Skip to main content

Advertisement

Log in

microRNAs Modulate Spatial Memory in the Hippocampus and in the Ventral Striatum in a Region-Specific Manner

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

MicroRNAs are endogenous, noncoding RNAs crucial for the post-transcriptional regulation of gene expression. Their role in spatial memory formation, however, is poorly explored. In this study, we analyzed learning-induced microRNA expression in the hippocampus and in the ventral striatum. Among miRNAs specifically downregulated by spatial training, we focused on the hippocampus-specific miR-324-5p and the ventral striatum-specific miR-24. In vivo overexpression of the two miRNAs demonstrated that miR-324-5p is able to impair memory if administered in the hippocampus but not in the ventral striatum, while the opposite is true for miR-24. Overall, these findings demonstrate a causal relationship between miRNA expression changes and spatial memory formation. Furthermore, they provide support for a regional dissociation in the post-transcriptional processes underlying spatial memory in the two brain structures analyzed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. O’Keefe J, Nadel L (1978) The hippocampus as a cognitive map. Oxford University Press, Oxford

    Google Scholar 

  2. Bird CM, Burgess N (2008) The hippocampus and memory: insights from spatial processing. Nat Rev Neurosci 9:182–194. doi:10.1038/nrn2335

    Article  CAS  PubMed  Google Scholar 

  3. McGaugh JL (2000) Memory—a century of consolidation. Science 287:248–251. doi:10.1126/science.287.5451.248

    Article  CAS  PubMed  Google Scholar 

  4. Kandel ER, Dudai Y, Mayford MR (2014) The molecular and systems biology of memory. Cell 157:163–186. doi:10.1016/j.cell.2014.03.001

    Article  CAS  PubMed  Google Scholar 

  5. Dudai Y (2012) The restless engram: consolidations never end. Annu Rev Neurosci 35:227–247. doi:10.1146/annurev-neuro-062111-150500

    Article  CAS  PubMed  Google Scholar 

  6. Miyashita T, Kubik S, Lewandowski G, Guzowski JF (2008) Networks of neurons, networks of genes: an integrated view of memory consolidation. Neurobiol Learn Mem 89:269–284. doi:10.1016/j.nlm.2007.08.012

    Article  CAS  PubMed  Google Scholar 

  7. Lamprecht R, LeDoux J (2004) Structural plasticity and memory. Nat Rev Neurosci 5:45–54. doi:10.1038/nrn1301

    Article  CAS  PubMed  Google Scholar 

  8. Filipowicz W, Bhattacharyya SN, Sonenberg N (2008) Mechanisms of post-transcriptional regulation by microRNAs: are the answers in sight? Nat Rev Genet 9:102–114. doi:10.1038/nrg2290

    Article  CAS  PubMed  Google Scholar 

  9. Kosik KS (2006) The neuronal microRNA system. Nat Rev Neurosci 7:911–920. doi:10.1038/nrn2037

    Article  CAS  PubMed  Google Scholar 

  10. Gao J, Wang W-Y, Mao Y-W et al (2010) A novel pathway regulates memory and plasticity via SIRT1 and miR-134. Nature 466:1105–1109. doi:10.1038/nature09271

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Im H-I, Hollander JA, Bali P, Kenny PJ (2010) MeCP2 controls BDNF expression and cocaine intake through homeostatic interactions with microRNA-212. Nat Neurosci 13:1120–1127. doi:10.1038/nn.2615

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Rinaldi A, Vincenti S, De Vito F et al (2010) Stress induces region specific alterations in microRNAs expression in mice. Behav Brain Res 208:265–269. doi:10.1016/j.bbr.2009.11.012

    Article  CAS  PubMed  Google Scholar 

  13. Chandrasekar V, Dreyer J-L (2011) Regulation of MiR-124, Let-7d, and MiR-181a in the accumbens affects the expression, extinction, and reinstatement of cocaine-induced conditioned place preference. Neuropsychopharmacology 36:1149–1164. doi:10.1038/npp.2010.250

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Tognini P, Putignano E, Coatti A, Pizzorusso T (2011) Experience-dependent expression of miR-132 regulates ocular dominance plasticity. Nat Neurosci 14:1237–1239. doi:10.1038/nn.2920

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Mannironi C, Camon J, De Vito F et al (2013) Acute stress alters amygdala microRNA miR-135a and miR-124 expression: inferences for corticosteroid dependent stress response. PLoS One 8, e73385. doi:10.1371/journal.pone.0073385

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Remenyi J, van den Bosch MWM, Palygin O et al (2013) miR-132/212 knockout mice reveal roles for these miRNAs in regulating cortical synaptic transmission and plasticity. PLoS One 8:1–14. doi:10.1371/journal.pone.0062509

    Article  Google Scholar 

  17. Smalheiser NR, Lugli G (2009) microRNA regulation of synaptic plasticity. Neuromol Med 11:133–140. doi:10.1007/s12017-009-8065-2

    Article  CAS  Google Scholar 

  18. Kye MJ, Neveu P, Lee Y-S et al (2011) NMDA mediated contextual conditioning changes miRNA expression. PLoS One 6, e24682. doi:10.1371/journal.pone.0024682

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Smalheiser NR, Lugli G, Lenon AL et al (2010) Olfactory discrimination training up-regulates and reorganizes expression of microRNAs in adult mouse hippocampus. ASN Neuro 2, e00028. doi:10.1042/AN20090055

    Article  PubMed  PubMed Central  Google Scholar 

  20. Wheeler AL, Teixeira CM, Wang AH et al (2013) Identification of a functional connectome for long-term fear memory in mice. PLoS Comput Biol 9, e1002853. doi:10.1371/journal.pcbi.1002853

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Bontempi B, Jaffard R, Destrade C (1996) Differential temporal evolution of post-training changes in regional brain glucose metabolism induced by repeated spatial discrimination training in mice: visualization of the memory consolidation process? Eur J Neurosci 8:2348–2360

    Article  CAS  PubMed  Google Scholar 

  22. Izquierdo I, Bevilaqua LRM, Rossato JI et al (2006) Different molecular cascades in different sites of the brain control memory consolidation. Trends Neurosci 29:496–505. doi:10.1016/j.tins.2006.07.005

    Article  CAS  PubMed  Google Scholar 

  23. Setlow B, McGaugh JL (1998) Sulpiride infused into the nucleus accumbens posttraining impairs memory of spatial water maze training. Behav Neurosci 112:603–610

    Article  CAS  PubMed  Google Scholar 

  24. Ito R, Robbins TW, Pennartz CMA, Everitt BJ (2008) Functional interaction between the hippocampus and nucleus accumbens shell is necessary for the acquisition of appetitive spatial context conditioning. J Neurosci 28:6950–6959. doi:10.1523/JNEUROSCI.1615-08.2008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Ferretti V, Roullet P, Sargolini F et al (2010) Ventral striatal plasticity and spatial memory. Proc Natl Acad Sci U S A 107:7945–7950. doi:10.1073/pnas.0911757107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Rinaldi A, Oliverio A, Mele A (2012) Spatial memory, plasticity and nucleus accumbens. Rev Neurosci 23:527–541. doi:10.1515/revneuro-2012-0070

    Article  CAS  PubMed  Google Scholar 

  27. Humphries MD, Prescott TJ (2010) The ventral basal ganglia, a selection mechanism at the crossroads of space, strategy, and reward. Prog Neurobiol 90:385–417. doi:10.1016/j.pneurobio.2009.11.003

    Article  PubMed  Google Scholar 

  28. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. Methods 25(4):402–408. doi:10.1006/meth.2001.1262

  29. Dweep H, Sticht C, Pandey P, Gretz N (2011) MiRWalk—database: prediction of possible miRNA binding sites by “walking” the genes of three genomes. J Biomed Inform 44:839–847. doi:10.1016/j.jbi.2011.05.002

    Article  CAS  PubMed  Google Scholar 

  30. Paraskevopoulou MD, Georgakilas G, Kostoulas N et al (2013) DIANA-microT web server v5.0: service integration into miRNA functional analysis workflows. Nucleic Acids Res 41:169–173. doi:10.1093/nar/gkt393

    Article  Google Scholar 

  31. Garcia DM, Baek D, Shin C et al (2011) Weak seed-pairing stability and high target-site abundance decrease the proficiency of lsy-6 and other microRNAs. Nat Struct Mol Biol 18:1139–1146. doi:10.1038/nsmb.2115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Franklin BJ, Paxinos G (1997) The mouse brain in stereotaxic coordinates. Academic, San Diego

    Google Scholar 

  33. Roullet P, Sargolini F, Oliverio A, Mele A (2001) NMDA and AMPA antagonist infusions into the ventral striatum impair different steps of spatial information processing in a nonassociative task in mice. J Neurosci 21:2143–2149

    CAS  PubMed  Google Scholar 

  34. Vetere G, Barbato C, Pezzola S et al (2014) Selective inhibition of miR-92 in hippocampal neurons alters contextual fear memory. Hippocampus 1465:1–22. doi:10.1002/hipo.22326

    Google Scholar 

  35. Zhou Z, Meng Y, Asrar S et al (2009) A critical role of Rho-kinase ROCK2 in the regulation of spine and synaptic function. Neuropharmacology 56:81–89. doi:10.1016/j.neuropharm.2008.07.031

    Article  CAS  PubMed  Google Scholar 

  36. Ferretti E, De Smaele E, Miele E et al (2008) Concerted microRNA control of Hedgehog signalling in cerebellar neuronal progenitor and tumour cells. EMBO J 27:2616–2627. doi:10.1038/emboj.2008.172

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Hung H, Hsiao Y, Gean P (2015) Learning induces sonic hedgehog signaling in the amygdala which promotes neurogenesis and long-term memory formation. Int J Neuropsychopharmacol 18:1–11. doi:10.1093/ijnp/pyu071

    Article  Google Scholar 

  38. Ferretti V, Perri V, Cristofoli A et al (2014) Phosphorylation of S845 GluA1 AMPA receptors modulates spatial memory and structural plasticity in the ventral striatum. Brain Struct Funct. doi:10.1007/s00429-014-0816-7

    PubMed  Google Scholar 

  39. Im H-I, Kenny PJ (2012) MicroRNAs in neuronal function and dysfunction. Trends Neurosci 35:325–334. doi:10.1016/j.tins.2012.01.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Wang Q, Huang Z, Xue H et al (2008) MicroRNA miR-24 inhibits erythropoiesis by targeting activin type I receptor ALK4. Blood 111:588–595. doi:10.1182/blood-2007-05-092718

    Article  CAS  PubMed  Google Scholar 

  41. Ageta H, Ikegami S, Miura M et al (2010) Activin plays a key role in the maintenance of long-term memory and late-LTP. Learn Mem 17:176–185. doi:10.1101/lm.16659010

    Article  CAS  PubMed  Google Scholar 

  42. Griggs EM, Young EJ, Rumbaugh G, Miller CA (2013) MicroRNA-182 regulates amygdala-dependent memory formation. J Neurosci 33:1734–1740. doi:10.1523/JNEUROSCI.2873-12.2013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Packard MG, Teather LA (1997) Double dissociation of hippocampal and dorsal-striatal memory systems by posttraining intracerebral injections of 2-amino-5-phosphonopentanoic acid. Behav Neurosci 111:543–551. doi:10.1037/0735-7044.111.3.543

    Article  CAS  PubMed  Google Scholar 

  44. Sargolini F, Florian C, Oliverio A et al (2003) Differential involvement of NMDA and AMPA receptors within the nucleus accumbens in consolidation of information necessary for place navigation and guidance strategy of mice. Learn Mem 10:285–292. doi:10.1101/lm.54003

    Article  PubMed  PubMed Central  Google Scholar 

  45. Morris RG, Anderson E, Lynch GS, Baudry M (1986) Selective impairment of learning and blockade of long-term potentiation by an N-methyl-D-aspartate receptor antagonist, AP5. Nature 319:774–776. doi:10.1038/319774a0

    Article  CAS  PubMed  Google Scholar 

  46. Riedel G, Micheau J, Lam AG et al (1999) Reversible neural inactivation reveals hippocampal participation in several memory processes. Nat Neurosci 2:898–905. doi:10.1038/13202

    Article  CAS  PubMed  Google Scholar 

  47. Edbauer D, Neilson JR, Foster KA et al (2010) Regulation of synaptic structure and function by FMRP-associated microRNAs miR-125b and miR-132. Neuron 65:373–384. doi:10.1016/j.neuron.2010.01.005

    Article  CAS  PubMed  Google Scholar 

  48. Ruiz i Altaba A, Palma V, Dahmane N (2002) Hedgehog-Gli signalling and the growth of the brain. Nat Rev Neurosci 3:24–33. doi:10.1038/nrn704

    Article  CAS  PubMed  Google Scholar 

  49. Dityatev A, Bukalo O, Schachner M (2008) Modulation of synaptic transmission and plasticity by cell adhesion and repulsion molecules. Neuron Glia Biol 4:197. doi:10.1017/S1740925X09990111

    Article  PubMed  Google Scholar 

  50. Groenewegen HJ, Wright CI, Beijer AV, Voorn P (1999) Convergence and segregation of ventral striatal inputs and outputs. Ann N Y Acad Sci 877:49–63

    Article  CAS  PubMed  Google Scholar 

  51. Schratt G (2009) microRNAs at the synapse. Nat Rev Neurosci 10:842–849. doi:10.1038/nrn2763

    Article  CAS  PubMed  Google Scholar 

  52. Schratt GM, Tuebing F, Nigh EA et al (2006) A brain-specific microRNA regulates dendritic spine development. Nature 439:283–289. doi:10.1038/nature04909

    Article  CAS  PubMed  Google Scholar 

  53. Gu Q-H, Yu D, Hu Z et al (2015) miR-26a and miR-384-5p are required for LTP maintenance and spine enlargement. Nat Commun 6:6789. doi:10.1038/ncomms7789

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Moser MB, Trommald M, Andersen P (1994) An increase in dendritic spine density on hippocampal CA1 pyramidal cells following spatial learning in adult rats suggests the formation of new synapses. Proc Natl Acad Sci U S A 91:12673–12675

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Naghdi N, Majlessi N, Bozorgmehr T (2003) The effects of anisomycin (a protein synthesis inhibitor) on spatial learning and memory in CA1 region of rats hippocampus. Behav Brain Res 139:69–73. doi:10.1016/S0166-4328(02)00060-8

    Article  CAS  PubMed  Google Scholar 

  56. Restivo L, Vetere G, Bontempi B, Ammassari-Teule M (2009) The formation of recent and remote memory is associated with time-dependent formation of dendritic spines in the hippocampus and anterior cingulate cortex. J Neurosci 29:8206–8214. doi:10.1523/JNEUROSCI.0966-09.2009

    Article  CAS  PubMed  Google Scholar 

  57. Wickens JR (2009) Synaptic plasticity in the basal ganglia. Behav Brain Res 199:119–128. doi:10.1016/j.bbr.2008.10.030

    Article  PubMed  Google Scholar 

  58. Baucum AJ, Brown AM, Colbran RJ (2013) Differential association of postsynaptic signaling protein complexes in striatum and hippocampus. J Neurochem 124:490–501. doi:10.1111/jnc.12101

    Article  CAS  PubMed  Google Scholar 

  59. Lisman J, Schulman H, Cline H (2002) The molecular basis of CaMKII function in synaptic and behavioural memory. Nat Rev Neurosci 3:175–190. doi:10.1038/nrn753

    Article  CAS  PubMed  Google Scholar 

  60. Gregorian C, Nakashima J, Le Belle J et al (2009) Pten deletion in adult neural stem/progenitor cells enhances constitutive neurogenesis. J Neurosci 29:1874–1886. doi:10.1523/JNEUROSCI.3095-08.2009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Amiri A, Cho W, Zhou J et al (2012) Pten deletion in adult hippocampal neural stem/progenitor cells causes cellular abnormalities and alters neurogenesis. J Neurosci 32:5880–5890. doi:10.1523/JNEUROSCI.5462-11.2012

    Article  CAS  PubMed  Google Scholar 

  62. Cheng L-C, Pastrana E, Tavazoie M, Doetsch F (2009) miR-124 regulates adult neurogenesis in the subventricular zone stem cell niche. Nat Neurosci 12:399–408. doi:10.1038/nn.2294

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Agostini M, Tucci P, Steinert et al (2011) microRNA-34a regulates neurite outgrowth, spinal morphology, and function. Proc Natl Acad Sci U S A 108:1–6. doi:10.1073/pnas.1112063108

    Article  Google Scholar 

  64. Lin Q, Wei W, Coelho CM et al (2011) The brain-specific microRNA miR-128b regulates the formation of fear-extinction memory. Nat Neurosci 14:1115–1117. doi:10.1038/nn.2891

    Article  CAS  PubMed  Google Scholar 

  65. Zovoilis A, Agbemenyah HY, Agis-Balboa RC et al (2011) microRNA-34c is a novel target to treat dementias. EMBO J 30:4299–4308. doi:10.1038/emboj.2011.327

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Yang Y, Shu X, Liu D et al (2012) EPAC null mutation impairs learning and social interactions via aberrant regulation of miR-124 and Zif268 translation. Neuron 73:774–788. doi:10.1016/j.neuron.2012.02.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Hansen KF, Karelina K, Sakamoto K et al (2013) miRNA-132: a dynamic regulator of cognitive capacity. Brain Struct Funct 218:817–831. doi:10.1007/s00429-012-0431-4

    Article  PubMed  Google Scholar 

  68. Dias BG, Goodman JV, Ahluwalia R et al (2014) Amygdala-dependent fear memory consolidation via miR-34a and notch signaling. Neuron 83:906–918. doi:10.1016/j.neuron.2014.07.019

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. He M, Liu Y, Wang X et al (2012) Cell-type-based analysis of MicroRNA profiles in the mouse brain. Neuron 73:35–48. doi:10.1016/j.neuron.2011.11.010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the colleagues Paola Paggi, Stefano Puglisi-Allegra, and Martine Ammassari-Teule for the useful discussion and the critical suggestions. This study was supported by the CNR grant AGESPAN (A.M., A.R.), Sapienza research grants (A.M., A.R., C.L.), FIRB no. RBIN06E9Z8 (R.N.). VL’s was supported by a grant from Regione Lazio.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrea Mele.

Additional information

F. Capitano, J. Camon and V. Ferretti contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplemental figure 1

Spatial training specific miRNAs expression in the HPC and VS. a. Mice trained in the hidden (spatial) and in the visible (cue) platform version of the water maze show similar learning curves, progressively decreasing the path length to reach the platform over subsequent sessions. Path length in vehicle and scramble intra-HPC administered mice is expressed as mean distance (cm) of 3 subsequent trials ± S.E.M. in training sessions. b. The scatter plot shows miRNAs relative change in the hippocampus and c. in the ventral striatum, expressed as log2 ratio, spatial - (vs. naïve controls), plotted against cue-trained (vs. naïve controls). (GIF 144 kb)

High Resolution Image (EPS 1454 kb)

Supplemental figure 2

Intra-HPC and intra-VS scramble miRNA infusions do not affect spatial memory. In the top panels is represented the experimental procedure. a. Mice administered pre-training intra-HPC with either PBS or scramble-mimic show similar learning curve and similar memory for platform location on probe test, 24 hrs after training. Path length in vehicle and scramble intra-HPC administered mice is expressed as mean distance (cm) of 3 subsequent trials ± S.E.M. in training sessions (ANOVA for treatment: F1,18 = 0.46, p = 0.5; sessions F5,90 = 8.6, p < 0.0001; training X sessions F5,90 = 0.51, p = 0.77). Quadrants preference is expressed as time (seconds) ± S.E.M. spent in the four different quadrants. ANOVA for treatment F1,18 = -0.05, p = 1; quadrants F3,54 = 26.73, p < 0.0001; treatment X quadrants F3,54 = 0.71; p = 0.55. * p < 0.05 correct quadrant vs. others. b. Mice administered pre-training intra-VS with either PBS or scramble-mimic show similar learning curve and similar memory for platform location on probe test, 24 hrs after training. Path length in vehicle and scramble intra-VS administered mice is expressed as mean distance (cm) of 3 subsequent trials ± S.E.M. in training sessions (ANOVA for treatment: F1,20 = 2.02, p = 0.17; sessions F5,100 = 17.24, p < 0.0001; training X sessions F5,100 = 0.26, p = 0.93). Quadrants preference is expressed as time (seconds) ± S.E.M. spent in the four different quadrants. ANOVA for treatment F1,20 = 0.11, p = 0.75; quadrants F3,60 = 22.74, p < 0.0001; treatment X quadrants F3,60 = 0.04; p = 0.99. * p < 0.05 correct quadrant vs. others. (GIF 248 kb)

High Resolution Image (EPS 1166 kb)

Supplemental figure 3

MicroRNAs over-expression in the hippocampus and in the ventral striatum does not affect mice performance during training. a-b. Mice administered with the miR-324-5p-mimic or scramble in the HPC (a) or in the VS (b) show similar performance during learning. Path length is expressed as mean distance (cm) of three subsequent trials ± S.E.M. (HPC: ANOVA for treatment F1,17 = 0.54, p = 0.47; for session F5,85 = 5.99, p < 0.0001; treatment X session F5,85 = 0.57, p = 0.72. VS: ANOVA for treatment F1,18 = 0.11, p = 0.74; for session F5,90 = 11.13, p < 0.0001; treatment X session F5,90 = 0.53, p = 0.74). c-d. Mice administered intra-HPC (c) or intra-VS (d) with miR-24-mimic, have similar performance during training sessions compared to scramble controls. Path length is expressed as mean distance (cm) of three subsequent trials ± S.E.M. (HPC ANOVA for treatment F1,26 = 3.77, p = 0.063; for session F5,130 = 5.36, p = 0.0002; treatment X session F5,130 = 0.514, p = 2.56. VS ANOVA for treatment F1,20 = 3.26, p = 0.086; for session F5,100 = 12.14, p < 0.0001; treatment X session F5,100 = 1.2, p = 0.31). (GIF 53 kb)

High Resolution Image (EPS 310 kb)

Supplemental figure 4

Schematic drawing from Franklin and Paxinos (1997) of coronal sections and anteroposterior coordinates relative to bregma from HPC- and VS-infused animals in the different experiments. Each symbol represents the approximate cannula placement. a. Intra-HPC miR-324-5p-mimic infusions. Squares: PBS; triangles: scramble circles: miR-324-5p-mimic. b. Intra-VS miR-324-5p-mimic infusions. Squares: pbs; triangles: scramble; circles: miR- 324-5p-mimic. c. Intra-HPC miR-24-mimic infusions. Squares: PBS; triangles: scramble; circles: miR-24-mimic. d. Intra-VS miR-24-mimic infusions. Squares: PBS; triangles: scramble; circles: miR-24-mimic. (GIF 317 kb)

High Resolution Image (EPS 1156 kb)

Supplementary Table S1

(DOCX 145 kb)

Supplementary Table S2

(DOCX 243 kb)

Supplementary Table S3

(DOCX 171 kb)

Supplementary Table S4

(DOCX 131 kb)

Supplementary Table S5

(DOCX 184 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Capitano, F., Camon, J., Ferretti, V. et al. microRNAs Modulate Spatial Memory in the Hippocampus and in the Ventral Striatum in a Region-Specific Manner. Mol Neurobiol 53, 4618–4630 (2016). https://doi.org/10.1007/s12035-015-9398-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-015-9398-5

Keywords

Navigation