Skip to main content

Advertisement

Log in

lncRNA NONRATT021972 siRNA Decreases Diabetic Neuropathic Pain Mediated by the P2X3 Receptor in Dorsal Root Ganglia

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

A Correction to this article was published on 26 June 2019

This article has been updated

Abstract

Long noncoding RNAs (lncRNAs) participate in physiological and pathophysiological processes. Type 2 diabetes mellitus (T2DM) accounts for more than 90 % of all cases of diabetes mellitus (DM). Diabetic neuropathic pain (DNP) is a common complication of T2DM. The aim of this study was to investigate the effects of lncRNA NONRATT021972 small interference RNA (siRNA) on DNP mediated by the P2X3 receptor in dorsal root ganglia (DRG). These experiments showed that the expression levels of NONRATT021972 in DRG were increased in the T2DM rat model (intraperitoneal injection of STZ with 30 mg/kg). The concentration of NONRATT021972 in T2DM patient serum was higher compared to control healthy subjects. The mechanical withdrawal threshold (MWT) and thermal withdrawal latency (TWL) in T2DM rats were lower compared to control rats. MWT and TWL in T2DM rats treated with NONRATT021972 siRNA were higher compared with those in T2DM rats. The expression levels of the P2X3 protein and messenger RNA (mRNA) of T2DM rat DRG were higher compared to the control, while those in T2DM rats treated with NONRATT021972 siRNA were significantly lower compared to T2DM rats. The level of tumor necrosis factor-α (TNF-α) in the serum of T2DM rats treated with NONRATT021972 siRNA was significantly decreased compared with T2DM rats. NONRATT021972 siRNA inhibited the phosphorylation and activation of ERK1/2 in T2DM DRG. Thus, NONRATT021972 siRNA treatment may suppress the upregulated expression and activation of the P2X3 receptor and reduce the hyperalgesia potentiated by the pro-inflammatory cytokine TNF-α in T2DM rats.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Change history

  • 26 June 2019

    In the original version of this article ���lncRNA NONRATT021972 siRNA Decreases Diabetic Neuropathic Pain Mediated by the P2X3 Receptor in Dorsal Root Ganglia���, which we have published in Mol Neurobiol (2017) 54:511���523.

  • 26 June 2019

    In the original version of this article ���lncRNA NONRATT021972 siRNA Decreases Diabetic Neuropathic Pain Mediated by the P2X3 Receptor in Dorsal Root Ganglia���, which we have published in Mol Neurobiol (2017) 54:511���523.

References

  1. Colvin LA, Dougherty PM (2015) Peripheral neuropathic pain: signs, symptoms, mechanisms, and causes: are they linked? Br J Anaesth 114(3):361–363. doi:10.1093/bja/aeu323

    Article  CAS  PubMed  Google Scholar 

  2. Pruimboom L, van Dam AC (2007) Chronic pain: a non-use disease. Med Hypotheses 68(3):506–511. doi:10.1016/j.mehy.2006.08.036

    Article  CAS  PubMed  Google Scholar 

  3. Treede RD, Jensen TS, Campbell JN, Cruccu G, Dostrovsky JO, Griffin JW, Hansson P, Hughes R et al (2008) Neuropathic pain: redefinition and a grading system for clinical and research purposes. Neurology 70(18):1630–1635. doi:10.1212/01.wnl.0000282763.29778.59

    Article  CAS  PubMed  Google Scholar 

  4. Schmader KE, Baron R, Haanpaa ML, Mayer J, O’Connor AB, Rice AS, Stacey B (2010) Treatment considerations for elderly and frail patients with neuropathic pain. Mayo Clin Proc 85(3Suppl):S26–S32. doi:10.4065/mcp.2009.0646

    Article  PubMed  PubMed Central  Google Scholar 

  5. Ma RC, Chan JC (2013) Type 2 diabetes in East Asians: similarities and differences with populations in Europe and the United States. Ann N Y Acad Sci 1281:64–91. doi:10.1111/nyas.12098

    Article  PubMed  PubMed Central  Google Scholar 

  6. Xu Y, Wang L, He J, Bi Y, Li M, Wang T, Jiang Y, Dai M et al (2013) Prevalence and control of diabetes in Chinese adults. JAMA 310(9):948–959. doi:10.1001/jama.2013.168118

    Article  CAS  PubMed  Google Scholar 

  7. Callaghan BC, Cheng HT, Stables CL, Smith AL, Feldman EL (2012) Diabetic neuropathy: clinical manifestations and current treatments. Lancet Neurol 11(6):521–534. doi:10.1016/S1474-4422(12)70065-0

    Article  PubMed  PubMed Central  Google Scholar 

  8. Obrosova IG (2009) Diabetes and the peripheral nerve. Biochim Biophys Acta 1792(10):931–940. doi:10.1016/j.bbadis.2008.11.005

    Article  CAS  PubMed  Google Scholar 

  9. Whiting DR, Guariguata L, Weil C, Shaw J (2011) IDF diabetes atlas: global estimates of the prevalence of diabetes for 2011 and 2030. Diabetes Res Clin Pract 94(3):311–321. doi:10.1016/j.diabres.2011.10.029

    Article  PubMed  Google Scholar 

  10. Schreiber AK, Nones CF, Reis RC, Chichorro JG, Cunha JM (2015) Diabetic neuropathic pain: physiopathology and treatment. World J Diabetes 6(3):432–444. doi:10.4239/wjd.v6.i3.432

    Article  PubMed  PubMed Central  Google Scholar 

  11. Bansal V, Kalita J, Misra UK (2006) Diabetic neuropathy. Postgrad Med J 82(964):95–100. doi:10.1136/pgmj.2005.036137

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Singh R, Kishore L, Kaur N (2014) Diabetic peripheral neuropathy: current perspective and future directions. Pharmacol Res 80:21–35. doi:10.1016/j.phrs.2013.12.005

    Article  CAS  PubMed  Google Scholar 

  13. Davies M, Brophy S, Williams R, Taylor A (2006) The prevalence, severity, and impact of painful diabetic peripheral neuropathy in type 2 diabetes. Diabetes Care 29(7):1518–1522. doi:10.2337/dc05-2228

    Article  PubMed  Google Scholar 

  14. Morales-Vidal S, Morgan C, McCoyd M, Hornik A (2012) Diabetic peripheral neuropathy and the management of diabetic peripheral neuropathic pain. Postgrad Med 124(4):145–153. doi:10.3810/pgm.2012.07.2576

    Article  PubMed  Google Scholar 

  15. Tavakoli M, Malik RA (2008) Management of painful diabetic neuropathy. Expert Opin Pharmacother 9(17):2969–2978. doi:10.1517/14656560802498149

    Article  CAS  PubMed  Google Scholar 

  16. Tesfaye S, Selvarajah D (2012) Advances in the epidemiology, pathogenesis and management of diabetic peripheral neuropathy. Diabetes Metab Res Rev 28(Suppl 1):8–14. doi:10.1002/dmrr.2239

    Article  PubMed  Google Scholar 

  17. Costa FF (2010) Non-coding RNAs: meet thy masters. Bioessays 32(7):599–608

    Article  CAS  PubMed  Google Scholar 

  18. Ponting CP, Belgard TG (2010) Transcribed dark matter: meaning or myth? Hum Mol Genet 19(R2):R162–R168. doi:10.1093/hmg/ddq362

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Stein LD (2004) Human genome: end of the beginning. Nature 431(7011):915–916. doi:10.1038/431915a

    Article  CAS  PubMed  Google Scholar 

  20. Louro R, Smirnova AS, Verjovski-Almeida S (2009) Long intronic noncoding RNA transcription: expression noise or expression choice? Genomics 93(4):291–298. doi:10.1016/j.ygeno.2008.11.009

    Article  CAS  PubMed  Google Scholar 

  21. Ponjavic J, Ponting CP, Lunter G (2007) Functionality or transcriptional noise? Evidence for selection within long noncoding RNAs. Genome Res 17(5):556–565. doi:10.1101/gr.6036807

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Batista PJ, Chang HY (2013) Long noncoding RNAs: cellular address codes in development and disease. Cell 152(6):1298–1307. doi:10.1016/j.cell.2013.02.012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Di Gesualdo F, Capaccioli S, Lulli M (2014) A pathophysiological view of the long non-coding RNA world. Oncotarget 5(22):10976–10996

    Article  PubMed  PubMed Central  Google Scholar 

  24. Qureshi IA, Mattick JS, Mehler MF (2010) Long non-coding RNAs in nervous system function and disease. Brain Res 1338:20–35. doi:10.1016/j.brainres.2010.03.110

    Article  CAS  PubMed  Google Scholar 

  25. Sauvageau M, Goff LA, Lodato S, Bonev B, Groff AF, Gerhardinger C, Sanchez-Gomez DB, Hacisuleyman E et al (2013) Multiple knockout mouse models reveal lincRNAs are required for life and brain development. Elife 2, e01749. doi:10.7554/eLife.01749

    Article  PubMed  PubMed Central  Google Scholar 

  26. Guttman M, Amit I, Garber M, French C, Lin MF, Feldser D, Huarte M, Zuk O et al (2009) Chromatin signature reveals over a thousand highly conserved large non-coding RNAs in mammals. Nature 458(7235):223–227. doi:10.1038/nature07672

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Khalil AM, Guttman M, Huarte M, Garber M, Raj A, Rivea Morales D, Thomas K, Presser A et al (2009) Many human large intergenic noncoding RNAs associate with chromatin-modifying complexes and affect gene expression. Proc Natl Acad Sci U S A 106(28):11667–11672. doi:10.1073/pnas.0904715106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Mercer TR DM, Mattick JS (2009) Long noncoding RNAs: insights into functions. Nat Rev Genet 10:155–159

    Article  PubMed  Google Scholar 

  29. Pastori C, Wahlestedt C (2012) Involvement of long noncoding RNAs in diseases affecting the central nervous system. RNA Biol 9(6):860–870. doi:10.4161/rna.20482

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Wang X, Arai S, Song X, Reichart D, Du K, Pascual G, Tempst P, Rosenfeld MG et al (2008) Induced ncRNAs allosterically modify RNA-binding proteins in cis to inhibit transcription. Nature 454(7200):126–130. doi:10.1038/nature06992

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Hu W, Alvarez-Dominguez JR, Lodish HF (2012) Regulation of mammalian cell differentiation by long non-coding RNAs. EMBO Rep 13(11):971–983. doi:10.1038/embor.2012.145

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Kaikkonen MU, Lam MT, Glass CK (2011) Non-coding RNAs as regulators of gene expression and epigenetics. Cardiovasc Res 90(3):430–440. doi:10.1093/cvr/cvr097

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Ponting CP, Oliver PL, Reik W (2009) Evolution and functions of long noncoding RNAs. Cell 136(4):629–641. doi:10.1016/j.cell.2009.02.006

    Article  CAS  PubMed  Google Scholar 

  34. Rapicavoli NA, Qu K, Zhang J, Mikhail M, Laberge RM, Chang HY (2013) A mammalian pseudogene lncRNA at the interface of inflammation and anti-inflammatory therapeutics. Elife 2, e00762. doi:10.7554/eLife.00762

    Article  PubMed  PubMed Central  Google Scholar 

  35. Rinn JL, Chang HY (2012) Genome regulation by long noncoding RNAs. Annu Rev Biochem 81:145–166. doi:10.1146/annurev-biochem-051410-092902

    Article  CAS  PubMed  Google Scholar 

  36. Burnstock G (2014) Purinergic signalling: from discovery to current developments. Exp Physiol 99(1):16–34. doi:10.1113/expphysiol.2013.071951

    Article  CAS  PubMed  Google Scholar 

  37. Burnstock G (2007) Physiology and pathophysiology of purinergic neurotransmission. Physiol Rev 87(2):659–797. doi:10.1152/physrev.00043.2006

    Article  CAS  PubMed  Google Scholar 

  38. Burnstock G (2006) Purinergic P2 receptors as targets for novel analgesics. Pharmacol Ther 110(3):433–454. doi:10.1016/j.pharmthera.2005.08.013

    Article  CAS  PubMed  Google Scholar 

  39. Burnstock G (2009) Purinergic receptors and pain. Curr Pharm Des 15(15):1717–1735

    Article  CAS  PubMed  Google Scholar 

  40. Gao Y, Xu C, Liang S, Zhang A, Mu S, Wang Y, Wan F (2008) Effect of tetramethylpyrazine on primary afferent transmission mediated by P2X3 receptor in neuropathic pain states. Brain Res Bull 77(1):27–32. doi:10.1016/j.brainresbull.2008.02.026

    Article  CAS  PubMed  Google Scholar 

  41. Gao Y, Liu H, Deng L, Zhu G, Xu C, Li G, Liu S, Xie J et al (2011) Effect of emodin on neuropathic pain transmission mediated by P2X 2/3 receptor of primary sensory neurons. Brain Res Bull 84(6):406–413. doi:10.1016/j.brainresbull.2011.01.017

    Article  CAS  PubMed  Google Scholar 

  42. Liang S, Xu C, Li G, Gao Y (2010) P2X receptors and modulation of pain transmission: focus on effects of drugs and compounds used in traditional Chinese medicine. Neurochem Int 57(7):705–712. doi:10.1016/j.neuint.2010.09.004

    Article  CAS  PubMed  Google Scholar 

  43. Lin J, Li G, Den X, Xu C, Liu S, Gao Y, Liu H, Zhang J et al (2010) VEGF and its receptor-2 involved in neuropathic pain transmission mediated by P2X 2/3 receptor of primary sensory neurons. Brain Res Bull 83(5):284–291. doi:10.1016/j.brainresbull.2010.08.002

    Article  CAS  PubMed  Google Scholar 

  44. Novakovic SD, Kassotakis LC, Oglesby IB, Smith JA, Eglen RM, Ford AP, Hunter JC (1999) Immunocytochemical localization of P 2X3 purinoceptors in sensory neurons in naive rats and following neuropathic injury. Pain 80(1–2):273–282

    Article  CAS  PubMed  Google Scholar 

  45. Zhang A, Gao Y, Zhong X, Xu C, Li G, Liu S, Lin J, Li X et al (2010) Effect of sodium ferulate on the hyperalgesia mediated by P2X 3 receptor in the neuropathic pain rats. Brain Res 1313:215–221. doi:10.1016/j.brainres.2009.11.067

    Article  CAS  PubMed  Google Scholar 

  46. Burnstock G, Novak I (2013) Purinergic signalling and diabetes. Purinergic Signal 9(3):307–324. doi:10.1007/s11302-013-9359-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Xu GY, Li G, Liu N, Huang LY (2011) Mechanisms underlying purinergic P2X3 receptor-mediated mechanical allodynia induced in diabetic rats. Mol Pain 7:60. doi:10.1186/1744-8069-7-60

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Yu Y, Fuscoe JC, Zhao C, Guo C, Jia M, Qing T, Bannon DI, Lancashire L et al (2014) A rat RNA-Seq transcriptomic BodyMap across 11 organs and 4 developmental stages. Nat Commun 5:3230. doi:10.1038/ncomms4230

    PubMed  PubMed Central  Google Scholar 

  49. Islam MS (2013) Animal models of diabetic neuropathy: progress since 1960s. J Diabetes Res 2013:149452. doi:10.1155/2013/149452

    PubMed  PubMed Central  Google Scholar 

  50. Li G, Xu H, Zhu S, Xu W, Qin S, Liu S, Tu G, Peng H et al (2013) Effects of neferine on CCL5 and CCR5 expression in SCG of type 2 diabetic rats. Brain Res Bull 90:79–87. doi:10.1016/j.brainresbull.2012.10.002

    Article  CAS  PubMed  Google Scholar 

  51. Srinivasan K, Ramarao P (2007) Animal models in type 2 diabetes research: an overview. Indian J Med Res 125(3):451–472

    CAS  PubMed  Google Scholar 

  52. Messinger RB, Naik AK, Jagodic MM, Nelson MT, Lee WY, Choe WJ, Orestes P, Latham JR et al (2009) In vivo silencing of the Ca V 3.2 T-type calcium channels in sensory neurons alleviates hyperalgesia in rats with streptozocin-induced diabetic neuropathy. Pain 145(1–2):184–195. doi:10.1016/j.pain.2009.06.012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Liu J, Li G, Peng H, Tu G, Kong F, Liu S, Gao Y, Xu H et al (2013) Sensory-sympathetic coupling in superior cervical ganglia after myocardial ischemic injury facilitates sympathoexcitatory action via P2X7 receptor. Purinergic Signal 9(3):463–479. doi:10.1007/s11302-013-9367-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Wang F, Zhang P, Ma Y, Yang J, Moyer MP, Shi C, Peng J, Qin H (2012) NIRF is frequently upregulated in colorectal cancer and its oncogenicity can be suppressed by let-7a microRNA. Cancer Lett 314(2):223–231. doi:10.1016/j.canlet.2011.09.033

    Article  CAS  PubMed  Google Scholar 

  55. Gunduz O, Oltulu C, Buldum D, Guven R, Ulugol A (2011) Anti-allodynic and anti-hyperalgesic effects of ceftriaxone in streptozocin-induced diabetic rats. Neurosci Lett 491(1):23–25. doi:10.1016/j.neulet.2010.12.063

    Article  CAS  PubMed  Google Scholar 

  56. Xu C, Xu W, Xu H, Xiong W, Gao Y, Li G, Liu S, Xie J et al (2012) Role of puerarin in the signalling of neuropathic pain mediated by P2X 3 receptor of dorsal root ganglion neurons. Brain Res Bull 87(1):37–43. doi:10.1016/j.brainresbull.2011.10.007

    Article  CAS  PubMed  Google Scholar 

  57. Li G, Liu S, Yang Y, Xie J, Liu J, Kong F, Tu G, Wu R et al (2011) Effects of oxymatrine on sympathoexcitatory reflex induced by myocardial ischemic signaling mediated by P2X(3) receptors in rat SCG and DRG. Brain Res Bull 84(6):419–424. doi:10.1016/j.brainresbull.2011.01.011

    Article  CAS  PubMed  Google Scholar 

  58. Qureshi IA, Mehler MF (2013) Long non-coding RNAs: novel targets for nervous system disease diagnosis and therapy. Neurotherapeutics 10(4):632–646. doi:10.1007/s13311-013-0199-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Wapinski O, Chang HY (2011) Long noncoding RNAs and human disease. Trends Cell Biol 21(6):354–361. doi:10.1016/j.tcb.2011.04.001

    Article  CAS  PubMed  Google Scholar 

  60. Chodroff RA, Goodstadt L, Sirey TM, Oliver PL, Davies KE, Green ED, Molnar Z, Ponting CP (2010) Long noncoding RNA genes: conservation of sequence and brain expression among diverse amniotes. Genome Biol 11(7):R72. doi:10.1186/gb-2010-11-7-r72

    Article  PubMed  PubMed Central  Google Scholar 

  61. Guil S, Esteller M (2015) RNA-RNA interactions in gene regulation: the coding and noncoding players. Trends Biochem Sci 40(5):248–256. doi:10.1016/j.tibs.2015.03.001

    Article  CAS  PubMed  Google Scholar 

  62. Barrett AM, Lucero MA, Le T, Robinson RL, Dworkin RH, Chappell AS (2007) Epidemiology, public health burden, and treatment of diabetic peripheral neuropathic pain: a review. Pain Med 8(Suppl 2):S50–S62. doi:10.1111/j.1526-4637.2006.00179.x

    Article  PubMed  Google Scholar 

  63. Galer BS, Gianas A, Jensen MP (2000) Painful diabetic polyneuropathy: epidemiology, pain description, and quality of life. Diabetes Res Clin Pract 47(2):123–128

    Article  CAS  PubMed  Google Scholar 

  64. Ziegler D (2009) Painful diabetic neuropathy: advantage of novel drugs over old drugs? Diabetes Care 32(Suppl 2):S414–S419. doi:10.2337/dc09-S350

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Burnstock G, Krugel U, Abbracchio MP, Illes P (2011) Purinergic signalling: from normal behaviour to pathological brain function. Prog Neurobiol 95(2):229–274. doi:10.1016/j.pneurobio.2011.08.006

    Article  CAS  PubMed  Google Scholar 

  66. Chizh BA, Illes P (2001) P2X receptors and nociception. Pharmacol Rev 53(4):553–568

    CAS  PubMed  Google Scholar 

  67. Stein C, Clark JD, Oh U, Vasko MR, Wilcox GL, Overland AC, Vanderah TW, Spencer RH (2009) Peripheral mechanisms of pain and analgesia. Brain Res Rev 60(1):90–113. doi:10.1016/j.brainresrev.2008.12.017

    Article  CAS  PubMed  Google Scholar 

  68. Obata K, Yamanaka H, Kobayashi K, Dai Y, Mizushima T, Katsura H, Fukuoka T, Tokunaga A et al (2004) Role of mitogen-activated protein kinase activation in injured and intact primary afferent neurons for mechanical and heat hypersensitivity after spinal nerve ligation. J Neurosci 24(45):10211–10222. doi:10.1523/JNEUROSCI.3388-04.2004

    Article  CAS  PubMed  Google Scholar 

  69. Seino D, Tokunaga A, Tachibana T, Yoshiya S, Dai Y, Obata K, Yamanaka H, Kobayashi K et al (2006) The role of ERK signaling and the P2X receptor on mechanical pain evoked by movement of inflamed knee joint. Pain 123(1–2):193–203. doi:10.1016/j.pain.2006.02.032

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

These works were supported by the grant (nos. 81570735, 31560276, 81560219, 81560529, 81171184, 31060139, and 81200853) from the National Natural Science Foundation of China, the grant (no. 20151BBG70250) from the Technology Pedestal and Society Development Project of Jiangxi Province, the grant (no. 20142BAB205028) from the Natural Science Foundation of Jiangxi Province, and the grant (nos. GJJ13155 and GJJ14319) from the Educational Department of Jiangxi Province.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shangdong Liang.

Ethics declarations

The procedures were approved by the Animal Care and Use Committees of Nanchang University Medical Schools. The IASP’s ethical guidelines for pain research in animals were followed. All animals were treated according to the ARVO Statement for the use of Animals in Ophthalmic and Vision Research in China.

Informed Consent

Following local ethics committee approval, written informed consent was obtained from each individual.

Conflict of Interest

The authors declare that they have no competing interests.

Additional information

Haiying Peng, Lifang Zou, and Jinyan Xie are joint first authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Peng, H., Zou, L., Xie, J. et al. lncRNA NONRATT021972 siRNA Decreases Diabetic Neuropathic Pain Mediated by the P2X3 Receptor in Dorsal Root Ganglia. Mol Neurobiol 54, 511–523 (2017). https://doi.org/10.1007/s12035-015-9632-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-015-9632-1

Keywords

Navigation