Spillantini MG, Schmidt ML, Lee VM, Trojanowski JQ, Jakes R, Goedert M (1997) Alpha-synuclein in Lewy bodies. Nature 388(6645):839–840. doi:10.1038/42166
CAS
PubMed
Article
Google Scholar
Dauer W, Przedborski S (2003) Parkinson’s disease: mechanisms and models. Neuron 39(6):889–909
CAS
PubMed
Article
Google Scholar
Keane PC, Kurzawa M, Blain PG, Morris CM (2011) Mitochondrial dysfunction in Parkinson’s disease. Park Dis 2011:716871. doi:10.4061/2011/716871
CAS
Google Scholar
Deleersnijder A, Gerard M, Debyser Z, Baekelandt V (2013) The remarkable conformational plasticity of alpha-synuclein: blessing or curse? Trends Mol Med 19(6):368–377. doi:10.1016/j.molmed.2013.04.002
CAS
PubMed
Article
Google Scholar
Martin LJ (2012) Biology of mitochondria in neurodegenerative diseases. Prog Mol Biol Transl Sci 107:355–415. doi:10.1016/B978-0-12-385883-2.00005-9
CAS
PubMed
PubMed Central
Article
Google Scholar
Clayton DF, George JM (1998) The synucleins: a family of proteins involved in synaptic function, plasticity, neurodegeneration and disease. Trends Neurosci 21(6):249–254
CAS
PubMed
Article
Google Scholar
Uversky VN (2007) Neuropathology, biochemistry, and biophysics of alpha-synuclein aggregation. J Neurochem 103(1):17–37. doi:10.1111/j.1471-4159.2007.04764.x
CAS
PubMed
Google Scholar
Resende R, Marques SC, Ferreiro E, Simoes I, Oliveira CR, Pereira CM (2013) Effect of alpha-synuclein on amyloid beta-induced toxicity: relevance to Lewy body variant of Alzheimer disease. Neurochem Res 38(4):797–806. doi:10.1007/s11064-013-0982-7
CAS
PubMed
Article
Google Scholar
McKeith I (2004) Dementia with Lewy bodies. Dialogues Clin Neurosci 6(3):333–341
PubMed
PubMed Central
Google Scholar
Prots I, Veber V, Brey S, Campioni S, Buder K, Riek R, Bohm KJ, Winner B (2013) alpha-Synuclein oligomers impair neuronal microtubule-kinesin interplay. J Biol Chem 288(30):21742–21754. doi:10.1074/jbc.M113.451815
CAS
PubMed
PubMed Central
Article
Google Scholar
Polymeropoulos MH, Lavedan C, Leroy E, Ide SE, Dehejia A, Dutra A, Pike B, Root H, Rubenstein J, Boyer R, Stenroos ES, Chandrasekharappa S, Athanassiadou A, Papapetropoulos T, Johnson WG, Lazzarini AM, Duvoisin RC, Di Iorio G, Golbe LI, Nussbaum RL (1997) Mutation in the alpha-synuclein gene identified in families with Parkinson’s disease. Science 276(5321):2045–2047
CAS
PubMed
Article
Google Scholar
Thomas B, Beal MF (2007) Parkinson’s disease. Hum Mol Genet 16(2):R183–194. doi:10.1093/hmg/ddm159
CAS
PubMed
Article
Google Scholar
Kruger R, Kuhn W, Muller T, Woitalla D, Graeber M, Kosel S, Przuntek H, Epplen JT, Schols L, Riess O (1998) Ala30Pro mutation in the gene encoding alpha-synuclein in Parkinson’s disease. Nat Genet 18(2):106–108. doi:10.1038/ng0298-106
CAS
PubMed
Article
Google Scholar
Schapira AH, Cooper JM, Dexter D, Clark JB, Jenner P, Marsden CD (1990) Mitochondrial complex I deficiency in Parkinson’s disease. J Neurochem 54(3):823–827
CAS
PubMed
Article
Google Scholar
Benecke R, Strumper P, Weiss H (1993) Electron transfer complexes I and IV of platelets are abnormal in Parkinson’s disease but normal in Parkinson-plus syndromes. Brain 116(Pt 6):1451–1463
PubMed
Article
Google Scholar
Mizuno Y, Ohta S, Tanaka M, Takamiya S, Suzuki K, Sato T, Oya H, Ozawa T, Kagawa Y (1989) Deficiencies in complex I subunits of the respiratory chain in Parkinson’s disease. Biochem Biophys Res Commun 163(3):1450–1455
CAS
PubMed
Article
Google Scholar
Lin MT, Beal MF (2006) Mitochondrial dysfunction and oxidative stress in neurodegenerative diseases. Nature 443(7113):787–795. doi:10.1038/nature05292
CAS
PubMed
Article
Google Scholar
Ebrahimi-Fakhari D, Cantuti-Castelvetri I, Fan Z, Rockenstein E, Masliah E, Hyman BT, McLean PJ, Unni VK (2011) Distinct roles in vivo for the ubiquitin-proteasome system and the autophagy-lysosomal pathway in the degradation of alpha-synuclein. J Neurosci 31(41):14508–14520. doi:10.1523/JNEUROSCI.1560-11.2011
CAS
PubMed
PubMed Central
Article
Google Scholar
Devi L, Raghavendran V, Prabhu BM, Avadhani NG, Anandatheerthavarada HK (2008) Mitochondrial import and accumulation of alpha-synuclein impair complex I in human dopaminergic neuronal cultures and Parkinson disease brain. J Biol Chem 283(14):9089–9100. doi:10.1074/jbc.M710012200
CAS
PubMed
PubMed Central
Article
Google Scholar
Xiong H, Wang D, Chen L, Choo YS, Ma H, Tang C, Xia K, Jiang W, Ronai Z, Zhuang X, Zhang Z (2009) Parkin, PINK1, and DJ-1 form a ubiquitin E3 ligase complex promoting unfolded protein degradation. J Clin Invest 119(3):650–660. doi:10.1172/JCI37617
CAS
PubMed
PubMed Central
Article
Google Scholar
Corti O, Lesage S, Brice A (2011) What genetics tells us about the causes and mechanisms of Parkinson’s disease. Physiol Rev 91(4):1161–1218. doi:10.1152/physrev.00022.2010
CAS
PubMed
Article
Google Scholar
Kamp F, Exner N, Lutz AK, Wender N, Hegermann J, Brunner B, Nuscher B, Bartels T, Giese A, Beyer K, Eimer S, Winklhofer KF, Haass C (2010) Inhibition of mitochondrial fusion by alpha-synuclein is rescued by PINK1, Parkin and DJ-1. EMBO J 29(20):3571–3589. doi:10.1038/emboj.2010.223
CAS
PubMed
PubMed Central
Article
Google Scholar
Scheffler K, Krohn M, Dunkelmann T, Stenzel J, Miroux B, Ibrahim S, von Bohlen Und Halbach O, Heinze HJ, Walker LC, Gsponer JA, Pahnke J (2012) Mitochondrial DNA polymorphisms specifically modify cerebral beta-amyloid proteostasis. Acta Neuropathol 124(2):199–208. doi:10.1007/s00401-012-0980-x
CAS
PubMed
PubMed Central
Article
Google Scholar
Kahle PJ, Neumann M, Ozmen L, Muller V, Odoy S, Okamoto N, Jacobsen H, Iwatsubo T, Trojanowski JQ, Takahashi H, Wakabayashi K, Bogdanovic N, Riederer P, Kretzschmar HA, Haass C (2001) Selective insolubility of alpha-synuclein in human Lewy body diseases is recapitulated in a transgenic mouse model. Am J Pathol 159(6):2215–2225.
CAS
PubMed
PubMed Central
Article
Google Scholar
Yu X, Wester-Rosenlof L, Gimsa U, Holzhueter SA, Marques A, Jonas L, Hagenow K, Kunz M, Nizze H, Tiedge M, Holmdahl R, Ibrahim SM (2009) The mtDNA nt7778 G/T polymorphism affects autoimmune diseases and reproductive performance in the mouse. Hum Mol Genet 18(24):4689–4698. doi:10.1093/hmg/ddp432
CAS
PubMed
Article
Google Scholar
Gellerich FN, Gizatullina Z, Nguyen HP, Trumbeckaite S, Vielhaber S, Seppet E, Zierz S, Landwehrmeyer B, Riess O, von Horsten S, Striggow F (2008) Impaired regulation of brain mitochondria by extramitochondrial Ca2+ in transgenic Huntington disease rats. J Biol Chem 283(45):30715–30724. doi:10.1074/jbc.M709555200
CAS
PubMed
PubMed Central
Article
Google Scholar
Clark JB, Nicklas WJ (1970) The metabolism of rat brain mitochondria. Preparation and characterization. J Biol Chem 245(18):4724–4731
CAS
PubMed
Google Scholar
Gellerich FN, Gizatullina Z, Trumbekaite S, Korzeniewski B, Gaynutdinov T, Seppet E, Vielhaber S, Heinze HJ, Striggow F (2012) Cytosolic Ca2+ regulates the energization of isolated brain mitochondria by formation of pyruvate through the malate-aspartate shuttle. Biochem J 443(3):747–755. doi:10.1042/BJ20110765
CAS
PubMed
Article
Google Scholar
Krohn M, Lange C, Hofrichter J, Scheffler K, Stenzel J, Steffen J, Schumacher T, Bruning T, Plath AS, Alfen F, Schmidt A, Winter F, Rateitschak K, Wree A, Gsponer J, Walker LC, Pahnke J (2011) Cerebral amyloid-beta proteostasis is regulated by the membrane transport protein ABCC1 in mice. J Clin Invest 121(10):3924–3931. doi:10.1172/JCI57867
CAS
PubMed
PubMed Central
Article
Google Scholar
Schumacher T, Krohn M, Hofrichter J, Lange C, Stenzel J, Steffen J, Dunkelmann T, Paarmann K, Frohlich C, Uecker A, Plath AS, Sommer A, Bruning T, Heinze HJ, Pahnke J (2012) ABC transporters B1, C1 and G2 differentially regulate neuroregeneration in mice. PLoS One 7(4):e35613. doi:10.1371/journal.pone.0035613
CAS
PubMed
PubMed Central
Article
Google Scholar
Hofrichter J, Krohn M, Schumacher T, Lange C, Feistel B, Walbroel B, Heinze HJ, Crockett S, Sharbel TF, Pahnke J (2013) Reduced Alzheimer’s disease pathology by St. John’s Wort treatment is independent of hyperforin and facilitated by ABCC1 and microglia activation in mice. Curr Alzheimer Res 10(10):1057–1069
CAS
PubMed
PubMed Central
Article
Google Scholar
Scheffler K, Stenzel J, Krohn M, Lange C, Hofrichter J, Schumacher T, Bruning T, Plath AS, Walker L, Pahnke J (2011) Determination of spatial and temporal distribution of microglia by 230nm-high-resolution, high-throughput automated analysis reveals different amyloid plaque populations in an APP/PS1 mouse model of Alzheimer’s disease. Curr Alzheimer Res 8(7):781–788
CAS
PubMed
PubMed Central
Article
Google Scholar
Gellerich FN, Deschauer M, Chen Y, Muller T, Neudecker S, Zierz S (2002) Mitochondrial respiratory rates and activities of respiratory chain complexes correlate linearly with heteroplasmy of deleted mtDNA without threshold and independently of deletion size. Biochim Biophys Acta 1556(1):41–52
CAS
PubMed
Article
Google Scholar
Wallace DC (1992) Mitochondrial genetics: a paradigm for aging and degenerative diseases? Science 256(5057):628–632
CAS
PubMed
Article
Google Scholar
Harman D (2003) The free radical theory of aging. Antioxid Redox Signal 5(5):557–561. doi:10.1089/152308603770310202
CAS
PubMed
Article
Google Scholar
Larsson NG (2010) Somatic mitochondrial DNA mutations in mammalian aging. Annu Rev Biochem 79:683–706. doi:10.1146/annurev-biochem-060408-093701
CAS
PubMed
Article
Google Scholar
Trifunovic A, Wredenberg A, Falkenberg M, Spelbrink JN, Rovio AT, Bruder CE, Bohlooly YM, Gidlof S, Oldfors A, Wibom R, Tornell J, Jacobs HT, Larsson NG (2004) Premature ageing in mice expressing defective mitochondrial DNA polymerase. Nature 429(6990):417–423. doi:10.1038/nature02517
CAS
PubMed
Article
Google Scholar
Schapira AH (2006) Etiology of Parkinson’s disease. Neurology 66(10 Suppl 4):S10–23
PubMed
Article
Google Scholar
Kovacs GG, Wagner U, Dumont B, Pikkarainen M, Osman AA, Streichenberger N, Leisser I, Verchere J, Baron T, Alafuzoff I, Budka H, Perret-Liaudet A, Lachmann I (2012) An antibody with high reactivity for disease-associated alpha-synuclein reveals extensive brain pathology. Acta Neuropathol 124(1):37–50. doi:10.1007/s00401-012-0964-x
CAS
PubMed
Article
Google Scholar
Kovacs GG, Breydo L, Green R, Kis V, Puska G, Lorincz P, Perju-Dumbrava L, Giera R, Pirker W, Lutz M, Lachmann I, Budka H, Uversky VN, Molnar K, Laszlo L (2014) Intracellular processing of disease-associated alpha-synuclein in the human brain suggests prion-like cell-to-cell spread. Neurobiol Dis 69:76–92. doi:10.1016/j.nbd.2014.05.020
CAS
PubMed
Article
Google Scholar
Meredith GE, Sonsalla PK, Chesselet MF (2008) Animal models of Parkinson’s disease progression. Acta Neuropathol 115(4):385–398. doi:10.1007/s00401-008-0350-x
PubMed
PubMed Central
Article
Google Scholar
Freichel C, Neumann M, Ballard T, Muller V, Woolley M, Ozmen L, Borroni E, Kretzschmar HA, Haass C, Spooren W, Kahle PJ (2007) Age-dependent cognitive decline and amygdala pathology in alpha-synuclein transgenic mice. Neurobiol Aging 28(9):1421–1435. doi:10.1016/j.neurobiolaging.2006.06.013
CAS
PubMed
Article
Google Scholar
Burre J, Sharma M, Tsetsenis T, Buchman V, Etherton MR, Sudhof TC (2010) Alpha-synuclein promotes SNARE-complex assembly in vivo and in vitro. Science 329(5999):1663–1667. doi:10.1126/science.1195227
CAS
PubMed
PubMed Central
Article
Google Scholar
Burre J, Sharma M, Sudhof TC (2012) Systematic mutagenesis of alpha-synuclein reveals distinct sequence requirements for physiological and pathological activities. J Neurosci 32(43):15227–15242. doi:10.1523/JNEUROSCI.3545-12.2012
CAS
PubMed
PubMed Central
Article
Google Scholar
Conway KA, Lee SJ, Rochet JC, Ding TT, Williamson RE, Lansbury PT Jr (2000) Acceleration of oligomerization, not fibrillization, is a shared property of both alpha-synuclein mutations linked to early-onset Parkinson’s disease: implications for pathogenesis and therapy. Proc Natl Acad Sci U S A 97(2):571–576
CAS
PubMed
PubMed Central
Article
Google Scholar
Assayag K, Yakunin E, Loeb V, Selkoe DJ, Sharon R (2007) Polyunsaturated fatty acids induce alpha-synuclein-related pathogenic changes in neuronal cells. Am J Pathol 171(6):2000–2011. doi:10.2353/ajpath.2007.070373
CAS
PubMed
PubMed Central
Article
Google Scholar
Zhang Y, Lu L, Jia J, Jia L, Geula C, Pei J, Xu Z, Qin W, Liu R, Li D, Pan N (2014) A lifespan observation of a novel mouse model: in vivo evidence supports abeta oligomer hypothesis. PLoS One 9(1):e85885. doi:10.1371/journal.pone.0085885
PubMed
PubMed Central
Article
Google Scholar
Hellwig S, Heinrich A, Biber K (2013) The brain’s best friend: microglial neurotoxicity revisited. Front Cell Neurosci 7:71. doi:10.3389/fncel.2013.00071
PubMed
PubMed Central
Article
Google Scholar
Wilkins HM, Carl SM, Weber SG, Ramanujan SA, Festoff BW, Linseman DA, Swerdlow RH (2015) Mitochondrial lysates induce inflammation and Alzheimer’s disease-relevant changes in microglial and neuronal cells. J Alzheimers Dis 45(1):305–318. doi:10.3233/JAD-142334
CAS
PubMed
PubMed Central
Google Scholar
Neumann M, Kahle PJ, Giasson BI, Ozmen L, Borroni E, Spooren W, Muller V, Odoy S, Fujiwara H, Hasegawa M, Iwatsubo T, Trojanowski JQ, Kretzschmar HA, Haass C (2002) Misfolded proteinase K-resistant hyperphosphorylated alpha-synuclein in aged transgenic mice with locomotor deterioration and in human alpha-synucleinopathies. J Clin Invest 110(10):1429–1439. doi:10.1172/JCI15777
CAS
PubMed
PubMed Central
Article
Google Scholar
Fernagut PO, Chalon S, Diguet E, Guilloteau D, Tison F, Jaber M (2003) Motor behaviour deficits and their histopathological and functional correlates in the nigrostriatal system of dopamine transporter knockout mice. Neuroscience 116(4):1123–1130
CAS
PubMed
Article
Google Scholar
Matsuura K, Kabuto H, Makino H, Ogawa N (1997) Pole test is a useful method for evaluating the mouse movement disorder caused by striatal dopamine depletion. J Neurosci Methods 73(1):45–48
CAS
PubMed
Article
Google Scholar
Fleming SM, Salcedo J, Fernagut PO, Rockenstein E, Masliah E, Levine MS, Chesselet MF (2004) Early and progressive sensorimotor anomalies in mice overexpressing wild-type human alpha-synuclein. J Neurosci 24(42):9434–9440. doi:10.1523/JNEUROSCI.3080-04.2004
CAS
PubMed
Article
Google Scholar
van der Putten H, Wiederhold KH, Probst A, Barbieri S, Mistl C, Danner S, Kauffmann S, Hofele K, Spooren WP, Ruegg MA, Lin S, Caroni P, Sommer B, Tolnay M, Bilbe G (2000) Neuropathology in mice expressing human alpha-synuclein. J Neurosci 20(16):6021–6029
PubMed
Google Scholar
Kupsch A, Schmidt W, Gizatullina Z, Debska-Vielhaber G, Voges J, Striggow F, Panther P, Schwegler H, Heinze HJ, Vielhaber S, Gellerich FN (2014) 6-Hydroxydopamine impairs mitochondrial function in the rat model of Parkinson’s disease: respirometric, histological, and behavioral analyses. J Neural Transm 121(10):1245–1257. doi:10.1007/s00702-014-1185-3
CAS
PubMed
Article
Google Scholar
Kuznetsov AV, Veksler V, Gellerich FN, Saks V, Margreiter R, Kunz WS (2008) Analysis of mitochondrial function in situ in permeabilized muscle fibers, tissues and cells. Nat Protoc 3(6):965–976. doi:10.1038/nprot.2008.61
CAS
PubMed
Article
Google Scholar
Gellerich FN, Gizatullina Z, Gainutdinov T, Muth K, Seppet E, Orynbayeva Z, Vielhaber S (2013) The control of brain mitochondrial energization by cytosolic calcium: the mitochondrial gas pedal. IUBMB Life 65(3):180–190. doi:10.1002/iub.1131
CAS
PubMed
Article
Google Scholar
Trumbeckaite S, Opalka JR, Neuhof C, Zierz S, Gellerich FN (2001) Different sensitivity of rabbit heart and skeletal muscle to endotoxin-induced impairment of mitochondrial function. Eur J Biochem 268(5):1422–1429
CAS
PubMed
Article
Google Scholar
Krebiehl G, Ruckerbauer S, Burbulla LF, Kieper N, Maurer B, Waak J, Wolburg H, Gizatullina Z, Gellerich FN, Woitalla D, Riess O, Kahle PJ, Proikas-Cezanne T, Kruger R (2010) Reduced basal autophagy and impaired mitochondrial dynamics due to loss of Parkinson’s disease-associated protein DJ-1. PLoS One 5(2):e9367. doi:10.1371/journal.pone.0009367
PubMed
PubMed Central
Article
Google Scholar
Panov A, Schonfeld P, Dikalov S, Hemendinger R, Bonkovsky HL, Brooks BR (2009) The neuromediator glutamate, through specific substrate interactions, enhances mitochondrial ATP production and reactive oxygen species generation in nonsynaptic brain mitochondria. J Biol Chem 284(21):14448–14456. doi:10.1074/jbc.M900985200
CAS
PubMed
PubMed Central
Article
Google Scholar
Pahnke J, Frohlich C, Krohn M, Schumacher T, Paarmann K (2013) Impaired mitochondrial energy production and ABC transporter function—a crucial interconnection in dementing proteopathies of the brain. Mech Ageing Dev 134(10):506–515. doi:10.1016/j.mad.2013.08.007
CAS
PubMed
Article
Google Scholar
Liesa M, Qiu W, Shirihai OS (2012) Mitochondrial ABC transporters function: the role of ABCB10 (ABC-me) as a novel player in cellular handling of reactive oxygen species. Biochim Biophys Acta 1823(10):1945–1957. doi:10.1016/j.bbamcr.2012.07.013
CAS
PubMed
Article
Google Scholar
van Assema DM, Lubberink M, Rizzu P, van Swieten JC, Schuit RC, Eriksson J, Scheltens P, Koepp M, Lammertsma AA, van Berckel BN (2012) Blood–brain barrier P-glycoprotein function in healthy subjects and Alzheimer’s disease patients: effect of polymorphisms in the ABCB1 gene. EJNMMI Res 2(1):57. doi:10.1186/2191-219X-2-57
PubMed
PubMed Central
Article
Google Scholar
Bartels AL, Willemsen AT, Kortekaas R, de Jong BM, de Vries R, de Klerk O, van Oostrom JC, Portman A, Leenders KL (2008) Decreased blood–brain barrier P-glycoprotein function in the progression of Parkinson’s disease, PSP and MSA. J Neural Transm 115(7):1001–1009. doi:10.1007/s00702-008-0030-y
CAS
PubMed
PubMed Central
Article
Google Scholar