Skip to main content

Advertisement

Log in

Characterization of Dysregulated miRNA in Peripheral Blood Mononuclear Cells from Ischemic Stroke Patients

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Epigenetic modification may play an important role in pathophysiology of ischemic stroke (IS) risk. MicroRNAs (miRNAs), which constitute one of the modes of epigenetic regulation, have been shown to be associated with a number of clinical disorders including IS. The purpose of this study was to investigate the miRNA profile in the peripheral blood mononuclear cells (PBMCs) of IS patients and compare it with stroke-free controls. Blood samples were obtained from 19 healthy age-gender-race matched individuals who served as controls to 20 IS patients. miRNA microarray analysis with RNA from PBMCs was performed and significantly dysregulated miRNAs common among IS patients were identified. We identified 117 miRNAs with linear fold values of at least ±1.5, of which, 29 were significantly altered (p value <0.05). Ingenuity Pathway Analysis (IPA) indicated a role for the dysregulated miRNAs in conditions relevant to IS (e.g., organismal injury and abnormalities, hematological disease and immunological disease). Pro-inflammatory genes like STAT3, interleukin (IL) 12A, and IL12B were some of the highly predicted targets for the dysregulated miRNAs. Notably, we further identified three common and significantly upregulated miRNAs (hsa-miR-4656, -432, -503) and one downregulated miRNA (hsa-miR-874) among all IS patients. Molecular interactive network analysis revealed that the commonly dysregulated miRNAs share several targets with roles relevant to IS. Altogether, we report dysregulation of miRNAs in IS PBMCs and provide evidence for their involvement in the immune system alteration during IS pathophysiology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Feigin VL, Krishnamurthi R (2010) Public health strategies could reduce the global stroke epidemic. Lancet Neurol 9(9):847–848. doi:10.1016/S1474-4422(10)70190-3

    Article  PubMed  Google Scholar 

  2. NINDS Brain basics: preventing stroke. National Institutes of Neurological Disorders and Stroke http:www.ninds.nih.gov/disorders/stroke/preventing_stroke.htm

  3. Faber JE, Zhang H, Lassance-Soares RM, Prabhakar P, Najafi AH, Burnett MS, Epstein SE (2011) Aging causes collateral rarefaction and increased severity of ischemic injury in multiple tissues. Arterioscler Thromb Vasc Biol 31(8):1748–1756. doi:10.1161/ATVBAHA.111.227314

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. D'Agostino RB, Wolf PA, Belanger AJ, Kannel WB (1994) Stroke risk profile: adjustment for antihypertensive medication. The Framingham study. Stroke 25(1):40–43

    Article  PubMed  Google Scholar 

  5. Krupinski J, Slevin M (2013) Emerging molecular targets for brain repair after stroke. Stroke Res Treat 2013:473416. doi:10.1155/2013/473416

    PubMed  PubMed Central  Google Scholar 

  6. Ambros V (2004) The functions of animal microRNAs. Nature 431(7006):350–355. doi:10.1038/nature02871

    Article  CAS  PubMed  Google Scholar 

  7. Bartel DP (2004) MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116(2):281–297

    Article  CAS  PubMed  Google Scholar 

  8. Bartel DP (2009) MicroRNAs: target recognition and regulatory functions. Cell 136(2):215–233. doi:10.1016/j.cell.2009.01.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Fabian MR, Sonenberg N, Filipowicz W (2010) Regulation of mRNA translation and stability by microRNAs. Annu Rev Biochem 79:351–379. doi:10.1146/annurev-biochem-060308-103103

    Article  CAS  PubMed  Google Scholar 

  10. Mraz M, Pospisilova S (2012) MicroRNAs in chronic lymphocytic leukemia: from causality to associations and back. Expert Rev Hematol 5(6):579–581. doi:10.1586/ehm.12.54

    Article  CAS  PubMed  Google Scholar 

  11. He L, Thomson JM, Hemann MT, Hernando-Monge E, Mu D, Goodson S, Powers S, Cordon-Cardo C et al (2005) A microRNA polycistron as a potential human oncogene. Nature 435(7043):828–833. doi:10.1038/nature03552

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Mraz M, Pospisilova S, Malinova K, Slapak I, Mayer J (2009) MicroRNAs in chronic lymphocytic leukemia pathogenesis and disease subtypes. Leuk Lymphoma 50(3):506–509. doi:10.1080/10428190902763517

    Article  CAS  PubMed  Google Scholar 

  13. Cui JW, Li YJ, Sarkar A, Brown J, Tan YH, Premyslova M, Michaud C, Iscove N et al (2007) Retroviral insertional activation of the Fli-3 locus in erythroleukemias encoding a cluster of microRNAs that convert Epo-induced differentiation to proliferation. Blood 110(7):2631–2640. doi:10.1182/blood-2006-10-053850

    Article  CAS  PubMed  Google Scholar 

  14. Zhang HD, Jiang LH, Sun DW, Li J, Tang JH (2015) MiR-139-5p: promising biomarker for cancer. Tumour Biol 36(3):1355–1365. doi:10.1007/s13277-015-3199-3

    Article  CAS  PubMed  Google Scholar 

  15. Khoury S, Tran N (2015) Circulating microRNAs: potential biomarkers for common malignancies. Biomark Med 9(2):131–151. doi:10.2217/bmm.14.102

    Article  CAS  PubMed  Google Scholar 

  16. Guess MG, Barthel KK, Harrison BC, Leinwand LA (2015) miR-30 family microRNAs regulate myogenic differentiation and provide negative feedback on the microRNA pathway. PLoS One 10(2):e0118229. doi:10.1371/journal.pone.0118229

    Article  PubMed  PubMed Central  Google Scholar 

  17. Zhuang LP, Meng ZQ (2015) Serum miR-224 reflects stage of hepatocellular carcinoma and predicts survival. Biomed Res Int 2015:731781. doi:10.1155/2015/731781

    Article  PubMed  PubMed Central  Google Scholar 

  18. Ravo M, Cordella A, Rinaldi A, Bruno G, Alexandrova E, Saggese P, Nassa G, Giurato G et al (2015) Small non-coding RNA deregulation in endometrial carcinogenesis. Oncotarget 6(7):4677–4691. doi:10.18632/oncotarget.2911

    Article  PubMed  PubMed Central  Google Scholar 

  19. Li M, Wang Y, Song Y, Bu R, Yin B, Fei X, Guo Q, Wu B (2015) MicroRNAs in renal cell carcinoma: a systematic review of clinical implications (review). Oncol Rep 33(4):1571–1578. doi:10.3892/or.2015.3799

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Li P, Teng F, Gao F, Zhang M, Wu J, Zhang C (2015) Identification of circulating microRNAs as potential biomarkers for detecting acute ischemic stroke. Cell Mol Neurobiol 35(3):433–447. doi:10.1007/s10571-014-0139-5

    Article  PubMed  Google Scholar 

  21. Wang W, Sun G, Zhang L, Shi L, Zeng Y (2014) Circulating microRNAs as novel potential biomarkers for early diagnosis of acute stroke in humans. J Stroke Cerebrovasc Dis 23(10):2607–2613. doi:10.1016/j.jstrokecerebrovasdis.2014.06.002

    Article  PubMed  Google Scholar 

  22. Sorensen SS, Nygaard AB, Nielsen MY, Jensen K, Christensen T (2014) miRNA expression profiles in cerebrospinal fluid and blood of patients with acute ischemic stroke. Transl Stroke Res 5(6):711–718. doi:10.1007/s12975-014-0364-8

    Article  PubMed  Google Scholar 

  23. Zhou J, Zhang J (2014) Identification of miRNA-21 and miRNA-24 in plasma as potential early stage markers of acute cerebral infarction. Mol Med Rep 10(2):971–976. doi:10.3892/mmr.2014.2245

    Article  CAS  PubMed  Google Scholar 

  24. Leung LY, Chan CP, Leung YK, Jiang HL, Abrigo JM, Wang de F, Chung JS, Rainer TH et al (2014) Comparison of miR-124-3p and miR-16 for early diagnosis of hemorrhagic and ischemic stroke. Clin Chim Acta 433:139–144. doi:10.1016/j.cca.2014.03.007

    Article  CAS  PubMed  Google Scholar 

  25. Sepramaniam S, Tan JR, Tan KS, DeSilva DA, Tavintharan S, Woon FP, Wang CW, Yong FL et al (2014) Circulating microRNAs as biomarkers of acute stroke. Int J Mol Sci 15(1):1418–1432. doi:10.3390/ijms15011418

    Article  PubMed  PubMed Central  Google Scholar 

  26. Long G, Wang F, Li H, Yin Z, Sandip C, Lou Y, Wang Y, Chen C et al (2013) Circulating miR-30a, miR-126 and let-7b as biomarker for ischemic stroke in humans. BMC Neurol 13:178. doi:10.1186/1471-2377-13-178

    Article  PubMed  PubMed Central  Google Scholar 

  27. Li WY, Jin J, Chen J, Guo Y, Tang J, Tan S (2014) Circulating microRNAs as potential non-invasive biomarkers for the early detection of hypertension-related stroke. J Hum Hypertens 28(5):288–291. doi:10.1038/jhh.2013.94

    Article  CAS  PubMed  Google Scholar 

  28. Tsai PC, Liao YC, Wang YS, Lin HF, Lin RT, Juo SH (2013) Serum microRNA-21 and microRNA-221 as potential biomarkers for cerebrovascular disease. J Vasc Res 50(4):346–354. doi:10.1159/000351767

    Article  CAS  PubMed  Google Scholar 

  29. Jickling GC, Ander BP, Zhan X, Noblett D, Stamova B, Liu D (2014) microRNA expression in peripheral blood cells following acute ischemic stroke and their predicted gene targets. PLoS One 9(6):e99283. doi:10.1371/journal.pone.0099283

    Article  PubMed  PubMed Central  Google Scholar 

  30. Wang Y, Zhang Y, Huang J, Chen X, Gu X, Zeng L, Yang GY (2014) Increase of circulating miR-223 and insulin-like growth factor-1 is associated with the pathogenesis of acute ischemic stroke in patients. BMC Neurol 14:77. doi:10.1186/1471-2377-14-77

    Article  PubMed  PubMed Central  Google Scholar 

  31. Moon JM, Xu L, Giffard RG (2013) Inhibition of microRNA-181 reduces forebrain ischemia-induced neuronal loss. J Cereb Blood Flow Metab 33(12):1976–1982. doi:10.1038/jcbfm.2013.157

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Yang Q, Yang K, Li A (2014) microRNA-21 protects against ischemia-reperfusion and hypoxia-reperfusion-induced cardiocyte apoptosis via the phosphatase and tensin homolog/Akt-dependent mechanism. Mol Med Rep 9(6):2213–2220. doi:10.3892/mmr.2014.2068

    Article  CAS  PubMed  Google Scholar 

  33. Selvamani A, Williams MH, Miranda RC, Sohrabji F (2014) Circulating miRNA profiles provide a biomarker for severity of stroke outcomes associated with age and sex in a rat model. Clin Sci (Lond) 127(2):77–89. doi:10.1042/CS20130565

    Article  CAS  Google Scholar 

  34. Lee ST, Chu K, Jung KH, Yoon HJ, Jeon D, Kang KM, Park KH, Bae EK et al (2010) MicroRNAs induced during ischemic preconditioning. Stroke 41(8):1646–1651. doi:10.1161/STROKEAHA.110.579649

    Article  PubMed  Google Scholar 

  35. Zeng L, Liu J, Wang Y, Wang L, Weng S, Tang Y, Zheng C, Cheng Q et al (2011) MicroRNA-210 as a novel blood biomarker in acute cerebral ischemia. Front Biosci (Elite Ed) 3:1265–1272

    Google Scholar 

  36. Kassner SS, Kollmar R, Bonaterra GA, Hildebrandt W, Schwab S, Kinscherf R (2009) The early immunological response to acute ischemic stroke: differential gene expression in subpopulations of mononuclear cells. Neuroscience 160(2):394–401. doi:10.1016/j.neuroscience.2009.02.050

    Article  CAS  PubMed  Google Scholar 

  37. Grond-Ginsbach C, Hummel M, Wiest T, Horstmann S, Pfleger K, Hergenhahn M, Hollstein M, Mansmann U et al (2008) Gene expression in human peripheral blood mononuclear cells upon acute ischemic stroke. J Neurol 255(5):723–731. doi:10.1007/s00415-008-0784-z

    Article  CAS  PubMed  Google Scholar 

  38. Mi H, Thomas P (2009) PANTHER pathway: an ontology-based pathway database coupled with data analysis tools. Methods Mol Biol 563:123–140. doi:10.1007/978-1-60761-175-2_7

    Article  CAS  PubMed  Google Scholar 

  39. Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, Amin N, Schwikowski B et al (2003) Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res 13(11):2498–2504. doi:10.1101/gr.1239303

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Adams HP Jr, Bendixen BH, Kappelle LJ, Biller J, Love BB, Gordon DL, Marsh EE 3rd (1993) Classification of subtype of acute ischemic stroke. Definitions for use in a multicenter clinical trial. TOAST. Trial of Org 10172 in Acute Stroke Treatment. Stroke 24(1):35–41

    Article  PubMed  Google Scholar 

  41. Hutchins AP, Diez D, Miranda-Saavedra D (2013) Genomic and computational approaches to dissect the mechanisms of STAT3’s universal and cell type-specific functions. JAKSTAT 2(4):e25097. doi:10.4161/jkst.25097

    PubMed  PubMed Central  Google Scholar 

  42. Braun DA, Fribourg M, Sealfon SC (2013) Cytokine response is determined by duration of receptor and signal transducers and activators of transcription 3 (STAT3) activation. J Biol Chem 288(5):2986–2993. doi:10.1074/jbc.M112.386573

    Article  CAS  PubMed  Google Scholar 

  43. Zaremba J, Losy J (2006) Interleukin-12 in acute ischemic stroke patients. Folia Neuropathol 44(1):59–66

    CAS  PubMed  Google Scholar 

  44. Kochanek PM, Hallenbeck JM (1992) Polymorphonuclear leukocytes and monocytes/macrophages in the pathogenesis of cerebral ischemia and stroke. Stroke 23(9):1367–1379

    Article  CAS  PubMed  Google Scholar 

  45. Muir KW, Tyrrell P, Sattar N, Warburton E (2007) Inflammation and ischaemic stroke. Curr Opin Neurol 20(3):334–342. doi:10.1097/WCO.0b013e32813ba151

    Article  CAS  PubMed  Google Scholar 

  46. Kawabori M, Yenari MA (2015) Inflammatory responses in brain ischemia. Curr Med Chem 22(10):1258–1277

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Pei J, You X, Fu Q (2015) Inflammation in the pathogenesis of ischemic stroke. Front Biosci (Landmark Ed) 20:772–783

    Article  Google Scholar 

  48. Gesuete R, Kohama SG, Stenzel-Poore MP (2014) Toll-like receptors and ischemic brain injury. J Neuropathol Exp Neurol 73(5):378–386. doi:10.1097/NEN.0000000000000068

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Welten SM, Bastiaansen AJ, de Jong RC, de Vries MR, Peters EA, Boonstra MC, Sheikh SP, La Monica N et al (2014) Inhibition of 14q32 MicroRNAs miR-329, miR-487b, miR-494, and miR-495 increases neovascularization and blood flow recovery after ischemia. Circ Res 115(8):696–708. doi:10.1161/CIRCRESAHA.114.304747

    Article  CAS  PubMed  Google Scholar 

  50. CDC (2002) Centers for Disease Control and Prevention: state-specific mortality from stroke and distrbution of place of death—United States, 1999. MMWR Morb Mortal Wkly Rep 51:429–433

    Google Scholar 

  51. Chikuma S, Suita N, Okazaki IM, Shibayama S, Honjo T (2012) TRIM28 prevents autoinflammatory T cell development in vivo. Nat Immunol 13(6):596–603. doi:10.1038/ni.2293

    Article  CAS  PubMed  Google Scholar 

  52. How Cardiovascular & Stroke Risks Relate. http://www.strokeassociation.org/STROKEORG/LifeAfterStroke/HealthyLivingAfterStroke/UnderstandingRiskyConditions/How-Cardiovascular-Stroke-Risks-Relate_UCM_310369_Article.jsp

  53. Yang L, Xiong Y, Hu XF, Du YH (2015) MicroRNA-323 regulates ischemia/reperfusion injury-induced neuronal cell death by targeting BRI3. Int J Clin Exp Pathol 8(9):10725–10733 eCollection 2015

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This study is supported in part by the SC Smart State Funds, National Institutes of Health grants P01AT003961, R01AT006888, R01ES019313, R01MH094755, AI29788, and P20GM103641 to PN and MN.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mitzi Nagarkatti.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Ethical Approval

All procedures performed in studies involving human participants were approved by the Institutional Review Board of the University of South Carolina and obtained written consent from all participants/subjects.

Electronic Supplementary Material

.

ESM 1

(PDF 715 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bam, M., Yang, X., Sen, S. et al. Characterization of Dysregulated miRNA in Peripheral Blood Mononuclear Cells from Ischemic Stroke Patients. Mol Neurobiol 55, 1419–1429 (2018). https://doi.org/10.1007/s12035-016-0347-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-016-0347-8

Keywords

Navigation