Skip to main content
Log in

The Good and the Bad of Glutamate Receptor RNA Editing

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Glutamate receptors play a key role in excitatory synaptic transmission and plasticity in the central nervous system (CNS). Their channel properties are largely dictated by the subunit composition of tetrameric receptors. Amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) and kainate channels are assembled from GluA1–4 AMPA or GluK1–5 kainate receptor subunits. However, their functional properties are highly modulated by a post-transcriptional mechanism called RNA editing. This process involves the enzymatic deamination of specific adenosines (A) into inosines (I) in pre-messenger RNA. This post-transcriptional modification leads to critical amino acid substitutions in the receptor subunits, which induce profound alterations of the channel properties. Three of the four AMPA and two of the five kainate receptor subunits are subjected to RNA editing. This study reviews the advances in understanding the importance of glutamate receptor RNA editing in finely tuning glutamatergic neurotransmission under physiological conditions and discusses the way in which the dis-regulation of RNA editing may be involved in neurological pathology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Dingledine R, Borges K, Bowie D, Traynelis SF (1999) The glutamate receptor ion channels. Pharmacol Rev 51(1):7–61

    CAS  PubMed  Google Scholar 

  2. Ozawa S, Kamiya H, Tsuzuki K (1998) Glutamate receptors in the mammalian central nervous system. Prog Neurobiol 54(5):581–618

    Article  CAS  PubMed  Google Scholar 

  3. Boulter J, Hollmann M, O'Shea-Greenfield A, Hartley M, Deneris E, Maron C, Heinemann S (1990) Molecular cloning and functional expression of glutamate receptor subunit genes. Science 249(4972):1033–1037

    Article  CAS  PubMed  Google Scholar 

  4. Sommer B, Keinanen K, Verdoorn TA, Wisden W, Burnashev N, Herb A, Kohler M, Takagi T et al (1990) Flip and flop: a cell-specific functional switch in glutamate-operated channels of the CNS. Science 249(4976):1580–1585

    Article  CAS  PubMed  Google Scholar 

  5. Lambolez B, Ropert N, Perrais D, Rossier J, Hestrin S (1996) Correlation between kinetics and RNA splicing of alpha-amino-3-hydroxy-5-methylisoxazole-4-propionic acid receptors in neocortical neurons. Proc Natl Acad Sci U S A 93(5):1797–1802

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Monyer H, Seeburg PH, Wisden W (1991) Glutamate-operated channels: developmentally early and mature forms arise by alternative splicing. Neuron 6(5):799–810

    Article  CAS  PubMed  Google Scholar 

  7. Benne R, Van den Burg J, Brakenhoff JP, Sloof P, Van Boom JH, Tromp MC (1986) Major transcript of the frameshifted coxII gene from trypanosome mitochondria contains four nucleotides that are not encoded in the DNA. Cell 46(6):819–826

    Article  CAS  PubMed  Google Scholar 

  8. Powell LM, Wallis SC, Pease RJ, Edwards YH, Knott TJ, Scott J (1987) A novel form of tissue-specific RNA processing produces apolipoprotein-B48 in intestine. Cell 50(6):831–840

    Article  CAS  PubMed  Google Scholar 

  9. Gerber AP, Keller W (2001) RNA editing by base deamination: more enzymes, more targets, new mysteries. Trends Biochem Sci 26(6):376–384

    Article  CAS  PubMed  Google Scholar 

  10. Bass BL (2002) RNA editing by adenosine deaminases that act on RNA. Annu Rev Biochem 71:817–846. doi:10.1146/annurev.biochem.71.110601.135501

    Article  CAS  PubMed  Google Scholar 

  11. Maas S, Rich A, Nishikura K (2003) A-to-I RNA editing: recent news and residual mysteries. J Biol Chem 278(3):1391–1394. doi:10.1074/jbc.R200025200

    Article  CAS  PubMed  Google Scholar 

  12. Orlandi C, Barbon A, Barlati S (2012) Activity regulation of adenosine deaminases acting on RNA (ADARs). Mol Neurobiol 45(1):61–75. doi:10.1007/s12035-011-8220-2

    Article  CAS  PubMed  Google Scholar 

  13. Lai F, Chen CX, Carter KC, Nishikura K (1997) Editing of glutamate receptor B subunit ion channel RNAs by four alternatively spliced DRADA2 double-stranded RNA adenosine deaminases. Mol Cell Biol 17(5):2413–2424

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. O'Connell MA, Gerber A, Keller W (1997) Purification of human double-stranded RNA-specific editase 1 (hRED1) involved in editing of brain glutamate receptor B pre-mRNA. J Biol Chem 272(1):473–478

    Article  PubMed  Google Scholar 

  15. Higuchi M, Maas S, Single FN, Hartner J, Rozov A, Burnashev N, Feldmeyer D, Sprengel R et al (2000) Point mutation in an AMPA receptor gene rescues lethality in mice deficient in the RNA-editing enzyme ADAR2. Nature 406(6791):78–81. doi:10.1038/35017558

    Article  CAS  PubMed  Google Scholar 

  16. Wang Q, Miyakoda M, Yang W, Khillan J, Stachura DL, Weiss MJ, Nishikura K (2004) Stress-induced apoptosis associated with null mutation of ADAR1 RNA editing deaminase gene. J Biol Chem 279(6):4952–4961. doi:10.1074/jbc.M310162200

    Article  CAS  PubMed  Google Scholar 

  17. Hollmann M, Hartley M, Heinemann S (1991) Ca2+ permeability of KA-AMPA—gated glutamate receptor channels depends on subunit composition. Science 252(5007):851–853

    Article  CAS  PubMed  Google Scholar 

  18. Burnashev N, Monyer H, Seeburg PH, Sakmann B (1992) Divalent ion permeability of AMPA receptor channels is dominated by the edited form of a single subunit. Neuron 8(1):189–198

    Article  CAS  PubMed  Google Scholar 

  19. Higuchi M, Single FN, Kohler M, Sommer B, Sprengel R, Seeburg PH (1993) RNA editing of AMPA receptor subunit GluR-B: a base-paired intron-exon structure determines position and efficiency. Cell 75(7):1361–1370

    Article  CAS  PubMed  Google Scholar 

  20. Wahlstedt H, Daniel C, Enstero M, Ohman M (2009) Large-scale mRNA sequencing determines global regulation of RNA editing during brain development. Genome Res 19(6):978–986. doi:10.1101/gr.089409.108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Whitney NP, Peng H, Erdmann NB, Tian C, Monaghan DT, Zheng JC (2008) Calcium-permeable AMPA receptors containing Q/R-unedited GluR2 direct human neural progenitor cell differentiation to neurons. FASEB journal: official publication of the Federation of American Societies for Experimental Biology 22(8):2888–2900. doi:10.1096/fj.07-104661

    Article  CAS  Google Scholar 

  22. Pachernegg S, Munster Y, Muth-Kohne E, Fuhrmann G, Hollmann M (2015) GluA2 is rapidly edited at the Q/R site during neural differentiation in vitro. Front Cell Neurosci 9:69. doi:10.3389/fncel.2015.00069

    Article  PubMed  PubMed Central  Google Scholar 

  23. Kask K, Zamanillo D, Rozov A, Burnashev N, Sprengel R, Seeburg PH (1998) The AMPA receptor subunit GluR-B in its Q/R site-unedited form is not essential for brain development and function. Proc Natl Acad Sci U S A 95(23):13777–13782

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Li IC, Chen YC, Wang YY, Tzeng BW, Ou CW, Lau YY, Wu KM, Chan TM et al (2014) Zebrafish Adar2 edits the Q/R site of AMPA receptor subunit gria2alpha transcript to ensure normal development of nervous system and cranial neural crest cells. PLoS One 9(5):e97133. doi:10.1371/journal.pone.0097133

    Article  PubMed  PubMed Central  Google Scholar 

  25. Brusa R, Zimmermann F, Koh DS, Feldmeyer D, Gass P, Seeburg PH, Sprengel R (1995) Early-onset epilepsy and postnatal lethality associated with an editing-deficient GluR-B allele in mice. Science 270(5242):1677–1680

    Article  CAS  PubMed  Google Scholar 

  26. Greger IH, Khatri L, Ziff EB (2002) RNA editing at arg607 controls AMPA receptor exit from the endoplasmic reticulum. Neuron 34(5):759–772

    Article  CAS  PubMed  Google Scholar 

  27. Lomeli H, Mosbacher J, Melcher T, Hoger T, Geiger JR, Kuner T, Monyer H, Higuchi M et al (1994) Control of kinetic properties of AMPA receptor channels by nuclear RNA editing. Science 266(5191):1709–1713

    Article  CAS  PubMed  Google Scholar 

  28. Orlandi C, La Via L, Bonini D, Mora C, Russo I, Barbon A, Barlati S (2011) AMPA receptor regulation at the mRNA and protein level in rat primary cortical cultures. PLoS One 6(9):e25350. doi:10.1371/journal.pone.0025350

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Balik A, Penn AC, Nemoda Z, Greger IH (2013) Activity-regulated RNA editing in select neuronal subfields in hippocampus. Nucleic Acids Res 41(2):1124–1134. doi:10.1093/nar/gks1045

    Article  CAS  PubMed  Google Scholar 

  30. Sanjana NE, Levanon EY, Hueske EA, Ambrose JM, Li JB (2012) Activity-dependent A-to-I RNA editing in rat cortical neurons. Genetics 192(1):281–287. doi:10.1534/genetics.112.141200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Pinheiro PS, Mulle C (2008) Presynaptic glutamate receptors: physiological functions and mechanisms of action. Nat Rev Neurosci 9(6):423–436. doi:10.1038/nrn2379

    Article  CAS  PubMed  Google Scholar 

  32. Lerma J, Marques JM (2013) Kainate receptors in health and disease. Neuron 80(2):292–311. doi:10.1016/j.neuron.2013.09.045

    Article  CAS  PubMed  Google Scholar 

  33. Contractor A, Mulle C, Swanson GT (2011) Kainate receptors coming of age: milestones of two decades of research. Trends Neurosci 34(3):154–163. doi:10.1016/j.tins.2010.12.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Egebjerg J, Heinemann SF (1993) Ca2+ permeability of unedited and edited versions of the kainate selective glutamate receptor GluR6. Proc Natl Acad Sci U S A 90(2):755–759

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Kohler M, Burnashev N, Sakmann B, Seeburg PH (1993) Determinants of Ca2+ permeability in both TM1 and TM2 of high affinity kainate receptor channels: diversity by RNA editing. Neuron 10(3):491–500

    Article  CAS  PubMed  Google Scholar 

  36. Barbon A, Barlati S (2011) Glutamate receptor RNA editing in health and disease. Biochemistry Biokhimiia 76(8):882–889. doi:10.1134/S0006297911080037

    Article  CAS  PubMed  Google Scholar 

  37. Belcher SM, Howe JR (1997) Characterization of RNA editing of the glutamate-receptor subunits GluR5 and GluR6 in granule cells during cerebellar development. Brain Res Mol Brain Res 52(1):130–138

    Article  CAS  PubMed  Google Scholar 

  38. Paschen W, Schmitt J, Gissel C, Dux E (1997) Developmental changes of RNA editing of glutamate receptor subunits GluR5 and GluR6: in vivo versus in vitro. Brain Res Dev Brain Res 98(2):271–280

    Article  CAS  PubMed  Google Scholar 

  39. Bernard A, Ferhat L, Dessi F, Charton G, Represa A, Ben-Ari Y, Khrestchatisky M (1999) Q/R editing of the rat GluR5 and GluR6 kainate receptors in vivo and in vitro: evidence for independent developmental, pathological and cellular regulation. Eur J Neurosci 11(2):604–616

    Article  CAS  PubMed  Google Scholar 

  40. Barbon A, Vallini I, La Via L, Marchina E, Barlati S (2003) Glutamate receptor RNA editing: a molecular analysis of GluR2, GluR5 and GluR6 in human brain tissues and in NT2 cells following in vitro neural differentiation. Brain Res Mol Brain Res 117(2):168–178

    Article  CAS  PubMed  Google Scholar 

  41. Swanson GT, Feldmeyer D, Kaneda M, Cull-Candy SG (1996) Effect of RNA editing and subunit co-assembly single-channel properties of recombinant kainate receptors. J Physiol 492(Pt 1):129–142

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Vissel B, Royle GA, Christie BR, Schiffer HH, Ghetti A, Tritto T, Perez-Otano I, Radcliffe RA et al (2001) The role of RNA editing of kainate receptors in synaptic plasticity and seizures. Neuron 29(1):217–227

    Article  CAS  PubMed  Google Scholar 

  43. Kamboj SK, Swanson GT, Cull-Candy SG (1995) Intracellular spermine confers rectification on rat calcium-permeable AMPA and kainate receptors. J Physiol 486(Pt 2):297–303

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Bowie D, Mayer ML (1995) Inward rectification of both AMPA and kainate subtype glutamate receptors generated by polyamine-mediated ion channel block. Neuron 15(2):453–462

    Article  CAS  PubMed  Google Scholar 

  45. Sailer A, Swanson GT, Perez-Otano I, O'Leary L, Malkmus SA, Dyck RH, Dickinson-Anson H, Schiffer HH et al (1999) Generation and analysis of GluR5(Q636R) kainate receptor mutant mice. J Neurosci Off J Soc Neurosci 19(20):8757–8764

    CAS  Google Scholar 

  46. Ball SM, Atlason PT, Shittu-Balogun OO, Molnar E (2010) Assembly and intracellular distribution of kainate receptors is determined by RNA editing and subunit composition. J Neurochem 114(6):1805–1818. doi:10.1111/j.1471-4159.2010.06895.x

    Article  CAS  PubMed  Google Scholar 

  47. Wilding TJ, Zhou Y, Huettner JE (2005) Q/R site editing controls kainate receptor inhibition by membrane fatty acids. J Neurosci Off J Soc Neurosci 25(41):9470–9478. doi:10.1523/JNEUROSCI.2826-05.2005

    Article  CAS  Google Scholar 

  48. Burnashev N, Zhou Z, Neher E, Sakmann B (1995) Fractional calcium currents through recombinant GluR channels of the NMDA, AMPA and kainate receptor subtypes. J Physiol 485(Pt 2):403–418

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Schoft VK, Schopoff S, Jantsch MF (2007) Regulation of glutamate receptor B pre-mRNA splicing by RNA editing. Nucleic Acids Res 35(11):3723–3732. doi:10.1093/nar/gkm314

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Penn AC, Balik A, Greger IH (2013) Steric antisense inhibition of AMPA receptor Q/R editing reveals tight coupling to intronic editing sites and splicing. Nucleic Acids Res 41(2):1113–1123. doi:10.1093/nar/gks1044

    Article  CAS  PubMed  Google Scholar 

  51. Penn AC, Greger IH (2009) Sculpting AMPA receptor formation and function by alternative RNA processing. RNA Biol 6(5):517–521

    Article  CAS  PubMed  Google Scholar 

  52. Licht K, Kapoor U, Mayrhofer E, Jantsch MF (2016) Adenosine to inosine editing frequency controlled by splicing efficiency. Nucleic Acids Res. doi:10.1093/nar/gkw325

    PubMed  PubMed Central  Google Scholar 

  53. Miyashiro K, Dichter M, Eberwine J (1994) On the nature and differential distribution of mRNAs in hippocampal neurites: implications for neuronal functioning. Proc Natl Acad Sci U S A 91(23):10800–10804

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Knowles RB, Sabry JH, Martone ME, Deerinck TJ, Ellisman MH, Bassell GJ, Kosik KS (1996) Translocation of RNA granules in living neurons. J Neurosci Off J Soc Neurosci 16(24):7812–7820

    CAS  Google Scholar 

  55. Doyle M, Kiebler MA (2011) Mechanisms of dendritic mRNA transport and its role in synaptic tagging. EMBO J 30(17):3540–3552. doi:10.1038/emboj.2011.278

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Kiebler MA, Bassell GJ (2006) Neuronal RNA granules: movers and makers. Neuron 51(6):685–690. doi:10.1016/j.neuron.2006.08.021

    Article  CAS  PubMed  Google Scholar 

  57. Grooms SY, Noh KM, Regis R, Bassell GJ, Bryan MK, Carroll RC, Zukin RS (2006) Activity bidirectionally regulates AMPA receptor mRNA abundance in dendrites of hippocampal neurons. J Neurosci Off J Soc Neurosci 26(32):8339–8351. doi:10.1523/JNEUROSCI.0472-06.2006

    Article  CAS  Google Scholar 

  58. La Via L, Bonini D, Russo I, Orlandi C, Barlati S, Barbon A (2013) Modulation of dendritic AMPA receptor mRNA trafficking by RNA splicing and editing. Nucleic Acids Res 41(1):617–631. doi:10.1093/nar/gks1223

    Article  CAS  PubMed  Google Scholar 

  59. Behm M, Ohman M (2016) RNA editing: a contributor to neuronal dynamics in the mammalian brain. Trends in genetics: TIG 32(3):165–175. doi:10.1016/j.tig.2015.12.005

    Article  CAS  PubMed  Google Scholar 

  60. Peng PL, Zhong X, Tu W, Soundarapandian MM, Molner P, Zhu D, Lau L, Liu S et al (2006) ADAR2-dependent RNA editing of AMPA receptor subunit GluR2 determines vulnerability of neurons in forebrain ischemia. Neuron 49(5):719–733. doi:10.1016/j.neuron.2006.01.025

    Article  CAS  PubMed  Google Scholar 

  61. Kawahara Y, Ito K, Sun H, Aizawa H, Kanazawa I, Kwak S (2004) Glutamate receptors: RNA editing and death of motor neurons. Nature 427(6977):801. doi:10.1038/427801a

    Article  CAS  PubMed  Google Scholar 

  62. Kwak S, Kawahara Y (2005) Deficient RNA editing of GluR2 and neuronal death in amyotropic lateral sclerosis. J Mol Med 83(2):110–120. doi:10.1007/s00109-004-0599-z

    Article  CAS  PubMed  Google Scholar 

  63. Yamashita T, Hideyama T, Hachiga K, Teramoto S, Takano J, Iwata N, Saido TC, Kwak S (2012) A role for calpain-dependent cleavage of TDP-43 in amyotrophic lateral sclerosis pathology. Nat Commun 3:1307. doi:10.1038/ncomms2303

    Article  PubMed  Google Scholar 

  64. Barbon A, Fumagalli F, Caracciolo L, Madaschi L, Lesma E, Mora C, Carelli S, Slotkin TA et al (2010) Acute spinal cord injury persistently reduces R/G RNA editing of AMPA receptors. J Neurochem 114(2):397–407. doi:10.1111/j.1471-4159.2010.06767.x

    Article  CAS  PubMed  Google Scholar 

  65. Caracciolo L, Fumagalli F, Carelli S, Madaschi L, La Via L, Bonini D, Fiorentini C, Barlati S et al (2013) Kainate receptor RNA editing is markedly altered by acute spinal cord injury. Journal of molecular neuroscience: MN 51(3):903–910. doi:10.1007/s12031-013-0098-1

    Article  CAS  PubMed  Google Scholar 

  66. Bonini D, Filippini A, La Via L, Fiorentini C, Fumagalli F, Colombi M, Barbon A (2015) Chronic glutamate treatment selectively modulates AMPA RNA editing and ADAR expression and activity in primary cortical neurons. RNA Biol 12(1):43–53. doi:10.1080/15476286.2015.1008365

    Article  PubMed  PubMed Central  Google Scholar 

  67. Russo I, Bonini D, Via LL, Barlati S, Barbon A (2013) AMPA receptor properties are modulated in the early stages following pilocarpine-induced status epilepticus. Neruomol Med 15(2):324–338. doi:10.1007/s12017-013-8221-6

    Article  CAS  Google Scholar 

  68. Vollmar W, Gloger J, Berger E, Kortenbruck G, Kohling R, Speckmann EJ, Musshoff U (2004) RNA editing (R/G site) and flip-flop splicing of the AMPA receptor subunit GluR2 in nervous tissue of epilepsy patients. Neurobiol Dis 15(2):371–379. doi:10.1016/j.nbd.2003.11.006

    Article  CAS  PubMed  Google Scholar 

  69. Kortenbruck G, Berger E, Speckmann EJ, Musshoff U (2001) RNA editing at the Q/R site for the glutamate receptor subunits GLUR2, GLUR5, and GLUR6 in hippocampus and temporal cortex from epileptic patients. Neurobiol Dis 8(3):459–468. doi:10.1006/nbdi.2001.0394

    Article  CAS  PubMed  Google Scholar 

  70. Akbarian S, Smith MA, Jones EG (1995) Editing for an AMPA receptor subunit RNA in prefrontal cortex and striatum in Alzheimer’s disease, Huntington’s disease and schizophrenia. Brain Res 699(2):297–304

    Article  CAS  PubMed  Google Scholar 

  71. Barbon A, Fumagalli F, La Via L, Caracciolo L, Racagni G, Riva MA, Barlati S (2007) Chronic phencyclidine administration reduces the expression and editing of specific glutamate receptors in rat prefrontal cortex. Exp Neurol 208(1):54–62. doi:10.1016/j.expneurol.2007.07.009

    Article  CAS  PubMed  Google Scholar 

  72. Silberberg G, Lundin D, Navon R, Ohman M (2012) Deregulation of the A-to-I RNA editing mechanism in psychiatric disorders. Hum Mol Genet 21(2):311–321. doi:10.1093/hmg/ddr461

    Article  CAS  PubMed  Google Scholar 

  73. Sawada J, Yamashita T, Aizawa H, Aburakawa Y, Hasebe N, Kwak S (2009) Effects of antidepressants on GluR2 Q/R site-RNA editing in modified HeLa cell line. Neurosci Res 64(3):251–258. doi:10.1016/j.neures.2009.03.009

    Article  CAS  PubMed  Google Scholar 

  74. Barbon A, Popoli M, La Via L, Moraschi S, Vallini I, Tardito D, Tiraboschi E, Musazzi L et al (2006) Regulation of editing and expression of glutamate alpha-amino-propionic-acid (AMPA)/kainate receptors by antidepressant drugs. Biol Psychiatry 59(8):713–720. doi:10.1016/j.biopsych.2005.10.018

    Article  CAS  PubMed  Google Scholar 

  75. Barbon A, Caracciolo L, Orlandi C, Musazzi L, Mallei A, La Via L, Bonini D, Mora C et al (2011) Chronic antidepressant treatments induce a time-dependent up-regulation of AMPA receptor subunit protein levels. Neurochem Int 59(6):896–905. doi:10.1016/j.neuint.2011.07.013

    Article  CAS  PubMed  Google Scholar 

  76. Li B, Zhang S, Zhang H, Hertz L, Peng L (2011) Fluoxetine affects GluK2 editing, glutamate-evoked Ca(2+) influx and extracellular signal-regulated kinase phosphorylation in mouse astrocytes. Journal of psychiatry & neuroscience: JPN 36(5):322–338. doi:10.1503/jpn.100094

    Article  CAS  Google Scholar 

  77. Li B, Dong L, Wang B, Cai L, Jiang N, Peng L (2012) Cell type-specific gene expression and editing responses to chronic fluoxetine treatment in the in vivo mouse brain and their relevance for stress-induced anhedonia. Neurochem Res 37(11):2480–2495. doi:10.1007/s11064-012-0814-1

    Article  CAS  PubMed  Google Scholar 

  78. Maas S, Patt S, Schrey M, Rich A (2001) Underediting of glutamate receptor GluR-B mRNA in malignant gliomas. Proc Natl Acad Sci U S A 98(25):14687–14692. doi:10.1073/pnas.251531398

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Brande-Eilat N, Golumbic YN, Zaidan H, Gaisler-Salomon I (2015) Acquisition of conditioned fear is followed by region-specific changes in RNA editing of glutamate receptors. Stress 18(3):309–318. doi:10.3109/10253890.2015.1073254

    Article  CAS  PubMed  Google Scholar 

  80. Khermesh K, D'Erchia AM, Barak M, Annese A, Wachtel C, Levanon EY, Picardi E, Eisenberg E (2016) Reduced levels of protein recoding by A-to-I RNA editing in Alzheimer’s disease. RNA 22(2):290–302. doi:10.1261/rna.054627.115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Gaisler-Salomon I, Kravitz E, Feiler Y, Safran M, Biegon A, Amariglio N, Rechavi G (2014) Hippocampus-specific deficiency in RNA editing of GluA2 in Alzheimer’s disease. Neurobiol Aging 35(8):1785–1791. doi:10.1016/j.neurobiolaging.2014.02.018

    Article  CAS  PubMed  Google Scholar 

  82. Hideyama T, Yamashita T, Aizawa H, Tsuji S, Kakita A, Takahashi H, Kwak S (2012) Profound downregulation of the RNA editing enzyme ADAR2 in ALS spinal motor neurons. Neurobiol Dis 45(3):1121–1128. doi:10.1016/j.nbd.2011.12.033

    Article  CAS  PubMed  Google Scholar 

  83. Hideyama T, Yamashita T, Suzuki T, Tsuji S, Higuchi M, Seeburg PH, Takahashi R, Misawa H et al (2010) Induced loss of ADAR2 engenders slow death of motor neurons from Q/R site-unedited GluR2. J Neurosci Off J Soc Neurosci 30(36):11917–11925. doi:10.1523/JNEUROSCI.2021-10.2010

    Article  CAS  Google Scholar 

  84. Yamashita T, Chai HL, Teramoto S, Tsuji S, Shimazaki K, Muramatsu S, Kwak S (2013) Rescue of amyotrophic lateral sclerosis phenotype in a mouse model by intravenous AAV9-ADAR2 delivery to motor neurons. EMBO molecular medicine 5(11):1710–1719. doi:10.1002/emmm.201302935

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Akamatsu M, Yamashita T, Hirose N, Teramoto S, Kwak S (2016) The AMPA receptor antagonist perampanel robustly rescues amyotrophic lateral sclerosis (ALS) pathology in sporadic ALS model mice. Scientific reports 6:28649. doi:10.1038/srep28649

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Michaelis EK (1998) Molecular biology of glutamate receptors in the central nervous system and their role in excitotoxicity, oxidative stress and aging. Prog Neurobiol 54(4):369–415

    Article  CAS  PubMed  Google Scholar 

  87. Meldrum BS (1993) Excitotoxicity and selective neuronal loss in epilepsy. Brain Pathol 3(4):405–412

    Article  CAS  PubMed  Google Scholar 

  88. Lyddon R, Navarrett S, Dracheva S (2012) Ionotropic glutamate receptor mRNA editing in the prefrontal cortex: no alterations in schizophrenia or bipolar disorder. Journal of psychiatry & neuroscience: JPN 37(4):267–272. doi:10.1503/jpn.110107

    Article  Google Scholar 

  89. Kubota-Sakashita M, Iwamoto K, Bundo M, Kato T (2014) A role of ADAR2 and RNA editing of glutamate receptors in mood disorders and schizophrenia. Molecular brain 7:5. doi:10.1186/1756-6606-7-5

    Article  PubMed  PubMed Central  Google Scholar 

  90. Bonini D, Mora C, Tornese P, Sala N, Filippini A, La Via L, Milanese M, Calza S et al (2016) Acute footshock stress induces time-dependent modifications of AMPA/NMDA protein expression and AMPA phosphorylation. Neural plasticity 2016:7267865. doi:10.1155/2016/7267865

    Article  PubMed  PubMed Central  Google Scholar 

  91. Han L, Liang H (2016) RNA editing in cancer: mechanistic, prognostic, and therapeutic implications. Molecular & cellular oncology 3(2):e1117702. doi:10.1080/23723556.2015.1117702

    Article  Google Scholar 

  92. Stupp R, van den Bent MJ, Hegi ME (2005) Optimal role of temozolomide in the treatment of malignant gliomas. Current neurology and neuroscience reports 5(3):198–206

    Article  CAS  PubMed  Google Scholar 

  93. Cenci C, Barzotti R, Galeano F, Corbelli S, Rota R, Massimi L, Di Rocco C, O'Connell MA et al (2008) Down-regulation of RNA editing in pediatric astrocytomas: ADAR2 editing activity inhibits cell migration and proliferation. J Biol Chem 283(11):7251–7260. doi:10.1074/jbc.M708316200

    Article  CAS  PubMed  Google Scholar 

  94. Ishiuchi S, Yoshida Y, Sugawara K, Aihara M, Ohtani T, Watanabe T, Saito N, Tsuzuki K et al (2007) Ca2+-permeable AMPA receptors regulate growth of human glioblastoma via Akt activation. J Neurosci Off J Soc Neurosci 27(30):7987–8001. doi:10.1523/JNEUROSCI.2180-07.2007

    Article  CAS  Google Scholar 

  95. Cajigas IJ, Tushev G, Will TJ, tom Dieck S, Fuerst N, Schuman EM (2012) The local transcriptome in the synaptic neuropil revealed by deep sequencing and high-resolution imaging. Neuron 74(3):453–466. doi:10.1016/j.neuron.2012.02.036

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work was supported through a grant from MIUR (PRIN 2012 A9T2S9_004) and a grant from Banca del Monte di Lombardia foundation (n° 0017509) to A.B.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alessandro Barbon.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Filippini, A., Bonini, D., La Via, L. et al. The Good and the Bad of Glutamate Receptor RNA Editing. Mol Neurobiol 54, 6795–6805 (2017). https://doi.org/10.1007/s12035-016-0201-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-016-0201-z

Keywords

Navigation