Skip to main content

Advertisement

Log in

In Vitro Differentiation of Human iPS Cells into Neural like Cells on a Biomimetic Polyurea

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Human-induced pluripotent stem cells (hiPSCs) have the pluripotency to differentiate into all three germ layers in vitro and have been considered potent candidates for regenerative medicine as an unlimited source of cells for therapeutic applications. Neural tissue engineering is an important area of research in the field of tissue-engineering especially for neurodegenerative disease. Here, we investigated the use of poly lactic acid/gelatin (PLA/gelatin) scaffold as three-dimensional (3D) system which increase neural cell differentiation. Through neural induction, neural-like cells (NLCs) were derived from hiPSCs on nanofibrous PLA/gelatin scaffold. Enhanced numbers of neural structures and staining of neural markers were observed with hiPS cell-seeded nanofibrous scaffolds when compared with control medium. The results revealed that hiPSCs attach and grow on the nanofibrous PLA/gelatin scaffold, and hiPSCs cultured on scaffold have the potential to differentiate in neuronal cells in the presence of growth factors. The result of this study may have impact in tissue engineering and cells-base therapy of neurodegenerative diseases and have a great potential for wide application.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Krabbe C, Zimmer J, Meyer M (2005) Neural transdifferentiation of mesenchymal stem cells--a critical review. APMIS : Acta Pathol Microbiol Et Immunol Scand 113(11–12):831–844. doi:10.1111/j.1600-0463.2005.apm_3061.x

    Article  Google Scholar 

  2. Lei Z, Yongda L, Jun M, Yingyu S, Shaoju Z, Xinwen Z, Mingxue Z (2007) Culture and neural differentiation of rat bone marrow mesenchymal stem cells in vitro. Cell Biol Int 31(9):916–923. doi:10.1016/j.cellbi.2007.02.006

    Article  PubMed  Google Scholar 

  3. Martino G, Pluchino S (2006) The therapeutic potential of neural stem cells. Nat Rev Neurosci 7(5):395–406. doi:10.1038/nrn1908

    Article  CAS  PubMed  Google Scholar 

  4. Pluchino S, Zanotti L, Deleidi M, Martino G (2005) Neural stem cells and their use as therapeutic tool in neurological disorders. Brain Res Brain Res Rev 48(2):211–219. doi:10.1016/j.brainresrev.2004.12.011

    Article  CAS  PubMed  Google Scholar 

  5. Pluchino S, Furlan R, Martino G (2004) Cell-based remyelinating therapies in multiple sclerosis: evidence from experimental studies. Curr Opin Neurol 17(3):247–255

    Article  PubMed  Google Scholar 

  6. Sandberg CJ, Altschuler G, Jeong J, Stromme KK, Stangeland B, Murrell W, Grasmo-Wendler UH, Myklebost O et al (2013) Comparison of glioma stem cells to neural stem cells from the adult human brain identifies dysregulated Wnt- signaling and a fingerprint associated with clinical outcome. Exp Cell Res 319(14):2230–2243. doi:10.1016/j.yexcr.2013.06.004

    Article  CAS  PubMed  Google Scholar 

  7. Massumi M, Hoveizi E, Baktash P, Hooti A, Ghazizadeh L, Nadri S, Pourasgari F, Hajarizadeh A et al (2014) Efficient programming of human eye conjunctiva-derived induced pluripotent stem (ECiPS) cells into definitive endoderm-like cells. Exp Cell Res 322(1):51–61. doi:10.1016/j.yexcr.2014.01.006

    Article  CAS  PubMed  Google Scholar 

  8. Hoveizi E, Nabiuni M, Parivar K, Ai J, Massumi M (2013) Definitive endoderm differentiation of human-induced pluripotent stem cells using signaling molecules and IDE1 in three-dimensional polymer scaffold. J Biomed Mater Res Part A. doi:10.1002/jbm.a.35039

    Google Scholar 

  9. Prabhakaran MP, Venugopal JR, Chyan TT, Hai LB, Chan CK, Lim AY, Ramakrishna S (2008) Electrospun biocomposite nanofibrous scaffolds for neural tissue engineering. Tissue Eng Part A 14(11):1787–1797. doi:10.1089/ten.tea.2007.0393

    Article  CAS  PubMed  Google Scholar 

  10. Ghasemi-Mobarakeh L, Prabhakaran MP, Morshed M, Nasr-Esfahani MH, Ramakrishna S (2008) Electrospun poly(epsilon-caprolactone)/gelatin nanofibrous scaffolds for nerve tissue engineering. Biomaterials 29(34):4532–4539. doi:10.1016/j.biomaterials.2008.08.007

    Article  CAS  PubMed  Google Scholar 

  11. Cao H, Liu T, Chew SY (2009) The application of nanofibrous scaffolds in neural tissue engineering. Adv Drug Deliv Rev 61(12):1055–1064. doi:10.1016/j.addr.2009.07.009

    Article  CAS  PubMed  Google Scholar 

  12. Park KH, Kim H, Na K (2009) Neuronal differentiation of PC12 cells cultured on growth factor-loaded nanoparticles coated on PLGA microspheres. J Microbiol Biotechnol 19(11):1490–1495

    CAS  PubMed  Google Scholar 

  13. Nojehdehian H, Moztarzadeh F, Baharvand H, Nazarian H, Tahriri M (2009) Preparation and surface characterization of poly-L-lysine-coated PLGA microsphere scaffolds containing retinoic acid for nerve tissue engineering: in vitro study. Colloids Surf B: Biointerfaces 73(1):23–29. doi:10.1016/j.colsurfb.2009.04.029

    Article  CAS  PubMed  Google Scholar 

  14. Soleimani M, Nadri S, Shabani I (2010) Neurogenic differentiation of human conjunctiva mesenchymal stem cells on a nanofibrous scaffold. Int J Dev Biol 54(8–9):1295–1300. doi:10.1387/ijdb.092999ms

    Article  CAS  PubMed  Google Scholar 

  15. Farzaneh Z, Pournasr B, Ebrahimi M, Aghdami N, Baharvand H (2010) Enhanced functions of human embryonic stem cell-derived hepatocyte-like cells on three-dimensional nanofibrillar surfaces. Stem Cell Rev 6(4):601–610. doi:10.1007/s12015-010-9179-5

    Article  CAS  PubMed  Google Scholar 

  16. Reed CR, Han L, Andrady A, Caballero M, Jack MC, Collins JB, Saba SC, Loboa EG et al (2009) Composite tissue engineering on polycaprolactone nanofiber scaffolds. Ann Plast Surg 62(5):505–512. doi:10.1097/SAP.0b013e31818e48bf

    Article  CAS  PubMed  Google Scholar 

  17. Meng ZX, Wang YS, Ma C, Zheng W, Li L, Zheng YF (2010) Electrospinning of PLGA/gelatin randomly-oriented and aligned nanofibers as potential scaffold in tissue engineering. Mater Sci Eng C 30(8):1204–1210

    Article  CAS  Google Scholar 

  18. Hoveizi E, Nabiuni M, Parivar K, Rajabi-Zeleti S, Tavakol S (2014) Functionalisation and surface modification of electrospun polylactic acid scaffold for tissue engineering. Cell Biol Int 38(1):41–49. doi:10.1002/cbin.10178

    Article  CAS  PubMed  Google Scholar 

  19. Hosoya M (2012) Preparation of pancreatic beta-cells from human iPS cells with small molecules. Islets 4(3):249–252. doi:10.4161/isl.20856

    Article  PubMed  PubMed Central  Google Scholar 

  20. Pouya A, Satarian L, Kiani S, Javan M, Baharvand H (2011) Human induced pluripotent stem cells differentiation into oligodendrocyte progenitors and transplantation in a rat model of optic chiasm demyelination. PLoS One 6(11):e27925. doi:10.1371/journal.pone.0027925

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Liu Z, Tang Y, Lu S, Zhou J, Du Z, Duan C, Li Z, Wang C (2013) The tumourigenicity of iPS cells and their differentiated derivates. J Cell Mol Med. doi:10.1111/jcmm.12062

    Google Scholar 

  22. Hoveizi E, Khodadadi S, Tavakol S, Karima O, Nasiri-Khalili MA (2014) Small molecules differentiate definitive endoderm from human induced pluripotent stem cells on PCL scaffold. Appl Biochem Biotechnol. doi:10.1007/s12010-014-0960-9

    PubMed  Google Scholar 

  23. Zhang JQ, Yu XB, Ma BF, Yu WH, Zhang AX, Huang G, Mao FF, Zhang XM et al (2006) Neural differentiation of embryonic stem cells induced by conditioned medium from neural stem cell. Neuroreport 17(10):981–986. doi:10.1097/01.wnr.0000227977.60271.ca

    Article  PubMed  Google Scholar 

  24. Kennea NL, Waddington SN, Chan J, O'Donoghue K, Yeung D, Taylor DL, Al-Allaf FA, Pirianov G et al (2009) Differentiation of human fetal mesenchymal stem cells into cells with an oligodendrocyte phenotype. Cell Cycle 8(7):1069–1079

    Article  CAS  PubMed  Google Scholar 

  25. Satpute RM, Kashyap RS, Kainthla RP, Purohit HJ, Taori GM, Daginawala HF (2006) Secretory factors of human neuroblastoma (IMR-32) and human glioblastoma (U87MG) cell lines induce neurite outgrowths in PC12 cells. Indian J Exp Biol 44(5):367–370

    PubMed  Google Scholar 

  26. Zhi-Cai Xing S-J, Shin Y-S, Kang I-K (2011) Fabrication of biodegradable polyester nanocomposites by electrospinning for tissue engineering. J Nanomater 2011, 18 pages

  27. Ghasemi-Mobarakeh L, Morshed M, Karbalaie K, Fesharaki MA, Nematallahi M, Nasr-Esfahani MH, Baharvand H (2009) The thickness of electrospun poly (epsilon-caprolactone) nanofibrous scaffolds influences cell proliferation. Int J Artif Organs 32(3):150–158

    CAS  PubMed  Google Scholar 

  28. Hoveizi E, Tavakol S, Ebrahimi-Barough S (2014) Neuroprotective effect of transplanted neural precursors embedded on PLA/CS scaffold in an animal model of multiple sclerosis. Mol Neurobiol. doi:10.1007/s12035-014-8812-8

    PubMed  Google Scholar 

  29. Hoveizi E, Ebrahimi-Barough S, Tavakol S, Nabiuni M (2015) In vitro comparative survey of cell adhesion and proliferation of human induced pluripotent stem cells on surfaces of polymeric electrospun nanofibrous and solution-cast film scaffolds. J Biomed Mater Res Part A 103(9):2952–2958. doi:10.1002/jbm.a.35420

    Article  CAS  Google Scholar 

  30. Tavakol S, Aligholi H, Gorji A, Eshaghabadi A, Hoveizi E, Tavakol B, Rezayat SM, Ai J (2014) Thermogel nanofiber induces human endometrial-derived stromal cells to neural differentiation: in vitro and in vivo studies in rat. J Biomed Mater Res Part A. doi:10.1002/jbm.a.35117

    Google Scholar 

  31. Xie J, MacEwan MR, Schwartz AG, Xia Y (2010) Electrospun nanofibers for neural tissue engineering. Nanoscale 2(1):35–44. doi:10.1039/b9nr00243j

    Article  CAS  PubMed  Google Scholar 

  32. Ebrahimi-Barough S, Hoveizi E, Norouzi Javidan A, Ai J (2015) Investigating the neuroglial differentiation effect of neuroblastoma conditioned medium in human endometrial stem cells cultured on 3D nanofibrous scaffold. J Biomed Mater Res Part A. doi:10.1002/jbm.a.35397

    Google Scholar 

  33. Lim SH, Liu XY, Song H, Yarema KJ, Mao HQ (2010) The effect of nanofiber-guided cell alignment on the preferential differentiation of neural stem cells. Biomaterials 31(34):9031–9039. doi:10.1016/j.biomaterials.2010.08.021

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Gillette BM, Rossen NS, Das N, Leong D, Wang M, Dugar A, Sia SK (2011) Engineering extracellular matrix structure in 3D multiphase tissues. Biomaterials 32(32):8067–8076. doi:10.1016/j.biomaterials.2011.05.043

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Canbolat MF, Tang C, Bernacki SH, Pourdeyhimi B, Khan S (2011) Mammalian cell viability in electrospun composite nanofiber structures. Macromol Biosci 11(10):1346–1356. doi:10.1002/mabi.201100108

    Article  PubMed  Google Scholar 

  36. Wu L, Ding J (2005) Effects of porosity and pore size on in vitro degradation of three-dimensional porous poly(D, L-lactide-co-glycolide) scaffolds for tissue engineering. J Biomed Mater Res A 75(4):767–777. doi:10.1002/jbm.a.30487

    Article  PubMed  Google Scholar 

  37. Gui-Bo Y, You-Zhu Z, Shu-Dong W, De-Bing S, Zhi-Hui D, Wei-Guo F (2010) Study of the electrospun PLA/silk fibroin-gelatin composite nanofibrous scaffold for tissue engineering. J Biomed Mater Res A 93(1):158–163. doi:10.1002/jbm.a.32496

    PubMed  Google Scholar 

  38. Feng X, Lu X, Huang D, Xing J, Feng G, Jin G, Yi X, Li L et al (2014) 3D porous chitosan scaffolds suit survival and neural differentiation of dental pulp stem cells. Cell Mol Neurobiol. doi:10.1007/s10571-014-0063-8

    Google Scholar 

  39. Xie J, Willerth SM, Li X, Macewan MR, Rader A, Sakiyama-Elbert SE, Xia Y (2009) The differentiation of embryonic stem cells seeded on electrospun nanofibers into neural lineages. Biomaterials 30(3):354–362. doi:10.1016/j.biomaterials.2008.09.046

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank all our friends for their kindness and support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elham Hoveizi.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hoveizi, E., Ebrahimi-Barough, S., Tavakol, S. et al. In Vitro Differentiation of Human iPS Cells into Neural like Cells on a Biomimetic Polyurea. Mol Neurobiol 54, 601–607 (2017). https://doi.org/10.1007/s12035-015-9663-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-015-9663-7

Keywords

Navigation