflammation 13(1):177. doi:10.1186/s12974-016-0620-9

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  112. Adenis A, Blay JY, Bui-Nguyen B, Bouche O, Bertucci F, Isambert N, Bompas E, Chaigneau L et al (2014) Masitinib in advanced gastrointestinal stromal tumor (GIST) after failure of imatinib: a randomized controlled open-label trial. Ann Oncol 25(9):1762–1769. doi:10.1093/annonc/mdu237

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Le Cesne A, Blay JY, Bui BN, Bouche O, Adenis A, Domont J, Cioffi A, Ray-Coquard I et al (2010) Phase II study of oral masitinib mesilate in imatinib-naive patients with locally advanced or metastatic gastro-intestinal stromal tumour (GIST). Eur J Cancer 46(8):1344–1351. doi:10.1016/j.ejca.2010.02.014

    Article  CAS  PubMed  Google Scholar 

  114. Deplanque G, Demarchi M, Hebbar M, Flynn P, Melichar B, Atkins J, Nowara E, Moye L et al (2015) A randomized, placebo-controlled phase III trial of masitinib plus gemcitabine in the treatment of advanced pancreatic cancer. Ann Oncol 26(6):1194–1200. doi:10.1093/annonc/mdv133

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Mitry E, Hammel P, Deplanque G, Mornex F, Levy P, Seitz JF, Moussy A, Kinet JP et al (2010) Safety and activity of masitinib in combination with gemcitabine in patients with advanced pancreatic cancer. Cancer Chemother Pharmacol 66(2):395–403. doi:10.1007/s00280-010-1299-8

    Article  CAS  PubMed  Google Scholar 

  116. Wang YJ, Zhang YK, Kathawala RJ, Chen ZS (2014) Repositioning of tyrosine kinase inhibitors as antagonists of ATP-binding cassette transporters in anticancer drug resistance. Cancers (Basel) 6(4):1925–1952. doi:10.3390/cancers6041925

    Article  CAS  Google Scholar 

  117. Shirani A, Okuda DT, Stuve O (2016) Therapeutic advances and future prospects in progressive forms of multiple sclerosis. Neurotherapeutics 13(1):58–69. doi:10.1007/s13311-015-0409-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Folch J, Petrov D, Ettcheto M, Abad S, Sanchez-Lopez E, Garcia ML, Olloquequi J, Beas-Zarate C et al (2016) Current research therapeutic strategies for Alzheimer’s disease treatment. Neural Plast 2016:8501693. doi:10.1155/2016/8501693

    Article  PubMed  PubMed Central  Google Scholar 

  119. Kocic I, Kowianski P, Rusiecka I, Lietzau G, Mansfield C, Moussy A, Hermine O, Dubreuil P (2015) Neuroprotective effect of masitinib in rats with postischemic stroke. Naunyn Schmiedeberg’s Arch Pharmacol 388(1):79–86. doi:10.1007/s00210-014-1061-6

    Article  CAS  Google Scholar 

  120. Soria JC, Massard C, Magne N, Bader T, Mansfield CD, Blay JY, Bui BN, Moussy A et al (2009) Phase 1 dose-escalation study of oral tyrosine kinase inhibitor masitinib in advanced and/or metastatic solid cancers. Eur J Cancer 45(13):2333–2341. doi:10.1016/j.ejca.2009.05.010

    Article  CAS  PubMed  Google Scholar 

  121. Salvado M, Vargas V, Vidal M, Simon-Talero M, Camacho J, Gamez J (2015) Autoimmune-like hepatitis during masitinib therapy in an amyotrophic lateral sclerosis patient. World J Gastroenterol 21(36):10475–10479. doi:10.3748/wjg.v21.i36.10475

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Kawasaki A, Hoshino K, Osaki R, Mizushima Y, Yano S (1992) Effect of ibudilast: a novel antiasthmatic agent, on airway hypersensitivity in bronchial asthma. J Asthma 29(4):245–252. doi:10.3109/02770909209048938

    Article  CAS  PubMed  Google Scholar 

  123. Souness JE, Villamil ME, Scott LC, Tomkinson A, Giembycz MA, Raeburn D (1994) Possible role of cyclic AMP phosphodiesterases in the actions of ibudilast on eosinophil thromboxane generation and airways smooth muscle tone. Br J Pharmacol 111(4):1081–1088

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Ohtsu H, Fujimoto Y, Yamauchi K, Tamura G, Takishima T (1989) Pharmacological effect of KC-404 on leukotriene release from human leukocytes induced by ionophore A23187. Int Arch Allergy Appl Immunol 89(2–3):306–310

    Article  CAS  PubMed  Google Scholar 

  125. Choi SH, Sakamoto T, Fukutomi O, Inagaki N, Matsuura N, Nagai H, Koda A (1989) Pharmacological study of phospholipase A2-induced histamine release from rat peritoneal mast cells. Aust J Pharm 12(9):517–522

    CAS  Google Scholar 

  126. Takuma K, Lee E, Enomoto R, Mori K, Baba A, Matsuda T (2001) Ibudilast attenuates astrocyte apoptosis via cyclic GMP signalling pathway in an in vitro reperfusion model. Br J Pharmacol 133(6):841–848. doi:10.1038/sj.bjp.0704146

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Suzumura A, Ito A, Yoshikawa M, Sawada M (1999) Ibudilast suppresses TNFalpha production by glial cells functioning mainly as type III phosphodiesterase inhibitor in the CNS. Brain Res 837(1–2):203–212

    Article  CAS  PubMed  Google Scholar 

  128. Mizuno T, Kurotani T, Komatsu Y, Kawanokuchi J, Kato H, Mitsuma N, Suzumura A (2004) Neuroprotective role of phosphodiesterase inhibitor ibudilast on neuronal cell death induced by activated microglia. Neuropharmacology 46(3):404–411. doi:10.1016/j.neuropharm.2003.09.009

    Article  CAS  PubMed  Google Scholar 

  129. Fujimoto T, Sakoda S, Fujimura H, Yanagihara T (1999) Ibudilast, a phosphodiesterase inhibitor, ameliorates experimental autoimmune encephalomyelitis in Dark August rats. J Neuroimmunol 95(1–2):35–42

    Article  CAS  PubMed  Google Scholar 

  130. Wakita H, Tomimoto H, Akiguchi I, Lin JX, Ihara M, Ohtani R, Shibata M (2003) Ibudilast, a phosphodiesterase inhibitor, protects against white matter damage under chronic cerebral hypoperfusion in the rat. Brain Res 992(1):53–59

    Article  CAS  PubMed  Google Scholar 

  131. Kagitani-Shimono K, Mohri I, Fujitani Y, Suzuki K, Ozono K, Urade Y, Taniike M (2005) Anti-inflammatory therapy by ibudilast, a phosphodiesterase inhibitor, in demyelination of twitcher, a genetic demyelination model. J Neuroinflammation 2(1):10. doi:10.1186/1742-2094-2-10

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  132. Rolan P, Hutchinson M, Johnson K (2009) Ibudilast: a review of its pharmacology, efficacy and safety in respiratory and neurological disease. Expert Opin Pharmacother 10(17):2897–2904. doi:10.1517/14656560903426189

    Article  CAS  PubMed  Google Scholar 

  133. Lobsiger CS, Cleveland DW (2007) Glial cells as intrinsic components of non-cell-autonomous neurodegenerative disease. Nat Neurosci 10(11):1355–1360. doi:10.1038/nn1988

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Barkhof F, Hulst HE, Drulovic J, Uitdehaag BM, Matsuda K, Landin R (2010) Ibudilast in relapsing-remitting multiple sclerosis: a neuroprotectant? Neurology 74(13):1033–1040. doi:10.1212/WNL.0b013e3181d7d651

    Article  CAS  PubMed  Google Scholar 

  135. Miller RG, Zhang R, Block G, Katz J, Barohn R, Kasarskis E, Forshew D, Gopalakrishnan V et al (2014) NP001 regulation of macrophage activation markers in ALS: a phase I clinical and biomarker study. Amyotroph Lateral Scler Frontotemporal Degener 15(7–8):601–609. doi:10.3109/21678421.2014.951940

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Miller RG, Block G, Katz JS, Barohn RJ, Gopalakrishnan V, Cudkowicz M, Zhang JR, McGrath MS et al (2015) Randomized phase 2 trial of NP001—a novel immune regulator: safety and early efficacy in ALS. Neurol Neuroimmunol Neuroinflamm 2(3):e100. doi:10.1212/nxi.0000000000000100

    Article  PubMed  PubMed Central  Google Scholar 

  137. Kappos L, Antel J, Comi G, Montalban X, O’Connor P, Polman CH, Haas T, Korn AA et al (2006) Oral fingolimod (FTY720) for relapsing multiple sclerosis. N Engl J Med 355(11):1124–1140. doi:10.1056/NEJMoa052643

    Article  CAS  PubMed  Google Scholar 

  138. Mandala S, Hajdu R, Bergstrom J, Quackenbush E, Xie J, Milligan J, Thornton R, Shei GJ et al (2002) Alteration of lymphocyte trafficking by sphingosine-1-phosphate receptor agonists. Science 296(5566):346–349. doi:10.1126/science.1070238

    Article  CAS  PubMed  Google Scholar 

  139. Miron VE, Schubart A, Antel JP (2008) Central nervous system-directed effects of FTY720 (fingolimod). J Neurol Sci 274(1–2):13–17. doi:10.1016/j.jns.2008.06.031

    Article  CAS  PubMed  Google Scholar 

  140. Noda H, Takeuchi H, Mizuno T, Suzumura A (2013) Fingolimod phosphate promotes the neuroprotective effects of microglia. J Neuroimmunol 256(1–2):13–18. doi:10.1016/j.jneuroim.2012.12.005

    Article  CAS  PubMed  Google Scholar 

  141. Wei Y, Yemisci M, Kim HH, Yung LM, Shin HK, Hwang SK, Guo S, Qin T et al (2011) Fingolimod provides long-term protection in rodent models of cerebral ischemia. Ann Neurol 69(1):119–129. doi:10.1002/ana.22186

    Article  CAS  PubMed  Google Scholar 

  142. Gao F, Liu Y, Li X, Wang Y, Wei D, Jiang W (2012) Fingolimod (FTY720) inhibits neuroinflammation and attenuates spontaneous convulsions in lithium-pilocarpine induced status epilepticus in rat model. Pharmacol Biochem Behav 103(2):187–196. doi:10.1016/j.pbb.2012.08.025

    Article  CAS  PubMed  Google Scholar 

  143. Lee KD, Chow WN, Sato-Bigbee C, Graf MR, Graham RS, Colello RJ, Young HF, Mathern BE (2009) FTY720 reduces inflammation and promotes functional recovery after spinal cord injury. J Neurotrauma 26(12):2335–2344. doi:10.1089/neu.2008.0840

    Article  PubMed  PubMed Central  Google Scholar 

  144. Cipriani R, Chara JC, Rodriguez-Antiguedad A, Matute C (2015) FTY720 attenuates excitotoxicity and neuroinflammation. J Neuroinflammation 12:86. doi:10.1186/s12974-015-0308-6

    Article  PubMed  PubMed Central  Google Scholar 

  145. Potenza RL, De Simone R, Armida M, Mazziotti V, Pezzola A, Popoli P, Minghetti L (2016) Fingolimod: a disease-modifier drug in a mouse model of amyotrophic lateral sclerosis. Neurotherapeutics. doi:10.1007/s13311-016-0462-2

    PubMed  PubMed Central  Google Scholar 

  146. DiMarco JP, O'Connor P, Cohen JA, Reder AT, Zhang-Auberson L, Tang D, Collins W, Kappos L (2014) First-dose effects of fingolimod: pooled safety data from three phase 3 studies. Mult Scler Relat Disord 3(5):629–638. doi:10.1016/j.msard.2014.05.005

    Article  PubMed  Google Scholar 

  147. Khatri BO (2016) Fingolimod in the treatment of relapsing-remitting multiple sclerosis: long-term experience and an update on the clinical evidence. Ther Adv Neurol Disord 9(2):130–147. doi:10.1177/1756285616628766

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Ilzecka J, Stelmasiak Z, Dobosz B (2001) Interleukin-1beta converting enzyme/caspase-1 (ICE/caspase-1) and soluble APO-1/Fas/CD 95 receptor in amyotrophic lateral sclerosis patients. Acta Neurol Scand 103(4):255–258

    Article  CAS  PubMed  Google Scholar 

  149. Martinon F, Mayor A, Tschopp J (2009) The inflammasomes: guardians of the body. Annu Rev Immunol 27:229–265. doi:10.1146/annurev.immunol.021908.132715

    Article  CAS  PubMed  Google Scholar 

  150. Meissner F, Molawi K, Zychlinsky A (2010) Mutant superoxide dismutase 1-induced IL-1beta accelerates ALS pathogenesis. Proc Natl Acad Sci U S A 107(29):13046–13050. doi:10.1073/pnas.1002396107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Maier A, Deigendesch N, Muller K, Weishaupt JH, Krannich A, Rohle R, Meissner F, Molawi K et al (2015) Interleukin-1 antagonist anakinra in amyotrophic lateral sclerosis—a pilot study. PLoS One 10(10):e0139684. doi:10.1371/journal.pone.0139684

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  152. Bresnihan B (2001) The safety and efficacy of interleukin-1 receptor antagonist in the treatment of rheumatoid arthritis. Semin Arthritis Rheum 30(5 Suppl 2):17–20

    Article  CAS  PubMed  Google Scholar 

  153. Galea J, Ogungbenro K, Hulme S, Greenhalgh A, Aarons L, Scarth S, Hutchinson P, Grainger S et al (2011) Intravenous anakinra can achieve experimentally effective concentrations in the central nervous system within a therapeutic time window: results of a dose-ranging study. J Cereb Blood Flow Metab 31(2):439–447. doi:10.1038/jcbfm.2010.103

    Article  CAS  PubMed  Google Scholar 

  154. Mizwicki MT, Fiala M, Magpantay L, Aziz N, Sayre J, Liu G, Siani A, Chan D et al (2012) Tocilizumab attenuates inflammation in ALS patients through inhibition of IL6 receptor signaling. Am J Neurodegener Dis 1(3):305–315

    PubMed  PubMed Central  Google Scholar 

  155. Fiala M, Mizwicki MT, Weitzman R, Magpantay L, Nishimoto N (2013) Tocilizumab infusion therapy normalizes inflammation in sporadic ALS patients. Am J Neurodegener Dis 2(2):129–139

    PubMed  PubMed Central  Google Scholar 

  156. Han Y, Ripley B, Serada S, Naka T, Fujimoto M (2016) Interleukin-6 deficiency does not affect motor neuron disease caused by superoxide dismutase 1 mutation. PLoS One 11(4):e0153399. doi:10.1371/journal.pone.0153399

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  157. Patin F, Baranek T, Vourc'h P, Nadal-Desbarats L, Goossens JF, Marouillat S, Dessein AF, Descat A et al (2016) Combined metabolomics and transcriptomics approaches to assess the IL-6 blockade as a therapeutic of ALS: deleterious alteration of lipid metabolism. Neurotherapeutics. doi:10.1007/s13311-016-0461-3

    PubMed  PubMed Central  Google Scholar 

  158. Khasnavis S, Jana A, Roy A, Mazumder M, Bhushan B, Wood T, Ghosh S, Watson R et al (2012) Suppression of nuclear factor-kappaB activation and inflammation in microglia by physically modified saline. J Biol Chem 287(35):29529–29542. doi:10.1074/jbc.M111.338012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Mondal S, Martinson JA, Ghosh S, Watson R, Pahan K (2012) Protection of Tregs, suppression of Th1 and Th17 cells, and amelioration of experimental allergic encephalomyelitis by a physically-modified saline. PLoS One 7(12):e51869. doi:10.1371/journal.pone.0051869

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Choi S, Yu E, Kim DS, Sugimori M, Llinas RR (2015) RNS60, a charge-stabilized nanostructure saline alters Xenopus laevis oocyte biophysical membrane properties by enhancing mitochondrial ATP production. Physiol Rep 3(3). doi:10.14814/phy2.12261

  161. Roy A, Modi KK, Khasnavis S, Ghosh S, Watson R, Pahan K (2014) Enhancement of morphological plasticity in hippocampal neurons by a physically modified saline via phosphatidylinositol-3 kinase. PLoS One 9(7):e101883. doi:10.1371/journal.pone.0101883

    Article  PubMed  PubMed Central  Google Scholar 

  162. Modi KK, Jana A, Ghosh S, Watson R, Pahan K (2014) A physically-modified saline suppresses neuronal apoptosis, attenuates tau phosphorylation and protects memory in an animal model of Alzheimer’s disease. PLoS One 9(8):e103606. doi:10.1371/journal.pone.0103606

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  163. Khasnavis S, Roy A, Ghosh S, Watson R, Pahan K (2014) Protection of dopaminergic neurons in a mouse model of Parkinson’s disease by a physically-modified saline containing charge-stabilized nanobubbles. J NeuroImmune Pharmacol 9(2):218–232. doi:10.1007/s11481-013-9503-3

    Article  PubMed  Google Scholar 

  164. Rao VTS, Khan D, Jones RG, Nakamura DS, Kennedy TE, Cui QL, Rone MB, Healy LM et al (2016) Potential benefit of the charge-stabilized nanostructure saline RNS60 for myelin maintenance and repair. Sci Rep 6. doi:10.1038/srep30020

  165. Choi S, Yu E, Rabello G, Merlo S, Zemmar A, Walton KD, Moreno H, Moreira JE et al (2014) Enhanced synaptic transmission at the squid giant synapse by artificial seawater based on physically modified saline. Front Synaptic Neurosci 6:2. doi:10.3389/fnsyn.2014.00002

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  166. Berger J, Moller DE (2002) The mechanisms of action of PPARs. Annu Rev Med 53:409–435. doi:10.1146/annurev.med.53.082901.104018

    Article  CAS  PubMed  Google Scholar 

  167. Daynes RA, Jones DC (2002) Emerging roles of PPARs in inflammation and immunity. Nat Rev Immunol 2(10):748–759. doi:10.1038/nri912

    Article  CAS  PubMed  Google Scholar 

  168. Delerive P, Fruchart JC, Staels B (2001) Peroxisome proliferator-activated receptors in inflammation control. J Endocrinol 169(3):453–459

    Article  CAS  PubMed  Google Scholar 

  169. Devchand PR, Keller H, Peters JM, Vazquez M, Gonzalez FJ, Wahli W (1996) The PPARalpha-leukotriene B4 pathway to inflammation control. Nature 384(6604):39–43. doi:10.1038/384039a0

    Article  CAS  PubMed  Google Scholar 

  170. Heneka MT, Feinstein DL, Galea E, Gleichmann M, Wullner U, Klockgether T (1999) Peroxisome proliferator-activated receptor gamma agonists protect cerebellar granule cells from cytokine-induced apoptotic cell death by inhibition of inducible nitric oxide synthase. J Neuroimmunol 100(1–2):156–168

    Article  CAS  PubMed  Google Scholar 

  171. Combs CK, Johnson DE, Karlo JC, Cannady SB, Landreth GE (2000) Inflammatory mechanisms in Alzheimer’s disease: inhibition of beta-amyloid-stimulated proinflammatory responses and neurotoxicity by PPARgamma agonists. J Neurosci 20(2):558–567

    CAS  PubMed  Google Scholar 

  172. Heneka MT, Klockgether T, Feinstein DL (2000) Peroxisome proliferator-activated receptor-gamma ligands reduce neuronal inducible nitric oxide synthase expression and cell death in vivo. J Neurosci 20(18):6862–6867

    CAS  PubMed  Google Scholar 

  173. Shibata N, Kawaguchi-Niida M, Yamamoto T, Toi S, Hirano A, Kobayashi M (2008) Effects of the PPARgamma activator pioglitazone on p38 MAP kinase and IkappaBalpha in the spinal cord of a transgenic mouse model of amyotrophic lateral sclerosis. Neuropathology 28(4):387–398. doi:10.1111/j.1440-1789.2008.00890.x

    Article  PubMed  Google Scholar 

  174. Schutz B, Reimann J, Dumitrescu-Ozimek L, Kappes-Horn K, Landreth GE, Schurmann B, Zimmer A, Heneka MT (2005) The oral antidiabetic pioglitazone protects from neurodegeneration and amyotrophic lateral sclerosis-like symptoms in superoxide dismutase-G93A transgenic mice. J Neurosci 25(34):7805–7812. doi:10.1523/jneurosci.2038-05.2005

    Article  PubMed  CAS  Google Scholar 

  175. Kiaei M, Kipiani K, Chen J, Calingasan NY, Beal MF (2005) Peroxisome proliferator-activated receptor-gamma agonist extends survival in transgenic mouse model of amyotrophic lateral sclerosis. Exp Neurol 191(2):331–336. doi:10.1016/j.expneurol.2004.10.007

    Article  CAS  PubMed  Google Scholar 

  176. Dupuis L, Dengler R, Heneka MT, Meyer T, Zierz S, Kassubek J, Fischer W, Steiner F et al (2012) A randomized, double blind, placebo-controlled trial of pioglitazone in combination with riluzole in amyotrophic lateral sclerosis. PLoS One 7(6):e37885. doi:10.1371/journal.pone.0037885

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  177. Rothstein JD, Dykes-Hoberg M, Pardo CA, Bristol LA, Jin L, Kuncl RW, Kanai Y, Hediger MA et al (1996) Knockout of glutamate transporters reveals a major role for astroglial transport in excitotoxicity and clearance of glutamate. Neuron 16(3):675–686

    Article  CAS  PubMed  Google Scholar 

  178. Bezzi P, Carmignoto G, Pasti L, Vesce S, Rossi D, Rizzini BL, Pozzan T, Volterra A (1998) Prostaglandins stimulate calcium-dependent glutamate release in astrocytes. Nature 391(6664):281–285. doi:10.1038/34651

    Article  CAS  PubMed  Google Scholar 

  179. Yasojima K, Tourtellotte WW, McGeer EG, McGeer PL (2001) Marked increase in cyclooxygenase-2 in ALS spinal cord: implications for therapy. Neurology 57(6):952–956

    Article  CAS  PubMed  Google Scholar 

  180. Almer G, Teismann P, Stevic Z, Halaschek-Wiener J, Deecke L, Kostic V, Przedborski S (2002) Increased levels of the pro-inflammatory prostaglandin PGE2 in CSF from ALS patients. Neurology 58(8):1277–1279

    Article  CAS  PubMed  Google Scholar 

  181. Drachman DB, Frank K, Dykes-Hoberg M, Teismann P, Almer G, Przedborski S, Rothstein JD (2002) Cyclooxygenase 2 inhibition protects motor neurons and prolongs survival in a transgenic mouse model of ALS. Ann Neurol 52(6):771–778. doi:10.1002/ana.10374

    Article  CAS  PubMed  Google Scholar 

  182. Westerheide SD, Bosman JD, Mbadugha BN, Kawahara TL, Matsumoto G, Kim S, Gu W, Devlin JP et al (2004) Celastrols as inducers of the heat shock response and cytoprotection. J Biol Chem 279(53):56053–56060. doi:10.1074/jbc.M409267200

    Article  CAS  PubMed  Google Scholar 

  183. Kiaei M, Kipiani K, Petri S, Chen J, Calingasan NY, Beal MF (2005) Celastrol blocks neuronal cell death and extends life in transgenic mouse model of amyotrophic lateral sclerosis. Neurodegener Dis 2(5):246–254. doi:10.1159/000090364

    Article  CAS  PubMed  Google Scholar 

  184. Traynor BJ, Bruijn L, Conwit R, Beal F, O'Neill G, Fagan SC, Cudkowicz ME (2006) Neuroprotective agents for clinical trials in ALS: a systematic assessment. Neurology 67(1):20–27. doi:10.1212/01.wnl.0000223353.34006.54

    Article  CAS  PubMed  Google Scholar 

  185. Stella N (2009) Endocannabinoid signaling in microglial cells. Neuropharmacology 56(Suppl 1):244–253. doi:10.1016/j.neuropharm.2008.07.037

    Article  CAS  PubMed  Google Scholar 

  186. Quartilho A, Mata HP, Ibrahim MM, Vanderah TW, Porreca F, Makriyannis A, Malan TP Jr (2003) Inhibition of inflammatory hyperalgesia by activation of peripheral CB2 cannabinoid receptors. Anesthesiology 99(4):955–960

    Article  CAS  PubMed  Google Scholar 

  187. Kim K, Moore DH, Makriyannis A, Abood ME (2006) AM1241, a cannabinoid CB2 receptor selective compound, delays disease progression in a mouse model of amyotrophic lateral sclerosis. Eur J Pharmacol 542(1–3):100–105. doi:10.1016/j.ejphar.2006.05.025

    Article  CAS  PubMed  Google Scholar 

  188. Yiangou Y, Facer P, Durrenberger P, Chessell IP, Naylor A, Bountra C, Banati RR, Anand P (2006) COX-2, CB2 and P2X7-immunoreactivities are increased in activated microglial cells/macrophages of multiple sclerosis and amyotrophic lateral sclerosis spinal cord. BMC Neurol 6:12. doi:10.1186/1471-2377-6-12

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  189. Shoemaker JL, Seely KA, Reed RL, Crow JP, Prather PL (2007) The CB2 cannabinoid agonist AM-1241 prolongs survival in a transgenic mouse model of amyotrophic lateral sclerosis when initiated at symptom onset. J Neurochem 101(1):87–98. doi:10.1111/j.1471-4159.2006.04346.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  190. Yao BB, Mukherjee S, Fan Y, Garrison TR, Daza AV, Grayson GK, Hooker BA, Dart MJ et al (2006) In vitro pharmacological characterization of AM1241: a protean agonist at the cannabinoid CB2 receptor? Br J Pharmacol 149(2):145–154. doi:10.1038/sj.bjp.0706838

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  191. Chung YH, Hong JJ, Shin CM, Joo KM, Kim MJ, Cha CI (2003) Immunohistochemical study on the distribution of homocysteine in the central nervous system of transgenic mice expressing a human Cu/Zn SOD mutation. Brain Res 967(1–2):226–234

    Article  CAS  PubMed  Google Scholar 

  192. Lipton SA, Kim WK, Choi YB, Kumar S, D'Emilia DM, Rayudu PV, Arnelle DR, Stamler JS (1997) Neurotoxicity associated with dual actions of homocysteine at the N-methyl-D-aspartate receptor. Proc Natl Acad Sci U S A 94(11):5923–5928

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  193. Zhang X, Chen S, Li L, Wang Q, Le W (2008) Folic acid protects motor neurons against the increased homocysteine, inflammation and apoptosis in SOD1 G93A transgenic mice. Neuropharmacology 54(7):1112–1119. doi:10.1016/j.neuropharm.2008.02.020

    Article  CAS  PubMed  Google Scholar 

  194. Gravel M, Beland LC, Soucy G, Abdelhamid E, Rahimian R, Gravel C, Kriz J (2016) IL-10 controls early microglial phenotypes and disease onset in ALS caused by misfolded superoxide dismutase 1. J Neurosci 36(3):1031–1048. doi:10.1523/jneurosci.0854-15.2016

    Article  CAS  PubMed  Google Scholar 

  195. Butovsky O, Ziv Y, Schwartz A, Landa G, Talpalar AE, Pluchino S, Martino G, Schwartz M (2006) Microglia activated by IL-4 or IFN-gamma differentially induce neurogenesis and oligodendrogenesis from adult stem/progenitor cells. Mol Cell Neurosci 31(1):149–160. doi:10.1016/j.mcn.2005.10.006

    Article  CAS  PubMed  Google Scholar 

  196. Holmoy T (2008) T cells in amyotrophic lateral sclerosis. Eur J Neurol 15(4):360–366. doi:10.1111/j.1468-1331.2008.02065.x

    Article  CAS  PubMed  Google Scholar 

  197. Zhang DE, Hetherington CJ, Chen HM, Tenen DG (1994) The macrophage transcription factor PU.1 directs tissue-specific expression of the macrophage colony-stimulating factor receptor. Mol Cell Biol 14(1):373–381

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  198. Gomez-Nicola D, Perry VH (2015) Microglial dynamics and role in the healthy and diseased brain: a paradigm of functional plasticity. Neuroscientist 21(2):169–184. doi:10.1177/1073858414530512

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  199. Yamamoto S, Nakajima K, Kohsaka S (2010) Macrophage-colony stimulating factor as an inducer of microglial proliferation in axotomized rat facial nucleus. J Neurochem 115(4):1057–1067. doi:10.1111/j.1471-4159.2010.06996.x

    Article  CAS  PubMed  Google Scholar 

  200. Gomez-Nicola D, Fransen NL, Suzzi S, Perry VH (2013) Regulation of microglial proliferation during chronic neurodegeneration. J Neurosci 33(6):2481–2493. doi:10.1523/jneurosci.4440-12.2013

    Article  CAS  PubMed  Google Scholar 

  201. Crespo O, Kang SC, Daneman R, Lindstrom TM, Ho PP, Sobel RA, Steinman L, Robinson WH (2011) Tyrosine kinase inhibitors ameliorate autoimmune encephalomyelitis in a mouse model of multiple sclerosis. J Clin Immunol 31(6):1010–1020. doi:10.1007/s10875-011-9579-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  202. Olmos-Alonso A, Schetters ST, Sri S, Askew K, Mancuso R, Vargas-Caballero M, Holscher C, Perry VH et al (2016) Pharmacological targeting of CSF1R inhibits microglial proliferation and prevents the progression of Alzheimer’s-like pathology. Brain 139(Pt 3):891–907. doi:10.1093/brain/awv379

    Article  PubMed  PubMed Central  Google Scholar 

  203. Martinez-Muriana A, Mancuso R, Francos-Quijorna I, Olmos-Alonso A, Osta R, Perry VH, Navarro X, Gomez-Nicola D et al (2016) CSF1R blockade slows the progression of amyotrophic lateral sclerosis by reducing microgliosis and invasion of macrophages into peripheral nerves. Sci Rep 6:25663. doi:10.1038/srep25663

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  204. Luo J, Elwood F, Britschgi M, Villeda S, Zhang H, Ding Z, Zhu L, Alabsi H et al (2013) Colony-stimulating factor 1 receptor (CSF1R) signaling in injured neurons facilitates protection and survival. J Exp Med 210(1):157–172. doi:10.1084/jem.20120412

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  205. Freischmidt A, Wieland T, Richter B, Ruf W, Schaeffer V, Muller K, Marroquin N, Nordin F et al (2015) Haploinsufficiency of TBK1 causes familial ALS and fronto-temporal dementia. Nat Neurosci 18(5):631–636. doi:10.1038/nn.4000

    Article  CAS  PubMed  Google Scholar 

  206. Ahmad L, Zhang SY, Casanova JL, Sancho-Shimizu V (2016) Human TBK1: a gatekeeper of neuroinflammation. Trends Mol Med 22(6):511–527. doi:10.1016/j.molmed.2016.04.006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  207. Lim HK, Seppanen M, Hautala T, Ciancanelli MJ, Itan Y, Lafaille FG, Dell W, Lorenzo L et al (2014) TLR3 deficiency in herpes simplex encephalitis: high allelic heterogeneity and recurrence risk. Neurology 83(21):1888–1897. doi:10.1212/wnl.0000000000000999

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  208. Moore AS, Holzbaur EL (2016) Dynamic recruitment and activation of ALS-associated TBK1 with its target optineurin are required for efficient mitophagy. Proc Natl Acad Sci U S A 113(24):E3349–E3358. doi:10.1073/pnas.1523810113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  209. Ito Y, Ofengeim D, Najafov A, Das S, Saberi S, Li Y, Hitomi J, Zhu H et al (2016) RIPK1 mediates axonal degeneration by promoting inflammation and necroptosis in ALS. Science 353(6299):603–608. doi:10.1126/science.aaf6803

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  210. Deitch JS, Alexander GM, Bensinger A, Yang S, Jiang JT, Heiman-Patterson TD (2014) Phenotype of transgenic mice carrying a very low copy number of the mutant human G93A superoxide dismutase-1 gene associated with amyotrophic lateral sclerosis. PLoS One 9(6):e99879. doi:10.1371/journal.pone.0099879

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  211. Gurney ME (1997) The use of transgenic mouse models of amyotrophic lateral sclerosis in preclinical drug studies. J Neurol Sci 152(Suppl 1):S67–S73

    Article  CAS  PubMed  Google Scholar 

  212. Matsumoto A, Okada Y, Nakamichi M, Nakamura M, Toyama Y, Sobue G, Nagai M, Aoki M et al (2006) Disease progression of human SOD1 (G93A) transgenic ALS model rats. J Neurosci Res 83(1):119–133. doi:10.1002/jnr.20708

    Article  CAS  PubMed  Google Scholar 

  213. Heiman-Patterson TD, Sher RB, Blankenhorn EA, Alexander G, Deitch JS, Kunst CB, Maragakis N, Cox G (2011) Effect of genetic background on phenotype variability in transgenic mouse models of amyotrophic lateral sclerosis: a window of opportunity in the search for genetic modifiers. Amyotroph Lateral Scler 12(2):79–86. doi:10.3109/17482968.2010.550626

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Joint Programme Neurodegenerative Disease (JPND) Research grant DAMNDPATHS^ (2014) and ARISLA grant smallRNALS^ (2014) to SC and the Italian Ministry of Health RF-2013-023555764 and Regione Lombardia TRANS-ALS to GPC are gratefully acknowledged. We thank Associazione Amici del Centro Dino Ferrari for its support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefania Corti.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Crisafulli, S.G., Brajkovic, S., Cipolat Mis, M.S. et al. Therapeutic Strategies Under Development Targeting Inflammatory Mechanisms in Amyotrophic Lateral Sclerosis. Mol Neurobiol 55, 2789–2813 (2018). https://doi.org/10.1007/s12035-017-0532-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-017-0532-4

Keywords

Navigation