Skip to main content
Log in

Molecular regulation of hypothalamic development and physiological functions

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

The hypothalamus is composed of many heterogeneous nuclei that control distinct physiological functions. Investigating molecular mechanisms that regulate the specification of these nuclei and specific neuronal subtypes, and their contribution to diverse hypothalamic functions, is an exciting research focus. Here, we begin by summarizing the hypothalamic functions of feeding regulation, sleep-wake cycles, stress responses, and circadian rhythm, and describing their anatomical bases. Next, we review the molecular regulation of formation of hypothalamic territories, specification of nuclei and subnuclei, and generation of specific neurons. Finally, we highlight physiological and behavioral consequences of altered hypothalamic development. Identifying molecules that regulate hypothalamic development and function will increase our understanding of hypothalamus-related disorders, such as obesity and diabetes, and aid in the development of therapies aimed specifically at their etiologies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Clifford BS, Bradford BL (2015) The hypothalamus. Curr Biol 24(23):1111–1116

    Google Scholar 

  2. Hetherington AW, Ranson SW (1940) Hypothalamic lesions and adiposity in the rat. Anat Rec 78:24

    Article  Google Scholar 

  3. Brobeck JR (1946) Mechanism of the development of obesity in animals with hypothalamic lesions. Physiol Rev 26(4):541–559

    CAS  PubMed  Google Scholar 

  4. Anand BK, Brobeck JR (1951) Hypothalamic control of food intake in rats and cats. Yale J Biol Med 24(2):123–140

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Bellinger LL, Bernardis LL (2002) The dorsomedial hypothalamic nucleus and its role in ingestive behavior and body weight regulation: lessons learned from lesioning studies. Physiol Behav 76(3):431–442

    Article  CAS  PubMed  Google Scholar 

  6. Leibowitz SF, Hammer NJ, Chang K (1981) Hypothalamic paraventricular nucleus lesions produce overeating and obesity in the rat. Physiol Behav 27(6):1031–1040

    Article  CAS  PubMed  Google Scholar 

  7. Morton GJ, Meek TH, Schwartz MW (2014) Neurobiology of food intake in health and disease. Nat Rev Neurosci 15(6):367–378

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Mercer RE, Chee MJ, Colmers WF (2011) The role of NPY in hypothalamic mediated food intake. Front Neuroendocrinol 32(4):398–415

    Article  CAS  PubMed  Google Scholar 

  9. Wang D, He X, Zhao Z, Feng Q, Lin R, Sun Y, Ding T, Xu F et al (2015) Whole-brain mapping of the direct inputs and axonal projections of POMC and AgRP neurons. Front Neuroanat 9:40

    PubMed  PubMed Central  Google Scholar 

  10. Aponte Y, Atasoy D, Sternson SM (2011) AGRP neurons are sufficient to orchestrate feeding behavior rapidly and without training. Nat Neurosci 14(3):351–355

    Article  CAS  PubMed  Google Scholar 

  11. Dietrich MO, Horvath TL (2013) Hypothalamic control of energy balance: insights into the role of synaptic plasticity. Trends Neurosci 36(2):65–73

    Article  CAS  PubMed  Google Scholar 

  12. Elias CF, Aschkenasi C, Lee C, Kelly J, Ahima RS, Bjorbaek C, Flier JS, Saper CB et al (1999) Leptin differentially regulates NPY and POMC neurons projecting to the lateral hypothalamic area. Neuron 23(4):775–786

    Article  CAS  PubMed  Google Scholar 

  13. Woods SC, Lotter EC, Mckay LD, Porte D (1979) Chronic intracerebroventricular infusion of insulin reduces food-intake and body-weight of baboons. Nature 282(5738):503–505

    Article  CAS  PubMed  Google Scholar 

  14. Parton LE, Ye CP, Coppari R, Enriori PJ, Choi B, Zhang CY, Xu C, Vianna CR et al (2007) Glucose sensing by POMC neurons regulates glucose homeostasis and is impaired in obesity. Nature 449(7159):228–232

    Article  CAS  PubMed  Google Scholar 

  15. Batterham RL, Cowley MA, Small CJ, Herzog H, Cohen MA, Dakin CL, Wren AM, Brynes AE et al (2002) Gut hormone PYY (3–36) physiologically inhibits food intake. Nature 418(6898):650–654

    Article  CAS  PubMed  Google Scholar 

  16. Cowley MA, Smith RG, Diano S, Tschop M, Pronchuk N, Grove KL, Strasburger CJ, Bidlingmaier M et al (2003) The distribution and mechanism of action of ghrelin in the CNS demonstrates a novel hypothalamic circuit regulating energy homeostasis. Neuron 37(4):649–661

    Article  CAS  PubMed  Google Scholar 

  17. Gibbs J, Young RC, Smith GP (1973) Cholecystokinin decreases food intake in rats. J Comp Physiol Psychol 84(3):488–495

    Article  CAS  PubMed  Google Scholar 

  18. Sternson SM, Shepherd GMG, Friedman JM (2005) Topographic mapping of VMH --> arcuate nucleus microcircuits and their reorganization by fasting. Nat Neurosci 8(10):1356–1363

    Article  CAS  PubMed  Google Scholar 

  19. Sabatier N, Rowe I, Leng G (2007) Central release of oxytocin and the ventromedial hypothalamus. Biochem Soc Trans 35(Pt 5):1247–1251

    Article  CAS  PubMed  Google Scholar 

  20. Valassi E, Scacchi M, Cavagnini F (2008) Neuroendocrine control of food intake. Nutr Metab Cardiovasc Dis 18(2):158–168

    Article  CAS  PubMed  Google Scholar 

  21. Saper CB, Chou TC, Elmquist JK (2002) The need to feed: homeostatic and hedonic control of eating. Neuron 36(2):199–211

    Article  CAS  PubMed  Google Scholar 

  22. Foster MT, Song CK, Bartness TJ (2010) Hypothalamic paraventricular nucleus lesion involvement in the sympathetic control of lipid mobilization. Obesity (Silver Spring) 18(4):682–689

    Article  Google Scholar 

  23. Gooley JJ, Schomer A, Saper CB (2006) The dorsomedial hypothalamic nucleus is critical for the expression of food-entrainable circadian rhythms. Nat Neurosci 9(3):398–407

    Article  CAS  PubMed  Google Scholar 

  24. Acosta-Galvan G, Yi CX, van der Vliet J, Jhamandas JH, Panula P, Angeles-Castellanos M, Basualdo MD, Escobar C et al (2011) Interaction between hypothalamic dorsomedial nucleus and the suprachiasmatic nucleus determines intensity of food anticipatory behavior. Proc Natl Acad Sci U S A 108(14):5813–5818

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Chou TC, Scammell TE, Gooley JJ, Gaus SE, Saper CB, Lu J (2003) Critical role of dorsomedial hypothalamic nucleus in a wide range of behavioral circadian rhythms. J Neurosci 23(33):10691–10702

    CAS  PubMed  Google Scholar 

  26. Anna V, van der Ploeg HP, Cheung NW, Huxley RR, Bauman AE (2008) Sociodemographic correlates of the increasing trend in prevalence of gestational diabetes mellitus in a large population of women between 1995 and 2005. Diabetes Care 31(12):2288–2293

    Article  PubMed  PubMed Central  Google Scholar 

  27. Clausen TD, Mathiesen ER, Hansen T, Pedersen O, Jensen DM, Lauenborg J, Damm P (2008) High prevalence of type 2 diabetes and pre-diabetes in adult offspring of women with gestational diabetes mellitus or type 1 diabetes the role of intrauterine hyperglycemia. Diabetes Care 31(2):340–346

    Article  PubMed  Google Scholar 

  28. Deierlein AL, Siega-Riz AM, Chantala K, Herring AH (2011) The association between maternal glucose concentration and child BMI at age 3 years. Diabetes Care 34(2):480–484

    Article  PubMed  PubMed Central  Google Scholar 

  29. Saper CB, Scammell TE, Lu J (2005) Hypothalamic regulation of sleep and circadian rhythms. Nature 437(7063):1257–1263

    Article  CAS  PubMed  Google Scholar 

  30. Alóe F (2005) Sleep-wake cycle mechanisms. Rev Bras Psiquiatr 27(I):9

    Google Scholar 

  31. Richter C, Woods IG, Schier AF (2014) Neuropeptidergic control of sleep and wakefulness. Annu Rev Neurosci 37:503–531

    Article  CAS  PubMed  Google Scholar 

  32. Saper CB, Fuller PM, Pedersen NP, Lu J, Scammell TE (2010) Sleep state switching. Neuron 68(6):1023–1042

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Pace-Schott EF, Hobson JA (2002) The neurobiology of sleep: genetics, cellular physiology and subcortical networks. Nature Reviews | Neuroscience 3:15

    Google Scholar 

  34. Mieda M, Tsujino N, Sakurai T (2013) Differential roles of orexin receptors in the regulation of sleep/wakefulness. Front Endocrinol (Lausanne) 4:57

    CAS  Google Scholar 

  35. Sakurai T (2007) The neural circuit of orexin (hypocretin): maintaining sleep and wakefulness. Nat Rev Neurosci 8(3):171–181

    Article  CAS  PubMed  Google Scholar 

  36. Chemelli RM, Willie JT, Sinton CM, Elmquist JK, Scammell T, Lee C, Richardson JA, Williams SC et al (1999) Narcolepsy in orexin knockout mice: molecular genetics of sleep regulation. Cell 98(4):437–451

    Article  CAS  PubMed  Google Scholar 

  37. Hara J, Beuckmann CT, Nambu T, Willie JT, Chemelli RM, Sinton CM, Sugiyama F, Yagami K et al (2001) Genetic ablation of orexin neurons in mice results in narcolepsy, hypophagia, and obesity. Neuron 30(2):345–354

    Article  CAS  PubMed  Google Scholar 

  38. Singh AK, Mahlios J, Mignot E (2013) Genetic association, seasonal infections and autoimmune basis of narcolepsy. J Autoimmun 43:26–31

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Fuller PM, Gooley JJ, Saper CB (2006) Neurobiology of the sleep-wake cycle: sleep architecture, circadian regulation, and regulatory feedback. J Biol Rhythms 21(6):482–493

    Article  CAS  PubMed  Google Scholar 

  40. Camfferman D, Lushington K, O’Donoghue F, Doug McEvoy R (2006) Obstructive sleep apnea syndrome in Prader-Willi syndrome: an unrecognized and untreated cause of cognitive and behavioral deficits? Neuropsychol Rev 16(3):123–129

    Article  PubMed  Google Scholar 

  41. Nelson LE, Lu J, Guo TZ, Saper CB, Franks NP, Maze M (2003) The alpha (2)-adrenoceptor agonist dexmedetomidine converges on an endogenous sleep-promoting pathway to exert its sedative effects. Anesthesiology 98(2):428–436

    Article  CAS  PubMed  Google Scholar 

  42. Ulrich-Lai YM, Herman JP (2009) Neural regulation of endocrine and autonomic stress responses. Nat Rev Neurosci 10(6):397–409

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Herman JP, Figueiredo H, Mueller NK, Ulrich-Lai Y, Ostrander MM, Choi DC, Cullinan WE (2003) Central mechanisms of stress integration: hierarchical circuitry controlling hypothalamo-pituitary-adrenocortical responsiveness. Front Neuroendocrinol 24(3):151–180

    Article  CAS  PubMed  Google Scholar 

  44. De Kloet ER, Joels M, Holsboer F (2005) Stress and the brain: from adaptation to disease. Nat Rev Neurosci 6(6):463–475

    Article  CAS  PubMed  Google Scholar 

  45. Galvao MDL, Sinigaglia-Coimbra R, Kawakami SE, Tufik S, Suchecki D (2009) Paradoxical sleep deprivation activates hypothalamic nuclei that regulate food intake and stress response. Psychoneuroendocrinology 34(8):1176–1183

    Article  CAS  Google Scholar 

  46. Knobloch HS, Charlet A, Hoffmann LC, Eliava M, Khrulev S, Cetin AH, Osten P, Schwarz MK et al (2012) Evoked axonal oxytocin release in the central amygdala attenuates fear response. Neuron 73(3):553–566

    Article  CAS  PubMed  Google Scholar 

  47. Stephan FK, Zucker I (1972) Circadian rhythms in drinking behavior and locomotor activity of rats are eliminated by hypothalamic lesions. Proc Natl Acad Sci U S A 69(6):1583–1586

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Ralph MR, Foster RG, Davis FC, Menaker M (1990) Transplanted suprachiasmatic nucleus determines circadian period. Science 247(4945):975–978

    Article  CAS  PubMed  Google Scholar 

  49. Aton SJ, Colwell CS, Harmar AJ, Waschek J, Herzog ED (2005) Vasoactive intestinal polypeptide mediates circadian rhythmicity and synchrony in mammalian clock neurons. Nat Neurosci 8(4):476–483

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Li JD, Hu WP, Boehmer L, Cheng MY, Lee AG, Jilek A, Siegel JM, Zhou QY (2006) Attenuated circadian rhythms in mice lacking the prokineticin 2 gene. J Neurosci 26(45):11615–11623

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Maywood ES, Chesham JE, O’Brien JA, Hastings MH (2011) A diversity of paracrine signals sustains molecular circadian cycling in suprachiasmatic nucleus circuits. Proc Natl Acad Sci U S A 108(34):14306–14311

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Brown TM, Hughes AT, Piggins HD (2005) Gastrin-releasing peptide promotes suprachiasmatic nuclei cellular rhythmicity in the absence of vasoactive intestinal polypeptide-VPAC2 receptor signaling. J Neurosci 25(48):11155–11164

    Article  CAS  PubMed  Google Scholar 

  53. Maywood ES, Reddy AB, Wong GK, O’Neill JS, O’Brien JA, McMahon DG, Harmar AJ, Okamura H et al (2006) Synchronization and maintenance of timekeeping in suprachiasmatic circadian clock cells by neuropeptidergic signaling. Curr Biol 16(6):599–605

    Article  CAS  PubMed  Google Scholar 

  54. Aggleton JP, Dumont JR, Warburton EC (2011) Unraveling the contributions of the diencephalon to recognition memory: a review. Learn Mem 18(6):384–400

    Article  PubMed  PubMed Central  Google Scholar 

  55. CM D (2014) How do mammillary body inputs contribute to anterior thalamic function? Neurosci Biobehav Rev 54:108–119

    Google Scholar 

  56. Vann SD, Aggleton JP (2004) The mammillary bodies: two memory systems in one? Nat Rev Neurosci 5(1):35–44

    Article  CAS  PubMed  Google Scholar 

  57. Vann SD (2010) Re-evaluating the role of the mammillary bodies in memory. Neuropsychologia 48(8):2316–2327

    Article  PubMed  Google Scholar 

  58. Shimogori T, Lee DA, Miranda-Angulo A, Yang Y, Wang H, Jiang L, Yoshida AC, Kataoka A et al (2010) A genomic atlas of mouse hypothalamic development. Nat Neurosci 13(6):767–776

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Kiecker C, Niehrs C (2001) A morphogen gradient of Wnt/beta-catenin signalling regulates anteroposterior neural patterning in Xenopus. Development 128(21):4189–4201

    CAS  PubMed  Google Scholar 

  60. Cavodeassi F (2014) Integration of anterior neural plate patterning and morphogenesis by the Wnt signaling pathway. Dev Neurobiol 74(8):759–771

    Article  PubMed  Google Scholar 

  61. Altmann CR, Brivanlou AH (2001) Neural patterning in the vertebrate embryo-wnt. International Review of Cytology-a Survey of Cell Biology 203:447–482

    CAS  Google Scholar 

  62. Clevers H, Nusse R (2012) Wnt/beta-catenin signaling and disease. Cell 149(6):1192–1205

    Article  CAS  PubMed  Google Scholar 

  63. Wang X, Kopinke D, Lin J, McPherson AD, Duncan RN, Otsuna H, Moro E, Hoshijima K et al (2012) Wnt signaling regulates postembryonic hypothalamic progenitor differentiation. Dev Cell 23(3):624–636

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Lee JE, Wu SF, Goering LM, Dorsky RI (2006) Canonical Wnt signaling through Lef1 is required for hypothalamic neurogenesis. Development 133(22):4451–4461

    Article  CAS  PubMed  Google Scholar 

  65. Kapsimali M, Caneparo L, Houart C, Wilson SW (2004) Inhibition of Wnt/Axin/beta-catenin pathway activity promotes ventral CNS midline tissue to adopt hypothalamic rather than floorplate identity. Development 131(23):5923–5933

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Benzler J, Andrews ZB, Pracht C, Stohr S, Shepherd PR, Grattan DR, Tups A (2013) Hypothalamic WNT signalling is impaired during obesity and reinstated by leptin treatment in male mice. Endocrinology 154(12):4737–4745

    Article  CAS  PubMed  Google Scholar 

  67. Wang X, Lee JE, Dorsky RI (2009) Identification of Wnt-responsive cells in the zebrafish hypothalamus. Zebrafish 6(1):49–58

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Kim CH, Oda T, Itoh M, Jiang D, Artinger KB, Chandrasekharappa SC, Driever W, Chitnis AB (2000) Repressor activity of headless/Tcf3 is essential for vertebrate head formation. Nature 407(6806):913–916

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Dessaud E, Ribes V, Balaskas N, Yang LL, Pierani A, Kicheva A, Novitch BG, Briscoe J et al (2010) Dynamic assignment and maintenance of positional identity in the ventral neural tube by the morphogen sonic hedgehog. Plos Biology 8(6)

  70. Dessaud E, Yang LL, Hill K, Cox B, Ulloa F, Ribeiro A, Mynett A, Novitch BG et al (2007) Interpretation of the sonic hedgehog morphogen gradient by a temporal adaptation mechanism. Nature 450(7170):717–720

    Article  CAS  PubMed  Google Scholar 

  71. Alvarez-Bolado G, Paul FA, Blaess S (2012) Sonic hedgehog lineage in the mouse hypothalamus: from progenitor domains to hypothalamic regions. Neural Dev 7:4

    Article  PubMed  PubMed Central  Google Scholar 

  72. Szabo NE, Zhao T, Cankaya M, Theil T, Zhou X, Alvarez-Bolado G (2009) Role of neuroepithelial Sonic hedgehog in hypothalamic patterning. J Neurosci 29(21):6989–7002

    Article  CAS  PubMed  Google Scholar 

  73. Haddad-Tovolli R, Paul FA, Zhang Y, Zhou X, Theil T, Puelles L, Blaess S, Alvarez-Bolado G (2015) Differential requirements for Gli2 and Gli3 in the regional specification of the mouse hypothalamus. Front Neuroanat 9:34

    PubMed  PubMed Central  Google Scholar 

  74. Manning L, Ohyama K, Saeger B, Hatano O, Wilson SA, Logan M, Placzek M (2006) Regional morphogenesis in the hypothalamus: a BMP-Tbx2 pathway coordinates fate and proliferation through Shh downregulation. Dev Cell 11(6):873–885

    Article  CAS  PubMed  Google Scholar 

  75. Ohyama K, Das R, Placzek M (2008) Temporal progression of hypothalamic patterning by a dual action of BMP. Development 135(20):3325–3331

    Article  CAS  PubMed  Google Scholar 

  76. Danesin C, Peres JN, Johansson M, Snowden V, Cording A, Papalopulu N, Houart C (2009) Integration of telencephalic Wnt and hedgehog signaling center activities by Foxg1. Dev Cell 16(4):576–587

    Article  CAS  PubMed  Google Scholar 

  77. Hallonet M, Hollemann T, Wehr R, Jenkins NA, Copeland NG, Pieler T, Gruss P (1998) Vax1 is a novel homeobox-containing gene expressed in the developing anterior ventral forebrain. Development 125(14):2599–2610

    CAS  PubMed  Google Scholar 

  78. Vacik T, Stubbs JL, Lemke G (2011) A novel mechanism for the transcriptional regulation of Wnt signaling in development. Genes Dev 25(17):1783–1795

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Jeong Y, Leskow FC, El-Jaick K, Roessler E, Muenke M, Yocum A, Dubourg C, Li X et al (2008) Regulation of a remote Shh forebrain enhancer by the Six3 homeoprotein. Nat Genet 40(11):1348–1353

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Pearson CA, Placzek M (2013) Development of the medial hypothalamus: forming a functional hypothalamic-neurohypophyseal interface. Curr Top Dev Biol 106:49–88

    Article  CAS  PubMed  Google Scholar 

  81. Pera EM, Kessel M (1998) Demarcation of ventral territories by the homeobox gene NKX2.1 during early chick development. Dev Genes Evol 208(3):168–171

    Article  CAS  PubMed  Google Scholar 

  82. Chuang JC, Mathers PH, Raymond PA (1999) Expression of three Rx homeobox genes in embryonic and adult zebrafish. Mech Dev 84(1–2):195–198

    Article  CAS  PubMed  Google Scholar 

  83. Davis AM, Seney ML, Stallings NR, Zhao LP, Parker KL, Tobet SA (2004) Loss of steroidogenic factor 1 alters cellular topography in the mouse ventromedial nucleus of the hypothalamus. J Neurobiol 60(4):424–436

    Article  CAS  PubMed  Google Scholar 

  84. Watson SJ, Barchas JD, Li CH (1977) beta-Lipotropin: localization of cells and axons in rat brain by immunocytochemistry. Proc Natl Acad Sci U S A 74(11):5155–5158

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Mcnay DEG, Pelling M, Claxton S, Guillemot F, Ang SL (2006) Mash1 is required for generic and subtype differentiation of hypothalamic neuroendocrine cells. Mol Endocrinol 20(7):1623–1632

    Article  CAS  PubMed  Google Scholar 

  86. Sommer L, Shah N, Rao M, Anderson DJ (1995) The cellular function of MASH1 in autonomic neurogenesis. Neuron 15(6):1245–1258

    Article  CAS  PubMed  Google Scholar 

  87. Yi SH, Jo AY, Park CH, Koh HC, Park RH, Suh-Kim H, Shin I, Lee YS et al (2008) Mash1 and neurogenin 2 enhance survival and differentiation of neural precursor cells after transplantation to rat brains via distinct modes of action. Mol Ther 16(11):1873–1882

    Article  CAS  PubMed  Google Scholar 

  88. Voronova A, Fischer A, Ryan T, Al Madhoun A, Skerjanc IS (2011) Ascl1/Mash1 is a novel target of Gli2 during Gli2-induced neurogenesis in P19 EC cells. Plos One 6(4)

  89. Pelling M, Anthwal N, McNay D, Gradwohl G, Leiter AB, Guillemot F, Ang SL (2011) Differential requirements for neurogenin 3 in the development of POMC and NPY neurons in the hypothalamus. Dev Biol 349(2):406–416

    Article  CAS  PubMed  Google Scholar 

  90. Anthwal N, Pelling M, Claxton S, Mellitzer G, Collin C, Kessaris N, Richardson WD, Gradwohl G et al (2013) Conditional deletion of neurogenin-3 using Nkx2.1iCre results in a mouse model for the central control of feeding, activity and obesity. Disease Models Mechanisms 6(5):1133–1145

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Scerbo MJ, Freire-Regatillo A, Cisternas CD, Brunotto M, Arevalo MA, Garcia-Segura LM, Cambiasso MJ (2014) Neurogenin 3 mediates sex chromosome effects on the generation of sex differences in hypothalamic neuronal development. Front Cell Neurosci 8:188

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  92. Good DJ, Porter FD, Mahon KA, Parlow AF, Westphal H, Kirsch IR (1997) Hypogonadism and obesity in mice with a targeted deletion of the Nhlh2 gene. Nat Genet 15(4):397–401

    Article  CAS  PubMed  Google Scholar 

  93. Good DJ, Braun T (2013) NHLH2: at the intersection of obesity and fertility. Trends Endocrinol Metab 24(8):385–390

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Ikeda Y, Luo X, Abbud R, Nilson JH, Parker KL (1995) The nuclear receptor steroidogenic factor 1 is essential for the formation of the ventromedial hypothalamic nucleus. Mol Endocrinol 9(4):478–486

    CAS  PubMed  Google Scholar 

  95. Kim KW, Zhao L, Parker KL (2009) Central nervous system-specific knockout of steroidogenic factor 1. Mol Cell Endocrinol 300(1–2):132–136

    Article  CAS  PubMed  Google Scholar 

  96. Majdic G, Young M, Gomez-Sanchez E, Anderson P, Szczepaniak LS, Dobbins RL, McGarry JD, Parker KL (2002) Knockout mice lacking steroidogenic factor 1 are a novel genetic model of hypothalamic obesity. Endocrinology 143(2):607–614

    Article  CAS  PubMed  Google Scholar 

  97. Zhao L, Bakke M, Hanley NA, Majdic G, Stallings NR, Jeyasuria P, Parker KL (2004) Tissue-specific knockouts of steroidogenic factor 1. Mol Cell Endocrinol 215(1–2):89–94

    Article  CAS  PubMed  Google Scholar 

  98. Kim KW, Zhao L, Donato J Jr, Kohno D, Xu Y, Elias CF, Lee C, Parker KL et al (2011) Steroidogenic factor 1 directs programs regulating diet-induced thermogenesis and leptin action in the ventral medial hypothalamic nucleus. Proc Natl Acad Sci U S A 108(26):10673–10678

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Zhao LP, Kim KW, Ikeda Y, Anderson KK, Beck L, Chase S, Tobet SA, Parker KL (2008) Central nervous system-specific knockout of steroidogenic factor 1 results in increased anxiety-like behavior. Mol Endocrinol 22(6):1403–1415

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Clark DD, Gorman MR, Hatori M, Meadows JD, Panda S, Mellon PL (2013) Aberrant development of the suprachiasmatic nucleus and circadian rhythms in mice lacking the homeodomain protein Six6. J Biol Rhythms 28(1):15–25

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Roy A, De Melo J, Chaturvedi D, Thein T, Cabrera-Socorro A, Houart C, Meyer G, Blackshaw S et al (2013) LHX2 is necessary for the maintenance of optic identity and for the progression of optic morphogenesis. J Neurosci 33(16):6877–6884

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. VanDunk C, Hunter LA, Gray PA (2011) Development, maturation, and necessity of transcription factors in the mouse suprachiasmatic nucleus. J Neurosci 31(17):6457–6467

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Bedont JL et al (2014) Lhx1 controls terminal differentiation and circadian function of the suprachiasmatic nucleus. Cell Reports 5(8):609–622

    Article  CAS  Google Scholar 

  104. Swanson LW, Sawchenko PE (1983) Hypothalamic integration: organization of the paraventricular and supraoptic nuclei. Annu Rev Neurosci 6:269–324

    Article  CAS  PubMed  Google Scholar 

  105. Morales-Delgado N, Merchan P, Bardet SM, Ferran JL, Puelles L, Diaz C (2011) Topography of somatostatin gene expression relative to molecular progenitor domains during ontogeny of the mouse hypothalamus. Front Neuroanat 5:10

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  106. Morales-Delgado N, Castro-Robles B, Ferran JL, Martinez-de-la-Torre M, Puelles L, Diaz C (2014) Regionalized differentiation of CRH, TRH, and GHRH peptidergic neurons in the mouse hypothalamus. Brain Struct Funct 219(3):1083–1111

    Article  CAS  PubMed  Google Scholar 

  107. Wang W, Lufkin T (2000) The murine Otp homeobox gene plays an essential role in the specification of neuronal cell lineages in the developing hypothalamus. Dev Biol 227(2):432–449

    Article  CAS  PubMed  Google Scholar 

  108. Acampora D, Postiglione MP, Avantaggiato V, Di Bonito M, Vaccarino FM, Michaud J, Simeone A (1999) Progressive impairment of developing neuroendocrine cell lineages in the hypothalamus of mice lacking the Orthopedia gene. Genes Dev 13(21):2787–2800

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Blechman J, Borodovsky N, Eisenberg M, Nabel-Rosen H, Grimm J, Levkowitz G (2007) Specification of hypothalamic neurons by dual regulation of the homeodomain protein Orthopedia. Development 134(24):4417–4426

    Article  CAS  PubMed  Google Scholar 

  110. Del Giacco L, Sordino P, Pistocchi A, Andreakis N, Tarallo R, Di Benedetto B, Cotelli F (2006) Differential regulation of the zebrafish orthopedia1 gene during fate determination of diencephalic neurons. BMC Dev Biol 6

  111. Amir-Zilberstein L, Blechman J, Sztainberg Y, Norton WNJ, Reuveny A, Borodovsky N, Tahor M, Bonkowsky JL et al (2012) Homeodomain protein Otp and activity-dependent splicing modulate neuronal adaptation to stress. Neuron 73(2):279–291

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Michaud JL, DeRossi C, May NR, Holdener BC, Fan CM (2000) ARNT2 acts as the dimerization partner of SIM1 for the development of the hypothalamus. Mech Dev 90(2):253–261

    Article  CAS  PubMed  Google Scholar 

  113. Michaud JL, Rosenquist T, May NR, Fan CM (1998) Development of neuroendocrine lineages requires the bHLH-PAS transcription factor SIM1. Genes Dev 12(20):3264–3275

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Jo YH, Chua S Jr (2009) Transcription factors in the development of medial hypothalamic structures. Am J Physiol Endocrinol Metab 297(3):E563–567

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Goshu E, Jin H, Fasnacht R, Sepenski M, Michaud JL, Fan CM (2002) Sim2 mutants have developmental defects not overlapping with those of Sim1 mutants. Mol Cell Biol 22(12):4147–4157

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Nakai S, Kawano H, Yudate T, Nishi M, Kuno J, Nagata A, Jishage K, Hamada H et al (1995) The POU domain transcription factor Brn-2 is required for the determination of specific neuronal lineages in the hypothalamus of the mouse. Genes Dev 9(24):3109–3121

    Article  CAS  PubMed  Google Scholar 

  117. Faivre L, Cormier-Daire V, Lapierre JM, Colleaux L, Jacquemont S, Genevieve D, Saunier P, Munnich A et al (2002) Deletion of the SIM1 gene (6q16.2) in a patient with a Prader-Willi-like phenotype. J Med Genet 39(8):594–596

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Bonnefond A, Raimondo A, Stutzmann F, Ghoussaini M, Ramachandrappa S, Bersten DC, Durand E, Vatin V et al (2013) Loss-of-function mutations in SIM1 contribute to obesity and Prader-Willi-like features. J Clin Invest 123(7):3037–3041

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Varela MC, Simoes-Sato AY, Kim CA, Bertola DR, De Castro CI, Koiffmann CP (2006) A new case of interstitial 6q16.2 deletion in a patient with Prader-Willi-like phenotype and investigation of SIM1 gene deletion in 87 patients with syndromic obesity. Eur J Med Genet 49(4):298–305

    Article  PubMed  Google Scholar 

  120. Ramachandrappa S, Raimondo A, Cali AM, Keogh JM, Henning E, Saeed S, Thompson A, Garg S et al (2013) Rare variants in single-minded 1 (SIM1) are associated with severe obesity. J Clin Invest 123(7):3042–3050

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Kublaoui BM, Gemelli T, Tolson KP, Wang Y, Zinn AR (2008) Oxytocin deficiency mediates hyperphagic obesity of Sim1 haploinsufficient mice. Mol Endocrinol 22(7):1723–1734

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Tolson KP, Gemelli T, Gautron L, Elmquist JK, Zinn AR, Kublaoui BM (2010) Postnatal Sim1 deficiency causes hyperphagic obesity and reduced Mc4r and oxytocin expression. J Neurosci 30(10):3803–3812

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Michaud JL, Boucher F, Melnyk A, Gauthier F, Goshu E, Levy E, Mitchell GA, Himms-Hagen J et al (2001) Sim1 haploinsufficiency causes hyperphagia, obesity and reduction of the paraventricular nucleus of the hypothalamus. Hum Mol Genet 10(14):1465–1473

    Article  CAS  PubMed  Google Scholar 

  124. Kublaoui BM, Holder JL Jr, Tolson KP, Gemelli T, Zinn AR (2006) SIM1 overexpression partially rescues agouti yellow and diet-induced obesity by normalizing food intake. Endocrinology 147(10):4542–4549

    Article  CAS  PubMed  Google Scholar 

  125. Vogt MC, Paeger L, Hess S, Steculorum SM, Awazawa M, Hampel B, Neupert S, Nicholls HT et al (2014) Neonatal insulin action impairs hypothalamic neurocircuit formation in response to maternal high-fat feeding. Cell 156(3):495–509

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Deiner MS, Sretavan DW (1999) Altered midline axon pathways and ectopic neurons in the developing hypothalamus of netrin-1- and DCC-deficient mice. J Neurosci 19(22):9900–9912

    CAS  PubMed  Google Scholar 

  127. Bian S, Xu TL, Sun T (2013) Tuning the cell fate of neurons and glia by microRNAs. Curr Opin Neurobiol 23(6):928–934

    Article  CAS  PubMed  Google Scholar 

  128. Bian S, Sun T (2011) Functions of noncoding RNAs in neural development and neurological diseases. Mol Neurobiol 44(3):359–373

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Iyengar BR, Choudhary A, Sarangdhar MA, Venkatesh KV, Gadgil CJ, Pillai B (2014) Non-coding RNA interact to regulate neuronal development and function. Front Cell Neurosci 8:47

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  130. Meister B, Herzer S, Silahtaroglu AI (2013) MicroRNAs in the hypothalamus. Neuroendocrinology 98(4):243–253

    Article  CAS  PubMed  Google Scholar 

  131. Amar L, Benoit C, Beaumont G, Vacher CM, Crepin D, Taouis M, Baroin-Tourancheau A (2012) MicroRNA expression profiling of hypothalamic arcuate and paraventricular nuclei from single rats using Illumina sequencing technology. J Neurosci Methods 209(1):134–143

    Article  CAS  PubMed  Google Scholar 

  132. Cimadamore F, Amador-Arjona A, Chen C, Huang CT, Terskikh AV (2013) SOX2-LIN28/let-7 pathway regulates proliferation and neurogenesis in neural precursors. Proc Natl Acad Sci U S A 110(32):E3017–3026

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Schneeberger M, Altirriba J, Garcia A, Esteban Y, Castano C, Garcia-Lavandeira M, Alvarez CV, Gomis R et al (2012) Deletion of miRNA processing enzyme Dicer in POMC-expressing cells leads to pituitary dysfunction, neurodegeneration and development of obesity. Mol Metab 2(2):74–85

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by a grant from the National Science Foundation of China (81471152), the Hirschl/Weill-Caulier Trust (T.S.), and an R01-MH083680-06 grant from the NIH/NIMH (T.S.).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yanxia Gao or Tao Sun.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gao, Y., Sun, T. Molecular regulation of hypothalamic development and physiological functions. Mol Neurobiol 53, 4275–4285 (2016). https://doi.org/10.1007/s12035-015-9367-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-015-9367-z

Keywords

Navigation