Skip to main content
Log in

Synapsins Are Downstream Players of the BDNF-Mediated Axonal Growth

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Synapsins (Syns) are synaptic vesicle-associated phosphoproteins involved in neuronal development and neurotransmitter release. While Syns are implicated in the regulation of brain-derived neurotrophic factor (BDNF)-induced neurotransmitter release, their role in the BDNF developmental effects has not been fully elucidated. By using primary cortical neurons from Syn I knockout (KO) and Syn I/II/III KO mice, we studied the effects of BDNF and nerve growth factor (NGF) on axonal growth. While NGF had similar effects in all genotypes, BDNF induced significant differences in Syn KO axonal outgrowth compared to wild type (WT), an effect that was rescued by the re-expression of Syn I. Moreover, the significant increase of axonal branching induced by BDNF in WT neurons was not detectable in Syn KO neurons. The expression analysis of BDNF receptors in Syn KO neurons revealed a significant decrease of the full length TrkB receptor and an increase in the levels of the truncated TrkB.t1 isoform and p75NTR associated with a marked reduction of the BDNF-induced MAPK/Erk activation. By using the Trk inhibitor K252a, we demonstrated that these differences in BDNF effects were dependent on a TrkB/p75NTR imbalance. The data indicate that Syn I plays a pivotal role in the BDNF signal transduction during axonal growth.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Chi P, Greengard P, Ryan TA (2001) Synapsin dispersion and reclustering during synaptic activity. Nat Neurosci 4:1187–1193

    Article  CAS  PubMed  Google Scholar 

  2. Chi P, Greengard P, Ryan TA (2003) Synaptic vesicle mobilization is regulated by distinct synapsin I phosphorylation pathways at different frequencies. Neuron 38:69–78

    Article  CAS  PubMed  Google Scholar 

  3. Cesca F, Baldelli P, Valtorta F, Benfenati F (2010) The synapsins: key actors of synapse function and plasticity. Prog Neurobiol 91:313–348

    Article  CAS  PubMed  Google Scholar 

  4. Messa M, Congia S, Defranchi E, Valtorta F, Fassio A, Onofri F, Benfenati F (2010) Tyrosine phosphorylation of synapsin I by Src regulates synaptic-vesicle trafficking. J Cell Sci 23:2256–2265

    Article  Google Scholar 

  5. Rizzoli SO (2014) Synaptic vesicle recycling: steps and principles. EMBO J 33:788–822

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Valtorta F, Iezzi N, Benfenati F, Lu B, Poo MM, Greengard P (1995) Accelerated structural maturation induced by synapsin I at developing neuromuscular synapses of Xenopus laevis. Eur J Neurosci 7:261–270

    Article  CAS  PubMed  Google Scholar 

  7. Pieribone VA, Shupliakov O, Brodin L, Hilfiker-Rothenfluh S, Czernik AJ, Greengard P (1995) Distinct pools of synaptic vesicles in neurotransmitter release. Nature 375:493–497

    Article  CAS  PubMed  Google Scholar 

  8. Li L, Chin LS, Shupliakov O, Brodin L, Sihra TS, Hvalby O, Jensen V, Zheng D et al (1995) Impairment of synaptic vesicle clustering and of synaptic transmission, and increased seizure propensity, in synapsin I-deficient mice. Proc Natl Acad Sci U S A 92:9235–9239

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Takei Y, Harada A, Takeda S, Kobayashi K, Terada S, Noda T, Takahashi T, Hirokawa N (1995) Synapsin I deficiency results in the structural change in the presynaptic terminals in the murine nervous system. J Cell Biol 131:1789–1800

    Article  CAS  PubMed  Google Scholar 

  10. Ryan TA, Li L, Chin LS, Greengard P, Smith SJ (1996) Synaptic vesicle recycling in synapsin I knock-out mice. J Cell Biol 134:1219–1227

    Article  CAS  PubMed  Google Scholar 

  11. Nielander HB, Onofri F, Schaeffer E, Menegon A, Fesce R, Valtorta F, Greengard P, Benfenati F (1997) Phosphorylation-dependent effects of synapsin IIa on actin polymerization and network formation. Eur J Neurosci 9:2712–2722

    Article  CAS  PubMed  Google Scholar 

  12. Hosaka M, Hammer RE, Südhof TC (1999) A phospho-switch controls the dynamic association of synapsins with synaptic vesicles. Neuron 24:377–387

    Article  CAS  PubMed  Google Scholar 

  13. Baldelli P, Fassio A, Valtorta F, Benfenati F (2007) Lack of synapsin I reduces the readily releasable pool of synaptic vesicles at central inhibitory synapses. J Neurosci 27:13520–13531

    Article  CAS  PubMed  Google Scholar 

  14. Bykhovskaia M (2011) Synapsin regulation of vesicle organization and functional pools. Semin Cell Dev Biol 4:387–392

    Article  Google Scholar 

  15. Lignani G, Raimondi A, Ferrea E, Rocchi A, Paonessa F, Cesca F, Orlando M, Tkatch T et al (2013) Epileptogenic Q555X SYN1 mutant triggers imbalances in release dynamics and short-term plasticity. Hum Mol Genet 22:2186–2199

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Jovanovic JN, Benfenati F, Siow YL, Sihra T, Sanghera JS, Plech SL, Greengard P, Czernik AJ (1996) Neurotrophins stimulate phosphorylation of synapsin I by MAP kinase and regulate synapsin I-actin interactions. Proc Natl Acad Sci U S A 93:3679–3683

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Jovanovic JN, Czernik AJ, Fienberg AA, Greengard P, Sihra TS (2000) Synapsins as mediators of BDNF-enhanced neurotransmitter release. Nat Neurosci 3:323–329

    Article  CAS  PubMed  Google Scholar 

  18. Valente P, Casagrande S, Nieus T, Verstegen AM, Valtorta F, Benfenati F, Baldelli P (2012) Site-specific synapsin I phosphorylation participates in the expression of post-tetanic potentiation and its enhancement by BDNF. J Neurosci 32:5868–5879

    Article  CAS  PubMed  Google Scholar 

  19. Calabrese F, Rossetti AC, Racagni G, Gass P, Riva MA, Molteni R (2014) Brain-derived neurotrophic factor: a bridge between inflammation and neuroplasticity. Front Cell Neurosci 8:430

    Article  PubMed  PubMed Central  Google Scholar 

  20. Chao MV (2003) Neurotrophins and their receptors: a convergence point for many signalling pathways. Nat Rev Neurosci 4:299–309

    Article  CAS  PubMed  Google Scholar 

  21. Huang EJ, Reichardt LF (2003) Trk receptors: roles in neuronal signal transduction. Annu Rev Biochem 72:609–642

    Article  CAS  PubMed  Google Scholar 

  22. Murray SS, Perez P, Lee R, Hempstead BL, Chao MV (2004) A novel p75 neurotrophin receptor-related protein, NRH2, regulates nerve growth factor binding to the TrkA receptor. J Neurosci 24:2742–2749

    Article  CAS  PubMed  Google Scholar 

  23. Reichardt LF (2006) Neurotrophin-regulated signalling pathways. Philos Trans R Soc Lond B Biol Sci 361:1545–1564

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Fenner BM (2012) Truncated TrkB: beyond a dominant negative receptor. Cytokine Growth Factor Rev 23:15–24

    Article  CAS  PubMed  Google Scholar 

  25. Eide FF, Vining ER, Eide BL, Zang K, Wang XY, Reichardt LF (1996) Naturally occurring truncated TrkB receptors have dominant inhibitory effects on brain-derived neurotrophic factor signaling. J Neurosci 16:3123–3129

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Fryer RH, Kaplan DR, Kromer LF (1997) Truncated TrkB receptors on nonneuronal cells inhibit BDNF-induced neurite outgrowth in vitro. Exp Neurol 148:616–627

    Article  CAS  PubMed  Google Scholar 

  27. De Wit J, Eggers R, Evers R, Castrén E, Verhaagen J (2006) Long-term adeno-associated viral vector-mediated expression of truncated TrkB in the adult rat facial nucleus results in motor neuron degeneration. J Neurosci 26:1516–1530

    Article  PubMed  Google Scholar 

  28. Yocoubian TA, Lo DC (2000) Truncated and full-length TrkB receptors regulate distinct modes of dendritic growth. Nat Neurosci 3:342–349

    Article  Google Scholar 

  29. Kaplan DR, Miller FD (2003) Axon growth inhibition: signals from the p75 neurotrophin receptor. Nat Neurosci 6:435–436

    Article  CAS  PubMed  Google Scholar 

  30. Skeldal S, Matusica D, Nykjaer A, Coulson EJ (2011) Proteolytic processing of the p75 neurotrophin receptor: a prerequisite for signalling? Neuronal life, growth and death signalling are crucially regulated by intra-membrane proteolysis and trafficking of p75(NTR). Bioessays 33:614–625

    Article  CAS  PubMed  Google Scholar 

  31. Kao HT, Song HJ, Porton B, Ming GL, Hoh J, Abraham M, Czernik AJ, Pieribone VA et al (2002) A protein kinase A-dependent molecular switch in synapsins regulates neurite outgrowth. Nat Neurosci 5:431–437

    CAS  PubMed  Google Scholar 

  32. Perlini LE, Botti F, Fornasiero EF, Giannandrea M, Bonanomi D, Amendola M, Naldini L, Benfenati F et al (2011) Effects of phosphorylation and neuronal activity on the control of synapse formation by synapsin I. J Cell Sci 124:3643–3653

    Article  CAS  PubMed  Google Scholar 

  33. Vasin A, Zueva L, Torrez C, Volfson D, Littleton JT, Bykhovskaia M (2014) Synapsin regulates activity-dependent outgrowth of synaptic boutons at the Drosophila neuromuscular junction. J Neurosci 34:10554–10563

    Article  PubMed  PubMed Central  Google Scholar 

  34. Fornasiero EF, Bonanomi D, Benfenati F, Valtorta F (2010) The role of synapsins in neuronal development. Cell Mol Life Sci 67:1383–1396

    Article  CAS  PubMed  Google Scholar 

  35. Chin LS, Li L, Ferreira A, Kosik KS, Greengard P (1995) Impairment of axonal development and of synaptogenesis in hippocampal neurons of synapsin I-deficient mice. Proc Natl Acad Sci U S A 92:9230–9234

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Gitler D, Takagishi Y, Feng J, Ren Y, Rodriguiz RM, Wetsel WC, Greengard P, Augustine GJ (2004) Different presynaptic roles of synapsins at excitatory and inhibitory synapses. J Neurosci 24:11368–11380

    Article  CAS  PubMed  Google Scholar 

  37. Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685

    Article  CAS  PubMed  Google Scholar 

  38. Valtorta F, Pozzi D, Benfenati F, Fornasiero EF (2011) The synapsins: multitask modulators of neuronal development. Semin Cell Dev Biol 22:378–386

    Article  CAS  PubMed  Google Scholar 

  39. Ferreira A, Chin LS, Li L, Lanier LM, Kosik KS, Greengard P (1998) Distinct roles of synapsin I and synapsin II during neuronal development. Mol Med 4:22–28

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Hanamura K, Harada A, Katoh-Semba R, Murakami F, Yamamoto N (2004) BDNF and NT-3 promote thalamocortical axon growth with distinct substrate and temporal dependency. Eur J Neurosci 19:1485–1493

    Article  PubMed  Google Scholar 

  41. Tapley P, Lamballe F, Barbacid M (1992) K252a is a selective inhibitor of the tyrosine protein kinase activity of the Trk family of oncogenes and neurotrophin receptors. Oncogene 7:371–381

    CAS  PubMed  Google Scholar 

  42. Fargali S, Sadahiro M, Jiang C, Frick AL, Indall T, Cogliani V, Welagen J, Lin WJ et al (2012) Role of neurotrophins in the development and function of neural circuits that regulate energy homeostasis. J Mol Neurosci 48:654–659

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Forcet C, Stein E, Pays L, Corset V, Llambi F, Tessier-Lavigne M, Mehlen P (2002) Netrin-1-mediated axon outgrowth requires deleted in colorectal cancer-dependent MAPK activation. Nature 417:443–447

    Article  CAS  PubMed  Google Scholar 

  44. Atwal JK, Massie B, Miller FD, Kaplan DR (2000) The TrkB-Shc site signals neuronal survival and local axon growth via MEK and P13-kinase. Neuron 27:265–277

    Article  CAS  PubMed  Google Scholar 

  45. Atwal JK, Singh KK, Tessier-Lavigne M, Miller FD, Kaplan DR (2003) Semaphorin 3F antagonizes neurotrophin-induced phosphatidylinositol 3-kinase and mitogen-activated protein kinase kinase signaling: a mechanism for growth cone collapse. J Neurosci 23:7602–7609

    CAS  PubMed  Google Scholar 

  46. Pieribone VA, Porton B, Rendon B, Feng J, Greengard P, Kao HT (2002) Expression of synapsin III in nerve terminals and neurogenic regions of the adult brain. J Comp Neurol 454:105–114

    Article  CAS  PubMed  Google Scholar 

  47. Kao HT, Li P, Chao HM, Janoschka S, Pham K, Feng J, Mcewen BS, Greengard P et al (2008) Early involvement of synapsin III in neural progenitor cell development in the adult hippocampus. J Comp Neurol 507:1860–1870

    Article  CAS  PubMed  Google Scholar 

  48. Ferreira A, Kao HT, Feng J, Rapoport M, Greengard P (2000) Synapsin III: developmental expression, subcellular localization, and role in axon formation. J Neurosci 20:3736–3744

    CAS  PubMed  Google Scholar 

  49. Minichiello L (2009) TrkB signalling pathways in LTP and learning. Nat Rev Neurosci 10:850–860

    Article  CAS  PubMed  Google Scholar 

  50. Niewiadomska G, Mietelska-Porowska A, Mazurkiewicz M (2011) The cholinergic system, nerve growth factor and the cytoskeleton. Behav Brain Res 221:515–526

    Article  CAS  PubMed  Google Scholar 

  51. Samuels IS, Saitta SC, Landreth GE (2009) MAP’ing CNS development and cognition: an ERKsome process. Neuron 61:160–167

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Yang SH, Sharrocks AD (2006) Convergence of the SUMO and MAPK pathways on the ETS-domain transcription factor Elk-1. Biochem Soc Symp 73:121–129

    Article  CAS  Google Scholar 

  53. Kim M, Farmer WT, Bjorke B, McMahon SA, Fabre PJ, Charron F, Mastick GS (2014) Pioneer midbrain longitudinal axons navigate using a balance of Netrin attraction and Slit repulsion. Neural Dev 24:9–17

    Google Scholar 

  54. Dougherty KD, Milner TA (1999) p75NTR immunoreactivity in the rat dentate gyrus is mostly within presynaptic profiles but is also found in some astrocytic and postsynaptic profiles. J Comp Neurol 407:77–91

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by research grants from the Italian Ministry of University and Research (PRIN 2010–2011 to F.O. and F.B.). We thank Drs. Hung-Teh Kao (Brown University, Providence, RI) and Paul Greengard (The Rockefeller University, New York City, NY) for providing us with the synapsin KO mutant mice and Dr. Silvia Casagrande for the preparation of primary cultures of cortical neurons.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Franco Onofri.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Marte, A., Messa, M., Benfenati, F. et al. Synapsins Are Downstream Players of the BDNF-Mediated Axonal Growth. Mol Neurobiol 54, 484–494 (2017). https://doi.org/10.1007/s12035-015-9659-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-015-9659-3

Keywords

Navigation