Skip to main content

Advertisement

Log in

Role of Neurotrophins in the Development and Function of Neural Circuits That Regulate Energy Homeostasis

  • Published:
Journal of Molecular Neuroscience Aims and scope Submit manuscript

Abstract

Members of the neurotrophin family, including nerve growth factor, brain-derived neurotrophic factor, neurotrophin-3, and neurotrophin-4/5, and other neurotrophic growth factors such as ciliary neurotrophic factor and artemin, regulate peripheral and central nervous system development and function. A subset of the neurotrophin-dependent pathways in the hypothalamus, brainstem, and spinal cord, and those that project via the sympathetic nervous system to peripheral metabolic tissues including brown and white adipose tissue, muscle and liver, regulate feeding, energy storage, and energy expenditure. We briefly review the role that neurotrophic growth factors play in energy balance, as regulators of neuronal survival and differentiation, neurogenesis, and circuit formation and function, and as inducers of critical gene products that control energy homeostasis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • ACTS (1996) A double-blind placebo-controlled clinical trial of subcutaneous recombinant human ciliary neurotrophic factor (rHCNTF) in amyotrophic lateral sclerosis. ALS CNTF Treatment Study Group. Neurology 46:1244–1249

    Article  Google Scholar 

  • Allen TL, Matthews VB, Febbraio MA (2011) Overcoming insulin resistance with ciliary neurotrophic factor. Handb Exp Pharmacol (203):179–199

  • Bariohay B, Lebrun B, Moyse E, Jean A (2005) Brain-derived neurotrophic factor plays a role as an anorexigenic factor in the dorsal vagal complex. Endocrinology 146:5612–5620

    Article  PubMed  CAS  Google Scholar 

  • Bariohay B, Roux J, Tardivel C, Trouslard J, Jean A, Lebrun B (2009) Brain-derived neurotrophic factor/tropomyosin-related kinase receptor type B signaling is a downstream effector of the brainstem melanocortin system in food intake control. Endocrinology 150:2646–2653

    Article  PubMed  CAS  Google Scholar 

  • Bartolomucci A, Possenti R, Mahata SK, Fischer-Colbrie R, Loh YP, Salton SR (2011) The extended granin family: structure, function, and biomedical implications. Endocr Rev 32:755–797

    Article  PubMed  CAS  Google Scholar 

  • Bozdagi O, Rich E, Tronel S et al (2008) The neurotrophin-inducible gene Vgf regulates hippocampal function and behavior through a brain-derived neurotrophic factor-dependent mechanism. J Neurosci 28:9857–9869

    Article  PubMed  CAS  Google Scholar 

  • Cao L, Choi EY, Liu X et al (2011) White to brown fat phenotypic switch induced by genetic and environmental activation of a hypothalamic–adipocyte axis. Cell Metab 14:324–338

    Article  PubMed  CAS  Google Scholar 

  • Chaldakov GN, Tonchev AB, Aloe L (2009) NGF and BDNF: from nerves to adipose tissue, from neurokines to metabokines. Riv Psichiatr 44:79–87

    PubMed  Google Scholar 

  • Collins S, Cao W, Robidoux J (2004) Learning new tricks from old dogs: beta-adrenergic receptors teach new lessons on firing up adipose tissue metabolism. Mol Endocrinol 18:2123–2131

    Article  PubMed  CAS  Google Scholar 

  • Dallman MF, la Fleur SE, Pecoraro NC, Gomez F, Houshyar H, Akana SF (2004) Minireview: Glucocorticoids—food intake, abdominal obesity, and wealthy nations in 2004. Endocrinology 145:2633–2638

    Article  PubMed  CAS  Google Scholar 

  • Glebova NO, Ginty DD (2004) Heterogeneous requirement of NGF for sympathetic target innervation in vivo. J Neurosci 24:743–751

    Article  PubMed  CAS  Google Scholar 

  • Glebova NO, Ginty DD (2005) Growth and survival signals controlling sympathetic nervous system development. Annu Rev Neurosci 28:191–222

    Article  PubMed  CAS  Google Scholar 

  • Hahm S, Mizuno TM, Wu TJ et al (1999) Targeted deletion of the Vgf gene indicates that the encoded secretory peptide precursor plays a novel role in the regulation of energy balance. Neuron 23:537–548

    Article  PubMed  CAS  Google Scholar 

  • Hahm S, Fekete C, Mizuno TM et al (2002) VGF is required for obesity induced by diet, gold thioglucose treatment and agouti, and is differentially regulated in POMC- and NPY-containing arcuate neurons in response to fasting. J Neurosci 22:6929–6938

    PubMed  CAS  Google Scholar 

  • Harrington AW, St Hillaire C, Zweifel LS et al (2011) Recruitment of actin modifiers to TrkA endosomes governs retrograde NGF signaling and survival. Cell 146:421–434

    Article  PubMed  CAS  Google Scholar 

  • Holtmann B, Wiese S, Samsam M et al (2005) Triple knock-out of CNTF, LIF, and CT-1 defines cooperative and distinct roles of these neurotrophic factors for motoneuron maintenance and function. J Neurosci 25:1778–1787

    Article  PubMed  CAS  Google Scholar 

  • Honma Y, Araki T, Gianino S et al (2002) Artemin is a vascular-derived neurotropic factor for developing sympathetic neurons. Neuron 35:267–282

    Article  PubMed  CAS  Google Scholar 

  • Huang EJ, Reichardt LF (2001) Neurotrophins: roles in neuronal development and function. Annu Rev Neurosci 24:677–736

    Article  PubMed  CAS  Google Scholar 

  • Jeanneteau FD, Lambert WM, Ismaili N et al (2012) BDNF and glucocorticoids regulate corticotrophin-releasing hormone (CRH) homeostasis in the hypothalamus. Proc Natl Acad Sci U S A 109:1305–1310

    Article  PubMed  CAS  Google Scholar 

  • Kernie SG, Liebl DJ, Parada LF (2000) BDNF regulates eating behavior and locomotor activity in mice. EMBO J 19:1290–1300

    Article  PubMed  CAS  Google Scholar 

  • Kokoeva MV, Yin H, Flier JS (2005) Neurogenesis in the hypothalamus of adult mice: potential role in energy balance. Science 310:679–683

    Article  PubMed  CAS  Google Scholar 

  • Kuruvilla R, Zweifel LS, Glebova NO et al (2004) A neurotrophin signaling cascade coordinates sympathetic neuron development through differential control of TrkA trafficking and retrograde signaling. Cell 118:243–255

    Article  PubMed  CAS  Google Scholar 

  • Lapchak PA, Hefti F (1992) BDNF and NGF treatment in lesioned rats: effects on cholinergic function and weight gain. Neuroreport 3:405–408

    Article  PubMed  CAS  Google Scholar 

  • Levi A, Eldridge JD, Paterson BM (1985) Molecular cloning of a gene sequence regulated by nerve growth factor. Science 229:393–395

    Article  PubMed  CAS  Google Scholar 

  • Levi A, Ferri GL, Watson E, Possenti R, Salton SR (2004) Processing, distribution and function of VGF, a neuronal and endocrine peptide precursor. Cell Mol Neurobiol 24:517–533

    Article  PubMed  CAS  Google Scholar 

  • Levin BE (2007) Neurotrophism and energy homeostasis: perfect together. Am J Physiol Regul Integr Comp Physiol 293:R988–R991

    Article  PubMed  CAS  Google Scholar 

  • Liao GY, An JJ, Gharami K et al (2012) Dendritically targeted Bdnf mRNA is essential for energy balance and response to leptin. Nat Med 18:564–571

    Article  PubMed  CAS  Google Scholar 

  • Matthews VB, Febbraio MA (2008) CNTF: a target therapeutic for obesity-related metabolic disease? J Mol Med (Berl) 86:353–361

    Article  CAS  Google Scholar 

  • Miller RG, Petajan JH, Bryan WW et al (1996) A placebo-controlled trial of recombinant human ciliary neurotrophic (rhCNTF) factor in amyotrophic lateral sclerosis. rhCNTF ALS Study Group. Ann Neurol 39:256–260

    Article  PubMed  CAS  Google Scholar 

  • Nakagawa T, Tsuchida A, Itakura Y et al (2000) Brain-derived neurotrophic factor regulates glucose metabolism by modulating energy balance in diabetic mice. Diabetes 49:436–444

    Article  PubMed  CAS  Google Scholar 

  • Noble EE, Billington CJ, Kotz CM, Wang C (2011) The lighter side of BDNF. Am J Physiol Regul Integr Comp Physiol 300:R1053–R1069

    Article  PubMed  CAS  Google Scholar 

  • Pelleymounter MA, Cullen MJ, Wellman CL (1995) Characteristics of BDNF-induced weight loss. Exp Neurol 131:229–238

    Article  PubMed  CAS  Google Scholar 

  • Possenti R, Muccioli G, Petrocchi P et al (2012) Characterization of a novel peripheral pro-lipolytic mechanism in mice: role of VGF-derived peptide TLQP-21. Biochem J 441:511–522

    Article  PubMed  CAS  Google Scholar 

  • Rios M, Fan G, Fekete C et al (2001) Conditional deletion of brain-derived neurotrophic factor in the postnatal brain leads to obesity and hyperactivity. Mol Endocrinol 15:1748–1757

    Article  PubMed  CAS  Google Scholar 

  • Seeley RJ (2005) More neurons, less weight. Nat Med 11:1276–1278

    Article  PubMed  CAS  Google Scholar 

  • Singh KK, Park KJ, Hong EJ et al (2008) Developmental axon pruning mediated by BDNF-p75NTR-dependent axon degeneration. Nat Neurosci 11:649–658

    Article  PubMed  CAS  Google Scholar 

  • Suwa M, Kishimoto H, Nofuji Y et al (2006) Serum brain-derived neurotrophic factor level is increased and associated with obesity in newly diagnosed female patients with type 2 diabetes mellitus. Metabolism 55:852–857

    Article  PubMed  CAS  Google Scholar 

  • Tapia-Arancibia L, Rage F, Givalois L, Arancibia S (2004) Physiology of BDNF: focus on hypothalamic function. Front Neuroendocrinol 25:77–107

    Article  PubMed  CAS  Google Scholar 

  • Thakker-Varia S, Krol JJ, Nettleton J et al (2007) The neuropeptide VGF produces antidepressant-like behavioral effects and enhances proliferation in the hippocampus. J Neurosci 27:12156–12167

    Article  PubMed  CAS  Google Scholar 

  • Toriya M, Maekawa F, Maejima Y et al (2010) Long-term infusion of brain-derived neurotrophic factor reduces food intake and body weight via a corticotrophin-releasing hormone pathway in the paraventricular nucleus of the hypothalamus. J Neuroendocrinol 22:987–995

    Article  PubMed  CAS  Google Scholar 

  • Toshinai K, Yamaguchi H, Kageyama H et al (2010) Neuroendocrine regulatory peptide-2 regulates feeding behavior via the orexin system in the hypothalamus. Am J Physiol Endocrinol Metab 299:E394–E401

    Article  PubMed  CAS  Google Scholar 

  • Tsuchida A, Nakagawa T, Itakura Y et al (2001) The effects of brain-derived neurotrophic factor on insulin signal transduction in the liver of diabetic mice. Diabetologia 44:555–566

    Article  PubMed  CAS  Google Scholar 

  • Tsuchida A, Nonomura T, Nakagawa T et al (2002) Brain-derived neurotrophic factor ameliorates lipid metabolism in diabetic mice. Diabetes Obes Metab 4:262–269

    Article  PubMed  CAS  Google Scholar 

  • Turtzo LC, Marx R, Lane MD (2001) Cross-talk between sympathetic neurons and adipocytes in coculture. Proc Natl Acad Sci U S A 98:12385–12390

    Article  PubMed  CAS  Google Scholar 

  • Unger TJ, Calderon GA, Bradley LC, Sena-Esteves M, Rios M (2007) Selective deletion of Bdnf in the ventromedial and dorsomedial hypothalamus of adult mice results in hyperphagic behavior and obesity. J Neurosci 27:14265–14274

    Article  PubMed  CAS  Google Scholar 

  • Wang C, Bomberg E, Levine A, Billington C, Kotz CM (2007a) Brain-derived neurotrophic factor in the ventromedial nucleus of the hypothalamus reduces energy intake. Am J Physiol Regul Integr Comp Physiol 293:R1037–R1045

    Article  PubMed  CAS  Google Scholar 

  • Wang C, Bomberg E, Billington C, Levine A, Kotz CM (2007b) Brain-derived neurotrophic factor in the hypothalamic paraventricular nucleus reduces energy intake. Am J Physiol Regul Integr Comp Physiol 293:R1003–R1012

    Article  PubMed  CAS  Google Scholar 

  • Wang C, Bomberg E, Billington C, Levine A, Kotz CM (2007c) Brain-derived neurotrophic factor in the hypothalamic paraventricular nucleus increases energy expenditure by elevating metabolic rate. Am J Physiol Regul Integr Comp Physiol 293:R992–R1002

    Article  PubMed  CAS  Google Scholar 

  • Watson E, Hahm S, Mizuno TM et al (2005) VGF ablation blocks the development of hyperinsulinemia and hyperglycemia in several mouse models of obesity. Endocrinology 146:5151–5163

    Article  PubMed  CAS  Google Scholar 

  • Watson E, Fargali S, Okamoto H et al (2009) Analysis of knockout mice suggests a role for VGF in the control of fat storage and energy expenditure. BMC Physiol 9:19

    Article  PubMed  Google Scholar 

  • Xu B, Goulding EH, Zang K et al (2003) Brain-derived neurotrophic factor regulates energy balance downstream of melanocortin-4 receptor. Nat Neurosci 6:736–742

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This minireview summarizes, in part, findings presented at the GPCR Satellite Symposium, 20th Annual Meeting of the Israel Society for Neuroscience, held in Eilat, Israel in 2011. Research in the authors’ laboratory is supported by grants from the NIH, Diabetes Action and Education Foundation, and the Hope for Depression Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephen R. Salton.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fargali, S., Sadahiro, M., Jiang, C. et al. Role of Neurotrophins in the Development and Function of Neural Circuits That Regulate Energy Homeostasis. J Mol Neurosci 48, 654–659 (2012). https://doi.org/10.1007/s12031-012-9790-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12031-012-9790-9

Keywords

Navigation