Skip to main content
Log in

Extremely Low Frequency Magnetic Field (ELF-MF) Exposure Sensitizes SH-SY5Y Cells to the Pro-Parkinson’s Disease Toxin MPP+

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Parkinson’s disease (PD) is a neurodegenerative disorder characterized by dopaminergic neuron loss, with an etiopathogenesis involving both genetic and environmental factors. The occupational/residential exposure to the electromagnetic fields has been recently associated with an increased risk of neurodegenerative diseases; it has been thus proposed that the extremely low frequency magnetic field (ELF-MF) may contribute to neurodegenerative etiopathogenesis, as its interaction with biological systems directly impairs redox homeostasis in specific areas of the brain. The molecular mechanisms elicited by ELF-MF, and their potential involvement in PD onset, still remain unclear. To this end, we set up a generator of ELF-MF able to stably and homogeneously reproduce environmental prolonged exposure to ELF-MF (50 Hz, 1 mT). Results obtained indicate that ELF-MF exposure alters cell response of SH-SY5Y cells to MPP+. We demonstrate that ELF-MF does not affect per se survival, shape, and morphology of both proliferating and differentiated SH-SY5Y cells but significantly impairs redox homeostasis and thiol content, triggering an increase in protein carbonylation. As a result, toxicity of MPP+, even at low doses, is highly enhanced in ELF-MF-exposed cells due to a significant increase in ROS levels, potentiation of oxidative damage, and induction of a caspase-dependent apoptosis. Pre-incubation with the thiol antioxidants N-acetyl-l-cysteine and GSH ethyl-ester significantly reduces the extent of oxidative damage and protects cells from death induced by the combined treatment ELF-MF/MPP+. Taken overall, our results demonstrate the redox-based molecular interaction between ELF-MF and PD neurotoxins in vitro, and open a new scenario for defining the synergy of environmental factors in PD onset.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

AD:

Alzheimer’s disease

ALS:

Amyotrophic lateral sclerosis

B field:

Induction magnetic field

BSO:

Buthionine-S,R-sulfoximine

CMFDA:

5-chloromethylfluorescein diacetate

DAergic:

Dopaminergic

DHE:

Dihydroethidium

E field:

Electric field

ELF-MF:

Extremely low frequency magnetic fields

GSH:

Reduced glutathione

GSHest:

Reduced glutathione ethyl ester

H2-DCFDA:

2′,7′-Dichlorofluorescin diacetate

LBs:

Lewy bodies

MFI:

Mean fluorescence intensity

MPP+ :

1-methyl-4-phenylpyridinium

MPTP:

Methyl-4-phenyl-1,2,3,6-tetra-hydropyridine

NAC:

N-Acetyl-l-cysteine

PD:

Parkinson’s disease

PI:

Propidium iodide

PMA:

Phorbol 12-myristate 13-acetate

RA:

Retinoic acid

RMS:

Root-mean-square

ROS:

Reactive oxygen species

SN:

Substrantia nigra

References

  1. Dauer W, Przedborski S (2003) Parkinson’s disease: mechanisms and models. Neuron 39:889–909, Review

    Article  CAS  PubMed  Google Scholar 

  2. Thomas B, Beal MF (2007) Parkinson’s disease. Hum Mol Genet 16:R183–R194

    Article  CAS  PubMed  Google Scholar 

  3. Binukumar BK, Bal A, Kandimalla RJ, Gill KD (2010) Nigrostriatal neuronal death following chronic dichlorvos exposure: crosstalk between mitochondrial impairments, α synuclein aggregation, oxidative damage and behavioral changes. Mol Brain 3:35

    CAS  PubMed  Google Scholar 

  4. Evans PH (1993) Free radicals in brain metabolism and pathology. Br Med Bull 49(3):577–587, Review

    Article  CAS  PubMed  Google Scholar 

  5. Alam ZI, Jenner A, Daniel SE, Lees AJ, Cairns N, Marsden CD, Jenner P, Halliwell B (1997) Oxidative DNA damage in the parkinsonian brain: an apparent selective increase in 8-hydroxyguanine levels in substantia nigra. J Neurochem 69(3):1196–1203

    Article  CAS  PubMed  Google Scholar 

  6. Schapira AHV (2007) Mitochondrial dysfunction in Parkinson’s disease. Cell Death Differ 14(7):1261–1266

    Article  CAS  PubMed  Google Scholar 

  7. Smeyne M, Smeyne RJ (2013) Glutathione metabolism and Parkinson’s disease. Free Radic Biol Med 62:13–25, Review

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Piccini P, Burn DJ, Ceravolo R, Maraganore D, Brooks DJ (1999) The role of inheritance in sporadic Parkinson’s disease: evidence from a longitudinal study of dopaminergic function in twins. Ann Neurol 45(5):577–582

    Article  CAS  PubMed  Google Scholar 

  9. Elbaz A, Dufouil C, Alpérovitch A (2007) Interaction between genes and environment in neurodegenerative diseases. C R Biol 330(4):318–328, Review

    Article  CAS  PubMed  Google Scholar 

  10. Kieburtz K, Wunderle KB (2013) Parkinson’s disease: evidence for environmental risk factors. Mov Disord 28(1):8–13, Review

    Article  CAS  PubMed  Google Scholar 

  11. Gorell JM, Johnson CC, Rybicki BA, Peterson EL, Richardson RJ (1998) The risk of Parkinson’s disease with exposure to pesticides, farming, well water, and rural living. Neurology 50(5):1346–1350

    Article  CAS  PubMed  Google Scholar 

  12. Savitz DA, Checkoway H, Loomis DP (1998) Magnetic field exposure and neurodegenerative disease mortality among electric utility workers. Epidemiology 4:398–404

    Article  Google Scholar 

  13. Davanipour Z, Tseng CC, Lee PJ, Sobel E (2007) A case-control study of occupational magnetic field exposure and Alzheimer’s disease: results from the California Alzheimer’s Disease Diagnosis and Treatment Centers. BMC Neurol 7:13

    Article  PubMed  PubMed Central  Google Scholar 

  14. Li CY, Sung FC (2003) Association between occupational exposure to power frequency electromagnetic fields and amyotrophic lateral sclerosis: a review. Am J Ind Med 43(2):212–220

    Article  PubMed  Google Scholar 

  15. Consales C, Merla C, Marino C, Benassi B (2012) Electromagnetic fields, oxidative stress, and neurodegeneration. Int J Cell Biol 2012:683897

    Article  PubMed  PubMed Central  Google Scholar 

  16. Wechsler LS, Checkoway H, Franklin GM, Costa LG (1991) A pilot study of occupational and environmental risk factors for Parkinson’s disease. Neurotoxicology 12(3):387–392

    CAS  PubMed  Google Scholar 

  17. Adair RK (1999) Effects of very weak magnetic fields on radical pair reformation. Bioelectromagnetics 20(4):255–263

    Article  CAS  PubMed  Google Scholar 

  18. Samano JM, Torres-Duran PV, Juarez-Oropeza MA, Verdugo-Diaz L (2012) Effects of acute extremely low frequency electromagnetic field exposure on the antioxidant status and lipid levels in rat brain. Arch Med Res 43:183–189

    Article  Google Scholar 

  19. Di Loreto S, Falone S, Caracciolo V, Sebastiani P, D’Alessandro A, Mirabilio A, Zimmitti V, Amicarelli F (2009) Fifty hertz extremely low-frequency magnetic field exposure elicits redox and trophic response in rat-cortical neurons. J Cell Physiol 219(2):334–343

    Article  PubMed  Google Scholar 

  20. Morabito C, Guarnieri S, Fanò G, Mariggiò MA (2010) Effects of acute and chronic low frequency electromagnetic field exposure on PC12 cells during neuronal differentiation. Cell Physiol Biochem 26(6):947–958

    Article  CAS  PubMed  Google Scholar 

  21. Falone S, Grossi MR, Cinque B, D’Angelo B, Tettamanti E et al (2007) Fifty Hertz extremely low frequency electromagnetic field causes changes in redox and differentiative status in neuroblastoma cells. Int J Biochem Cell Biol 39(11):2093–2106

    Article  CAS  PubMed  Google Scholar 

  22. Beal MF (2001) Experimental models of Parkinson’s disease. Nat Rev Neurosci 2(5):325–334, Review

    Article  CAS  PubMed  Google Scholar 

  23. Langston JW, Ballard PA Jr (1983) Parkinson’s disease in a chemist working with 1-methyl-4-phenyl-1,2,5,6-tetrahydropyridine. N Engl J Med 309(5):310

    CAS  PubMed  Google Scholar 

  24. Burns RS, Chiueh CC, Markey SP, Ebert MH, Jacobowitz DM, Kopin IJ (1983) A primate model of parkinsonism: selective destruction of dopaminergic neurons in the pars compacta of the substantia nigra by N-methyl-4-phenyl-1,2,3,6-tetrahydropyridine. Proc Natl Acad Sci U S A 80(14):4546–4550

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Suzuki K, Mizuno Y, Yoshida M (1990) Effects of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-like compounds on mitochondrial respiration. Adv Neurol 53:215–218

    CAS  PubMed  Google Scholar 

  26. Presgraves SP, Ahmed T, Borwege S, Joyce JN (2004) Terminally differentiated SH-SY5Y cells provide a model system for studying neuroprotective effects of dopamine agonists. Neurotox Res 5(8):579–598

    Article  PubMed  Google Scholar 

  27. Lodato R, Merla C, Pinto R, Mancini S, Lopresto V, Lovisolo GA (2013) Complex magnetic field exposure system for in vitro experiments at intermediate frequencies. Bioelectromagnetics 34(3):211–219

    Article  PubMed  Google Scholar 

  28. Schuderer J, Oesch W, Felber N, Spät D, Kuster N (2004) In vitro exposure apparatus for ELF magnetic fields. Bioelectromagnetics 25(8):582–591

    Article  PubMed  Google Scholar 

  29. Kuster N, Schuderer J, Christ A, Futter P, Ebert S (2004) Guidance for exposure design of human studies addressing health risk evaluations of mobile phones. Bioelectromagnetics 25(7):524–529

    Article  PubMed  Google Scholar 

  30. Cardaci S, Filomeni G, Rotilio G, Ciriolo MR (2010) p38MAPK/p53 signaling axis mediates neuronal apoptosis in response to tetrahydrobiopterin-induced oxidative stress and glucose uptake inhibition: implication for neurodegeneration. Biochem J 430:439–451

    Article  CAS  PubMed  Google Scholar 

  31. Filomeni G, Graziani I, De Zio D, Dini L, Centonze D, Rotilio G, Ciriolo MR (2012) Neuroprotection of kaempferol by autophagy in models of rotenone-mediated acute toxicity: possible implications for Parkinson’s disease. Neurobiol Aging 33(4):767–785

    Article  CAS  PubMed  Google Scholar 

  32. Poot M, Kavanagh TJ, Kang HC, Haugland RP, Rabinovitch PS (1991) Flow cytometric analysis of cell cycle-dependent changes in cell thiol level by combining a new laser dye with Hoechst 33342. Cytometry 12(2):184–187

    Article  CAS  PubMed  Google Scholar 

  33. Darzynkiewicz Z, Juan G, Li X, Gorczyca W, Murakami T, Traganos F (1997) Cytometry in cell necrobiology: analysis of apoptosis and accidental cell death (necrosis). Cytometry 27(1):1–20

    Article  CAS  PubMed  Google Scholar 

  34. Wilkins RC, Kutzner BC, Truong M, Sanchez-Dardon J, McLean JR (2002) Analysis of radiation-induced apoptosis in human lymphocytes: flow cytometry using Annexin V and propidium iodide versus the neutral comet assay. Cytometry 48(1):14–19

    Article  CAS  PubMed  Google Scholar 

  35. Metkar S, Wang B, Catalan E, Anderluh G, Gilbert RJ, Pardo J, Froelich CJ (2011) Perforin rapidly induces plasma membrane phospholipid flip-flop. PLoS One 6(9), e24286

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Wong CM, Cheema AK, Zhang L, Suzuki YJ (2008) Protein carbonylation as novel mechanism in redox signaling. Circ Res 102:310–318

    Article  CAS  PubMed  Google Scholar 

  37. Nicotra A, Parvez S (2002) Apoptotic molecules and MPTP-induced cell death. Neurotoxicol Teratol 24(5):599–605

    Article  CAS  PubMed  Google Scholar 

  38. Xie HR, Hu LS, Li GY (2010) SH-SY5Y human neuroblastoma cell line: in vitro cell model of dopaminergic neurons in Parkinson’s disease. Chin Med J (Engl) 123(8):1086–1092, Review

    CAS  Google Scholar 

  39. Korecka JA, van Kesteren RE, Blaas E, Spitzer SO, Kamstra JH, Smit AB, Swaab DF, Verhaagen J et al (2003) Phenotypic characterization of retinoic acid differentiated SH-SY5Y cells by transcriptional profiling. PLoS One 8(5), e63862

    Article  Google Scholar 

  40. Wertheimer N, Leeper E (1979) Electrical wiring configurations and childhood cancer. Am J Epidemiol 109(3):273–284

    Article  CAS  PubMed  Google Scholar 

  41. Loomis DP, Savitz DA (1990) Mortality from brain cancer and leukaemia among electrical workers. Br J Ind Med 47(9):633–638

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Mattsson MO, Simkò (2012) Is there a relationship between extremely low frequency magnetic field exposure, inflammation and neurodegenerative diseases? A review of in vivo and in vitro experimental evidences. Toxicology 301:1–12

    Article  CAS  PubMed  Google Scholar 

  43. Di Lazzaro V, Capone F, Apollonio F, Borea PA, Cadossi R, Fassina L, Grassi C, Liberti M et al (2013) A consensus panel review of central nervous system effects of the exposure to low-intensity extremely low frequency magnetic fields. Brain Stimul 6:469–476

    Article  PubMed  Google Scholar 

  44. Gordon J, Amini S, White MK (2013) General overview of neuronal cell culture. Methods Mol Biol 1078:1–8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. International Commission on Non-Ionizing Radiation Protection (2010) Guidelines for limiting exposure to time-varying electric and magnetic fields (1 Hz to 100 kHz). Health Phys 99(6):818–836

    Google Scholar 

  46. Reale M, Kamal MA, Patruno A, Costantini E, D’Angelo C, Pesce M, Greig NH (2014) Neuronal cellular responses to extremely low frequency electromagnetic field exposure: implications regarding oxidative stress and neurodegeneration. PLoS One 9(8), e104973

    Article  PubMed  PubMed Central  Google Scholar 

  47. Luukkonen J, Liimatainen A, Juutilainen J, Naarala J (2014) Induction of genomic instability, oxidative processes, and mitochondrial activity by 50Hz magnetic fields in human SH-SY5Y neuroblastoma cells. Mutat Res Fundam Mol Mech Mutagen 760:33–41

    Article  CAS  Google Scholar 

  48. Cadet JL, Brannock C (1998) Free radicals and the pathobiology of brain dopamine systems. Neurochem Int 32:117–131

    Article  CAS  PubMed  Google Scholar 

  49. Infanger DW, Sharma RV, Davisson RL (2006) NADPH oxidases of the brain: distribution, regulation, and function. Antioxid Redox Signal 8(9-10):1583–1596, Review

    Article  CAS  PubMed  Google Scholar 

  50. Pearce RK, Owen A, Daniel S, Jenner P, Marsden CD (1997) Alterations in the distribution of glutathione in the substantia nigra in Parkinson’s disease. J Neural Transm 104(6-7):661–677

    Article  CAS  PubMed  Google Scholar 

  51. Jellinger KA (2008) A critical reappraisal of current staging of Lewy-related pathology in human brain. Acta Neuropathol 116:1–16

    Article  CAS  PubMed  Google Scholar 

  52. Chinta SJ, Andersen JK (2006) Reversible inhibition of mitochondrial complex I activity following chronic dopaminergic glutathione depletion in vitro: implications for Parkinson’s disease. Free Radic Biol Med 41:1442–1448

    Article  CAS  PubMed  Google Scholar 

  53. Holmay MJ, Terpstra M, Coles L, Mishra U, Ahlskog M, Oz G, Cloyd JC, Tuite PJ (2013) N-acetylcysteine boosts brain and blood glutathione in Gaucher and Parkinson disease. Clin Neuropharmacol 36(4):103–106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Berman AE, Chan WY, Brennan AM et al (2011) N-acetylcysteine prevents loss of dopaminergic neurons in the EAAC1-/- mouse. Ann Neurol 69:509–520

    Article  CAS  PubMed  Google Scholar 

  55. Wüllner U, Löschmann PA, Schulz JB, Schmid A, Dringen R, Eblen F, Turski L, Klockgether T (1996) Glutathione depletion potentiates MPTP and MPP+ toxicity in nigral dopaminergic neurones. Neuroreport 7(4):921–923

    Article  PubMed  Google Scholar 

  56. Bizzozero OA, Ziegler JL, De Jesus G, Bolognani F (2006) Acute depletion of reduced glutathione causes extensive carbonylation of rat brain proteins. J Neurosci Res 83(4):656–667

    Article  CAS  PubMed  Google Scholar 

  57. Chinta SJ, Kumar MJ, Hsu M et al (2007) Inducible alterations of glutathione levels in adult dopaminergic midbrain neurons result in nigrostriatal degeneration. J Neurosci 27:13997–14006

    Article  CAS  PubMed  Google Scholar 

  58. Ma Q, Deng P, Zhu G, Liu C, Zhang L, Zhou Z, Luo X, Li M et al (2014) Extremely low frequency electromagnetic fields affect transcript levels of neuronal differentiation-related genes in embryonic neural stem cells. PLoS One 9(3), e90041

    Article  PubMed  PubMed Central  Google Scholar 

  59. Manikonda PK, Rajendrap, Devendranath D, Gunasekaran B, Channakeshava, Aradhya RS, Sashidar RB, Subramanyam C (2007) Influence of the extremely low frequency magnetic field and Ca2+ signaling and NMDA receptor in rat hippocampus. Neurosci Lett 413(2):145–149

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

G.F. is supported by grants from the National Ministry of Health, Young Italian Researcher Grant-2008 (Grant GR-2008-1138121), and from the Italian Association for Cancer Research, AIRC-MFAG 2011 (Grant 11452). We are very grateful to Francesca Pacchierotti for her helpful criticisms and scientific support and to Martin W. Bennett for manuscript editing.

Conflict of Interest

The authors declare no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Barbara Benassi or Claudia Consales.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Online Resource 1

(PPT 359 kb)

Online Resource 2

(PPT 180 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Benassi, B., Filomeni, G., Montagna, C. et al. Extremely Low Frequency Magnetic Field (ELF-MF) Exposure Sensitizes SH-SY5Y Cells to the Pro-Parkinson’s Disease Toxin MPP+ . Mol Neurobiol 53, 4247–4260 (2016). https://doi.org/10.1007/s12035-015-9354-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-015-9354-4

Keywords

Navigation