Skip to main content

Advertisement

Log in

A New Perspective of Lysosomal Cation Channel-Dependent Homeostasis in Alzheimer’s Disease

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Studies have reported typically biophysical lysosomal cation channels including TPCs. Their plausible biological roles are being elucidated by pharmacological, genetic and conventional patch clamp procedures. The best characterized so far among these channels is the ML1 isoform of TRP. The reported TRPs and TPCs are bypass for cation fluxes and are strategic for homeostasis of ionic milieu of the acidic organelles they confine to. Ca2+ homeostasis and adequate acidic pHL are critically influential for the regulation of a plethora of biological functions these intracellular cation channels perform. In lysosomal ion channel biology, we review: ML1 and TPC2 in Ca2+ signaling, ML1 and TPC2 in pHL regulation. Using Aβ42 and tau proteins found along clathrin endolysosomal internalization pathway (Fig. 3), we proffer a mechanism of abnormal pHL and ML1/TPC2-dependent cation homeostasis in AD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Pillay CS, Elliott E, Dennison C (2002) Endolysosomal proteolysis and its regulation. Biochem J 363:417–429. doi:10.1042/0264-6021:3630417

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Churchill GC, Okada Y, Thomas JM, Genazzani AA, Patel S, Galione A (2002) NAADP mobilizes Ca2+ from reserve granules, lysosome-related organelles, in sea urchin eggs. Cell 111:703–708

    Article  CAS  PubMed  Google Scholar 

  3. Michelangeli F, Ogunbayo OA, Wootton LL (2005) A plethora of interacting organellar Ca2+ stores. Curr Opin Cell Biol 17:135–140

    Article  CAS  PubMed  Google Scholar 

  4. Dong XP, Wang X, Xu H (2010) TRP channels of intracellular membranes. J Neurochem 113:313–328

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Dong XP, Shen D, Wang X, Dawson T, Li X, Zhang Q, Cheng X, Zhang Y, Weisman LS, Delling M, Xu H (2010) PI (3,5)P 2 controls membrane trafficking by direct activation of mucolipin Ca2+ release channels in the endolysosome. Nat Commun 1:11

    Article  Google Scholar 

  6. Calcraft PJ, Ruas M, Pan Z, Cheng X, Arredouani A, Hao X, Tang J, Rietdorf K, Teboul L, Chuang KT, Lin P, Xiao R, Wang C, Zhu Y, Lin Y, Wyatt CN, Parrington J, Ma J, Evans AM, Galione A, Zhu MX (2009) NAADP mobilizes calcium from acidic organelles through two-pore channels. Nature 459:596–600

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Cang C, Zhou Y, Navarro B, Seo Y, Aranda K, Shi L, Battaglia-Hsu S, Nissim I, Clapham ED, Ren D (2013) mTOR regulates lysosomal ATP-sensitive two-pore Na+ channels to adapt to metabolic state. Cell 152:778–790

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Berridge MJ, Bootman MD, Roderick HL (2003) Calcium: calcium signalling: dynamics, homeostasis and remodeling. Nat Rev Mol Cell Biol 4:517–529

    Article  CAS  PubMed  Google Scholar 

  9. Zhang Z, Lu Y, Yue J (2013) Two pore channel 2 differentially modulates neural differentiation of mouse embryonic stem. PLos One 8:1–13

    CAS  Google Scholar 

  10. Mills E, Dong X, Wang F, Xu H (2010) Mechanisms of brain iron transport: insight into neurodegeneration and CNS disorders. Futur Med Chem 2(1):51

    Article  CAS  Google Scholar 

  11. Pryor PR, Reimann F, Gribble FM, Luzio JP (2006) Mucolipin-1 is a lysosomal membrane protein required for intracellular lactosylceramide traffic. Traffic 7:1388–1398

    Article  CAS  PubMed  Google Scholar 

  12. Thompson EG, Schaheen L, Dang H, Fares H (2007) Lysosomal trafficking functions of mucolipin-1 in murine macrophages. BMC Cell Biol 8:54

  13. Yu W, Hill WG, Apodaca G, Zeide ML (2011) Expression and distribution of transient receptor potential (TRP) channels in bladder epithelium. Am J Physiol Renal Physiol 300:F49–F59

    Article  CAS  PubMed  Google Scholar 

  14. Zhang X, Li X, Xu, H (2012) Phosphoinositides isoforms determine compartment-specific ion channel activity PNAS 1–6

  15. Wang X, Zhang X, Dong X, Samie M, Li X, Cheng X, Goschka A, Shen D, Zhou Y, Harlow J, Zhu MX, Clapham DE, Ren D, Xu H (2012) TPC proteins are phosphoinositide-activated sodium-selective ion channels in endosomes and lysosomes. Cell 151:372–383

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Li X, Garrity AG, Xu H (2013) Regulation of membrane trafficking by signaling on endosomal and lysosomal membranes. J Phys 00:1–13

    Google Scholar 

  17. Chi X, Wang S, Huang Y, Stamnes M, Chen JL (2013) Roles of rho GTPases in intracellular transport and cellular transformation. Int J Mol Sci 14:7089–7108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Parkinson-Lawrence EJ et al (2010) Lysosomal storage disease: revealing lysosomal function and physiology. Physiology (Bethesda) 25:102–115

    Article  CAS  Google Scholar 

  19. Vitner EB, Platt FM, Futerman AH (2010) Common and uncommon pathogenic cascades in lysosomal storage diseases. J Biol Chem 2(85):20423–20427

    Article  Google Scholar 

  20. Shen D, Wang X, Li X, Zhang X, Yao Z, Dibble S, Dong X, Yu T, Lieberman AP, Showalter HD, Xu H (2012) Lipid storage disorders block lysosomal trafficking by inhibiting TRP channel and calcium release. Nat Commun 3:731

    Article  PubMed  PubMed Central  Google Scholar 

  21. Jha A, Ahuja M, Patel S, Brailoiu E, Muallem S (2014) Convergent regulation of the lysosomal two-pore channel-2 by Mg2+, NAADP, PI(3,5)P2 and multiple protein kinases. EMBO J 33:501–511

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Lloyd-Evans E, Morgan AJ, He X, Smith DA, Elliot-Smith E, Sillence DJ, Churchill GC, Schuchman EH, Galione A, Platt FM (2008) Niemann–Pick disease type C1 is a sphingosine storage disease that causes deregulation of lysosomal calcium. Nat Med 14:1247–1255

    Article  CAS  PubMed  Google Scholar 

  23. Morgan AJ, Galione A (2007) NAADP induces pH changes in the lumen of acidic Ca2+ stores. Biochem J 402:301–310

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Bach G, Chen C, Pagano ER (1999) Elevated lysosomal pH in Mucolipidosis type IV cells. Clin Chim Acta 280:173–179

    Article  CAS  PubMed  Google Scholar 

  25. Soyombo AA, Tjon-Kon-Sang S, Rbaibi Y, Bashllari E, Bisceglia J, Muallem S, Kiselyov K (2006) TRP-ML1 regulates lysosomal pH and acidic lysosomal lipid hydrolytic activity. J Biol Chem 281:7294–7301

    Article  CAS  PubMed  Google Scholar 

  26. Forgac M (2007) Vacuolar ATPases: rotary proton pumps in physiology and pathophysiology. Nat Rev Mol Cell Biol 8:917–929. doi:10.1038/nrm2272

    Article  CAS  PubMed  Google Scholar 

  27. Kornak U, Kasper D, Bo MR, Kaiser E, Schweizer M, Schulz A, Friedrich W, Delling W, Jentsch JT (2001) Loss of the ClC-7 chloride channel leads to osteopetrosis in mice and man. Cell 104:205–215

    Article  CAS  PubMed  Google Scholar 

  28. Lange PF, Wartosch L, Jentsch TJ, Fuhrman JC (2006) ClC-7 requires Ostm1 as a b-subunit to support bone resorption and lysosomal function. Nature 440:220–223

    Article  CAS  PubMed  Google Scholar 

  29. Weinert S, Jabs S, Supanchart C, Schweizer M, Gimber N, Richter M, Rademann J, Stauber T, Kornak U, Jentsch TJ (2010) Lysosomal pathology and osteopetrosis upon loss of H + −Driven lysosomal Cl accumulation. Science 328:1401

    Article  CAS  PubMed  Google Scholar 

  30. Graves AR, Curran PK, Smith CL, Mindell JA (2008) The Cl/H+ antiporter ClC-7 is the primary chloride permeation pathway in lysosomes. Nature 453:788–792. doi:10.1038/nature06907

    Article  CAS  PubMed  Google Scholar 

  31. Xu H, Delling M, Li L, Dong X, Clapham DE (2007) Activating mutation in a mucolipin transient receptor potential channel leads to melanocyte loss in varitint-waddler mice. PNAS 104:18321–18326

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Dong XP, Cheng X, Mills E, Delling M, Wang F, Kurz T, Xu H (2008) The type IV mucolipidosis-associated protein TRPML1 is an endolysosomal iron release channel. Nature 455:992–996

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Liu R, Zhou Q, Ji S, Zhou Q, Feng D, Wu DY, Sui F (2010) Membrane localization of _-amyloid 1–42 in lysosomes a possible mechanism for lysosome labilization. J Biol Chem 285:19986–19996

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Shen D, Wang X, Xu H (2011) Pairing phosphoinositides with calcium ions in endolysosomal dynamics. Bioessays 33:448–457

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Simons K, Ehehalt R (2002) Cholesterol, lipid rafts, and disease. J Clin Investig 110:597–603

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Grimm MO, Grimm HS, Patzold AJ et al (2005) Regulation of cholesterol and sphingomyelin metabolism by Amyloid-beta and presenilin. Nat Cell Biol 7:1118–1123

    Article  CAS  PubMed  Google Scholar 

  37. Abad-Rodriguez J, Ledesma MD, Craessaerts K et al (2004) “Neuronal membrane cholesterol loss enhances Amyloid peptide generation”. J Cell Biol 167:953–960

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Wang H, Lee DHS, D’Andrea MR, Peterson PA, Shank RP, And Reitz AB (2000) β-Amyloid1–42 binds to α7 nicotinic acetylcholine receptor with high affinity. J Biol Chem 275:5626–5632

    Article  CAS  PubMed  Google Scholar 

  39. Hongpaisan J, Sun M, Daniel L (2011) Alkon1PKC _ activation prevents synaptic loss, a elevation, and cognitive deficits in Alzheimer’s Disease transgenic mice. J Neurosci 31:630–643

    Article  CAS  PubMed  Google Scholar 

  40. Lim GP, Yang F, Chu T, Chen P, Beech W, Teter B, Tran T, Ubeda O, Ashe KH, Frautschy SA, Cole GM (2000) Ibuprofen suppresses plaque pathology and inflammation in a mouse model for Alzheimer’s Disease. J Neurosci 20:5709–5714

    CAS  PubMed  Google Scholar 

  41. Bae M, Patel N, Xu H, Lee M, Tominaga-Yamanaka K, Nath A, Geiger J, Gorospe M, Mattson MP, Haughey NJ (2014) Activation of TRPML1 clears intraneuronal Aβ in preclinical models of HIV infection. J Neurosci 34(34):11485–11503 11485

  42. Kiselyov K, Chen J, Rbaibi Y, Oberdick D, Tjon-Kon-Sang S, Shcheynikov N, Muallem S, Soyombo A (2005) TRP-ML1 is a lysosomal monovalent cation channel that undergoes proteolytic cleavage. J Biol Chem 280:43218–43223

    Article  CAS  PubMed  Google Scholar 

  43. Clapham ED (2009) Transient receptor potential channels. Encycl Neurosci 9:1109–1133

    Article  Google Scholar 

  44. Grimm C et al (2010) Small molecule activators of TRPML3. Chem Biol 17:135–148

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Dong XP et al (2009) Activating mutations of the TRPML1 channel revealed by proline-scanning mutagenesis. J Biol Chem 284:32040–32052

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Hay JC (2007) Calcium: a fundamental regulator of intracellular membrane fusion? EMBO Rep 8:236–240

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Brailoiu E, Churamani D, Cai X, Schrlau MG, Brailoiu GC, Gao X, Hooper R, Boulware MJ, Dun NJ, Marchant JS, Patel S (2009) Essential requirement for two-pore channel 1 in NAADP-mediated calcium signaling. J Cell Biol 186:201–209

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Zong X, Schieder M, Cuny H, Fenske S, Gruner C, Rotzer K, Griesbeck O, Harz H, Biel M, Wahl-Schott C (2009) The two-pore channel TPCN2 mediates NAADP-dependent Ca2 + −release from lysosomal stores. Pflugers Arch 458:891–899

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Zhu MX, Ma J, Parrington J, Galione A, Evans AM (2010) TPCs: endolysosomal channels for Ca2+ mobilization from acidic organelles triggered by NAADP. FEBS Lett 584:1966–1974

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin Ezeani.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ezeani, M., Omabe, M. A New Perspective of Lysosomal Cation Channel-Dependent Homeostasis in Alzheimer’s Disease. Mol Neurobiol 53, 1672–1678 (2016). https://doi.org/10.1007/s12035-015-9108-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-015-9108-3

Keywords

Navigation