Skip to main content

Advertisement

Log in

The Potential Mutation of GAK Gene in the Typical Sporadic Parkinson’s Disease from the Han Population of Chinese Mainland

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

The genetic factors about the pathogenesis of sporadic Parkinson’s disease (sPD) is not completely clear at present; therefore, we performed a genome-wide association study, high-throughput sequencing analysis (HTPSA) of all cyclin G-associated kinase (GAK) exons, loss-of-function assessment, and sorting intolerant from tolerant analysis of HTPSA data in 250 typical sPD and 250 controls, which found 55 candidate single nucleotide polymorphisms (SNPs). To further explore these SNPs, we sequenced the 30 most strongly associated SNPs in the 460 typical sPD cases and the 525 controls. All subjects were from the Han population of Chinese mainland and excluded the toxic exposure, the heavy coffee drinking, and the early- and late-onset sPD. The minor allele frequencies (MAFs) at c.3824T>G, c.3794T>C, and c.3819G>A were higher in the control. The TG of c.3824T>G, the TC of c.3794T>C, and the AG of c.3819G>A were associated with the decreased risk of sPD. The subjects carrying the minor C allele of c.3794T>C or the minor A allele of c.3819G>A exhibited a decreased risk of sPD. c.3824T>G negatively affected the binding affinity of heat shock protein 70 (HSP70). c.3794T>C increased the surface area exposed to substrates. c.3819G>A most likely reduced the expression level of GAK. Our data suggest that the multiple SNPs of GAK synergistically participate in the pathogenesis of sPD through multiple pathways.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Abbreviations

sPD:

Sporadic Parkinson’s disease

GAK:

Cyclin G-associated kinase

HPCM:

Han population from Chinese mainland

GWAS:

Genome-wide association study

HTPSA:

High-throughput sequencing analysis

LoF:

Loss-of-function assessment

SIFT:

Sorting intolerant from tolerant

SNPs:

Single nucleotide polymorphisms

MAFs:

Minor allele frequencies

OR:

Odds ratio

HSP70:

Heat shock protein 70

References

  1. Zhang ZX, Anderson DW, Huang JB et al (2003) Prevalence of Parkinson’s disease and related disorders in the elderly population of greater Beijing, China. Mov Disord 18:764–772

    Article  PubMed  Google Scholar 

  2. Zhang ZX, Roman GC, Hong Z et al (2005) Parkinson’s disease in China: prevalence in Beijing, Xian, and Shanghai. Lancet 365:595–597

    Article  PubMed  Google Scholar 

  3. Elbaz A, Tranchant C (2007) Epidemiologic studies of environmental exposures in Parkinson’s disease. J Neurol Sci 262:37–44

    Article  PubMed  Google Scholar 

  4. Lees AJ, Hardy J, Revesz T (2009) Parkinson’s disease. Lancet 373:2055–2066. doi:10.1016 /S0140-6736(09)60492-X

  5. Ali SF, Binienda ZK, Imam SZ (2011) Molecular aspects of dopaminergic neurodegeneration: gene-environment interaction in Parkin dysfunction. Int J Environ Res Public Health 8:4702–4713. doi:10.3390/ijerph8124702

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Liu G, Aliaga L, Cai H (2012) α-synuclein, LRRK2 and their interplay in Parkinson’s disease. Future Neurol 7:145–153

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Rochet JC, Hay BA, Guo M (2012) Molecular insights into Parkinson’s disease. Prog Mol Biol Transl Sci 107:125–188. doi:10.1016/B978-0-12-385883-2.00011-4

    Article  CAS  PubMed  Google Scholar 

  8. Saiki S, Sato S, Hattori N (2012) Molecular pathogenesis of Parkinson’s disease: update. J Neurol Neurosurg Psychiatry 83:430–436. doi:10.1136/jnnp-2011-301205

    Article  PubMed  Google Scholar 

  9. Lesage S, Brice A (2009) Parkinson’s disease: from monogenic forms to genetic susceptibility factors. Hum Mol Genet 18:R48–59. doi:10.1093/hmg/ddp012

    Article  CAS  PubMed  Google Scholar 

  10. Farrer M, Maraganore DM, Lockhart P et al (2001) Alpha-Synuclein gene haplotypes are associated with Parkinson’s disease. Hum Mol Genet 10:1847–1851

    Article  CAS  PubMed  Google Scholar 

  11. Maraganore DM, de Andrade M, Elbaz A et al (2006) Collaborative analysis of alpha-synuclein gene promoter variability and Parkinson disease. JAMA 296:661–670

    Article  CAS  PubMed  Google Scholar 

  12. Myhre R, Toft M, Kachergus J et al (2008) Multiple alpha-synuclein gene polymorphisms are associated with Parkinson’s disease in a Norwegian population. Acta Neurol Scand 118:320–327. doi:10.1111/j.1600-0404.2008.01019.x

    Article  CAS  PubMed  Google Scholar 

  13. Schulte C, Gasser T (2011) Genetic basis of Parkinson’s disease: inheritance, penetrance, and expression. Appl Clin Genet 4:67–80. doi:10.2147/TACG.S11639

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Seol W (2010) Biochemical and molecular features of LRRK2 and its pathophysiological roles in Parkinson’s disease. BMB Rep 43:233–244

    Article  CAS  PubMed  Google Scholar 

  15. Zhao Y, Gopalai AA, Ahmad-Annuar A, Teng EW, Prakash KM et al (2013) Association of HLA locus variant in Parkinson’s disease. Clin Genet 84:501–504. doi:10.1111/cge.12024

    Article  CAS  PubMed  Google Scholar 

  16. Puschmann A, Verbeeck C, Heckman MG et al (2011) Human leukocyte antigen variation and Parkinson’s disease. Parkinsonism Relat Disord 17(5):376–378. doi:10.1016/j.parkreldis.2011.03.008

    Article  PubMed  PubMed Central  Google Scholar 

  17. Sun C, Wei L, Luo F et al (2012) HLA-DRB1 alleles are associated with the susceptibility to sporadic Parkinson’s disease in Chinese Han population. PloS One 7(11):e48594. doi:10.1371/journal.pone.0048594

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Pankratz N, Wilk JB, Latourelle JC et al (2009) Genome wide association study for susceptibility genes contributing to familial Parkinson disease. Hum Genet 124:593–605. doi:10.1007/s00439-008-0582-9

    Article  CAS  PubMed  Google Scholar 

  19. Rhodes SL, Sinsheimer JS, Bordelon Y et al (2011) Replication of GWAS associations for GAK and MAPT in Parkinson’s disease. Ann Hum Genet 75:195–200. doi:10.1111/j.1469-1809.2010.00616.x

    CAS  PubMed  Google Scholar 

  20. Saad M, Lesage S, Saint-Pierre A et al (2011) Genome-wide association study confirms BST1 and suggests a locus on 12q24 as the risk loci for Parkinson’s disease in the European population. Hum Mol Genet 20:615–627. doi:10.1093/hmg/ddq497

    Article  PubMed  Google Scholar 

  21. Simón-Sánchez J, van Hilten JJ, van de Warrenburg B et al (2011) Genome-wide association study confirms extant PD risk loci among the Dutch. Eur J Hum Genet 19:655–661. doi:10.1038/ejhg.2010.254

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. UK Parkinson’s Disease Consortium, Wellcome Trust Case Control Consortium 2, Spencer CC et al (2011) Dissection of the genetics of Parkinson’s disease identifies an additional association 5ʹ of SNCA and multiple associated haplotypes at 17q21. Hum Mol Genet 20:345–353. doi:10.1093/hmg/ddq469

    Article  CAS  Google Scholar 

  23. Li NN, Chang XL, Mao XY et al (2012) GWAS-linked GAK locus in Parkinson’s disease in Han Chinese and meta-analysis. Hum Genet 131:1089–1093. doi:10.1007/s00439-011-1133-3

    Article  CAS  PubMed  Google Scholar 

  24. Chen YP, Song W, Huang R et al (2013) GAK rs1564282 and DGKQ rs11248060 increase the risk for Parkinson’s disease in a Chinese population. J Clin Neurosci 20:880–883. doi:10.1016/j.jocn.2012.07.011

    Article  CAS  PubMed  Google Scholar 

  25. Lin CH, Chen ML, Tai YC et al (2013) Reaffirmation of GAK, but not HLA-DRA, as a Parkinson’s disease susceptibility gene in a Taiwanese population. Am J Med Genet B Neuropsychiatr Genet 162B:841–846. doi:10.1002/ajmg.b.32188

    Article  CAS  PubMed  Google Scholar 

  26. Tseng WE, Chen CM, Chen YC et al (2013) Genetic variations of GAK in two Chinese Parkinson’s disease populations: a case–control study. PloS One 8(6):e67506. doi:10.1371/journal.pone.0067506

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Zhou LL, Zhang X, Bao QQ et al (2014) Association analysis of PARK16-18 variants and Parkinson’s disease in a Chinese population. J Clin Neurosci 21:1029–1032. doi:10.1016/j.jocn.2013.09.015

    Article  CAS  PubMed  Google Scholar 

  28. Sevlever D, Jiang P, Yen SH (2008) Cathepsin D is the main lysosomal enzyme involved in the degradation of alpha-synuclein and generation of its carboxy-terminally truncated species. Biochemistry 47:9678–987. doi:10.1016/j.jocn.2013.09.015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Dumitriu A, Pacheco CD, Wilk JB et al (2011) Cyclin-G-associated kinase modifies α-synuclein expression levels and toxicity in Parkinson’s disease. Results from the GenePD Study Hum Mol Genet 20:1478–1487. doi:10.1093/hmg/ddr026

    Article  CAS  PubMed  Google Scholar 

  30. Hughes AJ, Daniel SE, Kilford L, Lees AJ (1992) Accuracy of clinical diagnosis of idiopathic Parkinson’s disease: a clinico-pathological study of 100 cases. J Neurol Neurosurg Psychiatry 55:181–184

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Szelinger S, Kurdoglu A, Craig DW (2011) Bar-coded, multiplexed sequencing of targeted DNA regions using the Illumina Genome Analyzer. Methods Mol Biol 700:89–104. doi:10.1007/978-1-61737-954-3_7

    Article  CAS  PubMed  Google Scholar 

  32. Szelinger S, Pearson JV, Craig DW (2011) Microarray-based genome-wide association studies using pooled DNA. Methods Mol Biol 700:49–60. doi:10.1007/978-1-61737-954-3_4

    Article  CAS  PubMed  Google Scholar 

  33. Davis OS, Plomin R, Schalkwyk LC (2009) The SNPMaP package for R: a framework for genome-wide association using DNA pooling on microarrays. Bioinformatics 25:281–283. doi:10.1093/bioinformatics/btn587

    Article  CAS  PubMed  Google Scholar 

  34. Steer S, Abkevich V, Gutin A et al (2007) Genomic DNA pooling for whole-genome association scans in complex disease: empirical demonstration of efficacy in rheumatoid arthritis. Genes Immun 8:57–68

    Article  CAS  PubMed  Google Scholar 

  35. Wacholder S, Chanock S, Garcia-Closas M et al (2004) Assessing the probability that a positive report is false: an approach for molecular epidemiology studies. J Natl Cancer Inst 96:434–442

    Article  PubMed  Google Scholar 

  36. Soon WW, Hariharan M, Snyder MP (2013) High-throughput sequencing for biology and medicine. Mol Syst Biol 9:640. doi:10.1038/msb.2012.61

    Article  PubMed  PubMed Central  Google Scholar 

  37. MacArthur DG, Balasubramanian S, Frankish A et al (2012) A systematic survey of loss-of- function variants in human protein-coding genes. Science 335:823–828. doi:10.1126/science.1215040

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Ng PC, Henikoff S (2001) Predicting deleterious amino acid substitutions. Genome Res 11:863–874

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Ng PC, Henikoff S (2002) Accounting for human polymorphisms predicted to affect protein function. Genome Res 12:436–446

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Ng PC, Henikoff S (2003) SIFT: predicting amino acid changes that affect protein function. Nucleic Acids Res 31:3812–3814

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Marchler-Bauer A, Panchenko AR, Shoemaker BA et al (2002) CDD: a database of conserved domain alignments with links to domain three-dimensional structure. Nucleic Acids Res 30:281–283

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Biasini M, Bienert S, Waterhouse A et al. (2014) SWISS-MODEL: modelling protein tertiary and quaternary structure using evolutionary information. Nucleic Acids Res 4242(Web Server issue):W252–258. doi: 10.1093/nar/gku340

  43. Crooks GE, Hon G, Chandonia JM, Brenner SE (2004) WebLogo: a sequence logo generator. Genome Res 14:1188–1190

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Pei J, Kim BH, Grishin NV (2008) PROMALS3D: a tool for multiple protein sequence and structure alignments. Nucleic Acids Res 36:2295–2300. doi:10.1093/nar/gkn072

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Nakamura Y, Gojobori T, Ikemura T (2000) Codon usage tabulated from international DNA sequence databases: status for the year 2000. Nucleic Acids Res 28:292

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Jiang J, Maes EG, Taylor AB et al (2007) Structural basis of J cochaperone binding and regulation of Hsp70. Mol Cell 28:422–433

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Pankratz N, Beecham GW, DeStefano AL et al (2012) Meta-analysis of Parkinson’s disease: identification of a novel locus, RIT2. Ann Neurol 71:370–384. doi:10.1002/ana.22687

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Kametaka S, Moriyama K, Burgos PV et al (2007) Canonical interaction of cyclin G associated kinase with adaptor protein 1 regulates lysosomal enzyme sorting. Mol Biol Cell 18:2991–3001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Umeda A, Meyerholz A, Ungewickell E (2000) Identification of the universal cofactor (auxilin 2) in clathrin coat dissociation. Eur J Cell Biol 79:336–342

    Article  CAS  PubMed  Google Scholar 

  50. Korolchuk VI, Banting G (2002) CK2 and GAK/auxilin2 are major protein kinases in clathrin-coated vesicles. Traffic 3:428–439

    Article  CAS  PubMed  Google Scholar 

  51. Lee DW, Zhao X, Zhang F et al (2006) Recruitment dynamics of GAK and auxilin to clathrin-coated pits during endocytosis. J Cell Sci 119:3502–3512

    Article  CAS  PubMed  Google Scholar 

  52. Massol RH, Boll W, Griffin AM et al (2006) A burst of auxilin recruitment determines the onset of clathrin-coated vesicle uncoating. Proc Natl Acad Sci U S A 103:10265–10270

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Greener T, Zhao X, Nojima H et al (2000) Role of cyclin G-associated kinase in uncoating clathrin-coated vesicles from non-neuronal cells. J Biol Chem 275:1365–1370

    Article  CAS  PubMed  Google Scholar 

  54. Witt SN (2013) Molecular chaperones, α-synuclein, and neurodegeneration. Mol Neurobiol 47:552–560. doi:10.1007/s12035-012-8325-2

    Article  CAS  PubMed  Google Scholar 

  55. Witt SN (2010) Hsp70 molecular chaperones and Parkinson’s disease. Biopolymers 93:218–228. doi:10.1002/bip.21302

    Article  CAS  PubMed  Google Scholar 

  56. Eisenberg E, Greene LE (2007) Multiple roles of auxilin and hsc70 in clathrin-mediated endocytosis. Traffic 8:640–646

    Article  CAS  PubMed  Google Scholar 

  57. Lee DW, Zhao X, Zhang F et al (2005) Depletion of GAK/auxilin 2 inhibits receptor-mediated endocytosis and recruitment of both clathrin and clathrin adaptors. J Cell Sci 118:4311–4321

    Article  CAS  PubMed  Google Scholar 

  58. Grünblatt E, Mandel S, Jacob-Hirsch J et al (2004) Gene expression profiling of parkinsonian substantia nigra pars compacta; alterations in ubiquitin-proteasome, heat shock protein, iron and oxidative stress regulated proteins, cell adhesion/cellular matrix and vesicle trafficking genes. J Neural Transm 111:1543–1573

    Article  CAS  PubMed  Google Scholar 

  59. Sharma M, Ioannidis JP, Aasly JO et al (2012) Large-scale replication and heterogeneity in Parkinson disease genetic loci. Neurology 79:659–667. doi:10.1212/WNL.0b013e318264e353

    Article  PubMed  PubMed Central  Google Scholar 

  60. Shulman JM, De Jager PL, Feany MB (2011) Parkinson's disease: genetics and pathogenesis. Annu Rev Pathol 6:193–222. doi:10.1146/annurev-pathol-011110-130242

    Article  CAS  PubMed  Google Scholar 

  61. Chung SJ, Armasu SM, Anderson KJ et al (2013) Genetic susceptibility loci, environmental exposures, and Parkinson’s disease: a case-control study of gene-environment interactions. Parkinsonism Relat Disord 19:595–599. doi:10.1016/j.parkreldis.2013.02.008

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

We are grateful to the PD patients who generously contributed their time and materials for this study, and also thank GFK biotech Inc. of Shanghai for performing the analysis of structure modeling and synonymous functional prediction.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xiong Zhang or Renshi Xu.

Ethics declarations

Conflict of interest

The authors declare no competing interests

Funding

The work was funded by National Natural Science Foundation of China (grant number 30560042, 81160161, 81360198), Education Department of Jiangxi Province of China (grant number GJJ13198), and Jiangxi provincial department of science and technology (grant number [2014]-47).

Authors’ contributions

All authors contributed significantly to this research and preparation of the manuscript. Xu R, Zhang J, Zeng H, and Zhang X conceived and designed the experiments and wrote the manuscript. Zhang J, Zeng H, Zhu L, Deng L, Fang X, Deng X, Liang H, Tang C, Lu Y, Li J, Ren X, and Zuo W performed the experiments and analyzed the data. Cao X and Zhang X contributed some materials. JZ and HZ are the first authors and contributed equally to the work. Xu R and Zhang X are the corresponding authors. All authors have been involved in the drafting, critical revision, and final approval of the manuscript for publication. All authors agree to be accountable for all aspects of the work in ensuring that questions related to the accuracy or integrity of any part of the work are appropriately investigated and resolved.

Additional information

Jie Zhang and Hanyi Zeng contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Figure S1

Research approach. (TIF 418 kb)

Figure S2

Procedure of ion torrent sequence. (TIF 138 kb)

Table S1

34 loci within GAK gene possibly associated with sPD of HPCM in our GWAS result. (DOC 116 kb)

Table S2

Results of a high-throughput sequencing analysis (HTPSA) of all exons in the GAK gene demonstrated that 994 SNPs in GAK gene exons were significantly associated with sPD from HPCM. (DOC 3666 kb)

Table S3

The loss-of-function (LoF) assessment analysis of HTPSA data revealed that 129 SNPs might be associated with the pathogenesis of sPD. (DOC 164 kb)

Table S4

The sorting intolerant from tolerant (SIFT) analysis of HTPSA data showed that 55 SNPs might be associated with the pathogenesis of sPD from HPCM. (DOC 98 kb)

Table S5

The top 30 most likely candidate SNPs for further analysis by sequencing. (DOC 64 kb)

Table S6

Primers used to amplify exons of GAK gene. (DOC 47 kb)

Table S7

General codon usage for human genome. (DOC 45 kb)

Table S8

The codon usage was calculated using all CDS sequences for GAK. (DOC 47 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, J., Zeng, H., Zhu, L. et al. The Potential Mutation of GAK Gene in the Typical Sporadic Parkinson’s Disease from the Han Population of Chinese Mainland. Mol Neurobiol 53, 7119–7136 (2016). https://doi.org/10.1007/s12035-015-9595-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-015-9595-2

Keywords

Navigation