Skip to main content

Advertisement

Log in

Intracerebral Administration of BDNF Protects Rat Brain Against Oxidative Stress Induced by Ouabain in an Animal Model of Mania

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Several studies have suggested that alterations in brain-derived neurotrophic factor (BDNF) and increased oxidative stress have a central role in bipolar disorder (BD). Intracerebroventricular (ICV) injection of ouabain (OUA) in rats alters oxidative stress parameters and decreases BDNF levels in the brain. In this context, the present study aims to investigate the effects of BDNF ICV administration on BDNF levels and oxidative stress parameters in brains of rats submitted to animal model of mania induced by OUA. Wistar rats received an ICV injection of OUA, artificial cerebrospinal fluid (ACSF), OUA plus BDNF, or ACSF plus BDNF. Locomotor activity and risk-taking behavior in the rats were measured using the open-field test. In addition, we analyzed the BDNF levels and oxidative stress parameters (TBARS, Carbonyl, CAT, SOD, GR, and GPx) in the frontal cortex and hippocampus of rats. The BDNF was unable to reverse the ouabain-induced hyperactivity and risk-taking behavior. Nevertheless, BDNF treatment increased BDNF levels, modulated the antioxidant enzymes, and protected the OUA-induced oxidative damage in the brain of rats. These results suggest that BDNF alteration observed in BD patients may be associated with oxidative damage, both seen in this disorder.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Tohen M, Zarate CA Jr, Hennen J, Khalsa HM, Strakowski SM, Gebre-Medhin P, Salvatore P, Baldessarini RJ (2003) The McLean-Harvard First-Episode Mania Study: prediction of recovery and first recurrence. Am J Psychiatry 160:2099–2107

    Article  PubMed  Google Scholar 

  2. Fagiolini A, Kupfer DJ, Masalehdan A, Scott JA, Houck PR, Frank E (2005) Functional impairment in the remission phase of bipolar disorder. Bipolar Disord 7:281–285

    Article  PubMed  Google Scholar 

  3. Revicki DA, Matza LS, Flood E, Lloyd A (2005) Bipolar disorder and health-related quality of life: review of burden of disease and clinical trials. Pharmacoeconomics 23:583–594

    Article  PubMed  Google Scholar 

  4. Zarate CA Jr, Singh J, Manji HK (2006) Cellular plasticity cascades: targets for the development of novel therapeutics for bipolar disorder. Biol Psychiatry 59:1006–1020

    Article  CAS  PubMed  Google Scholar 

  5. Ongür D, Drevets WC, Price JL (1998) Glial reduction in the subgenual prefrontal cortex in mood disorders. Proc Natl Acad Sci U S A 95:13290–13295

    Article  PubMed  PubMed Central  Google Scholar 

  6. Liu L, Schulz SC, Lee S, Reutiman TJ, Fatemi SH (2007) Hippocampal CA1 pyramidal cell size is reduced in bipolar disorder. Cell Mol Neurobiol 27:351–358

    Article  PubMed  Google Scholar 

  7. Vostrikov VM, Uranova NA, Orlovskaya DD (2007) Deficit of perineuronal oligodendrocytes in the frontal cortex in schizophrenia and mood disorders. Schizophr Res 94:273–280

    Article  PubMed  Google Scholar 

  8. Zarate CA Jr, Singh JB, Carlson PJ, Manji HK (2005) Molecular mechanisms of bipolar disorder. Nerv Syst 2:435–445

    CAS  Google Scholar 

  9. Bramham CR, Messaoudi E (2005) BDNF function in adult synaptic plasticity: the synaptic consolidation hypothesis. Prog Neurobiol 76:99–125

    Article  CAS  PubMed  Google Scholar 

  10. Tunca Z, Ozerdem A, Ceylan D, Yalçın Y, Can G, Resmi H, Akan P, Ergör G, Aydemir O, Cengisiz C, Kerim D (2014) Alterations in BDNF (brain derived neurotrophic factor) and GDNF (glial cell line-derived neurotrophic factor) serum levels in bipolar disorder: the role of lithium. J Affect Disord 166:193–200. doi:10.1016/j.jad.2014.05.012

    Article  CAS  PubMed  Google Scholar 

  11. Machado-Vieira R, Dietrich MO, Leke R, Cereser VH, Zanatto V, Kapczinski F, Souza DO, Portela LV, Gentil V (2007) Decreased plasma brain derived neurotrophic factor levels in unmedicated bipolar patients during manic episode. Biol Psychiatry 61:142–144

    Article  CAS  PubMed  Google Scholar 

  12. Rabie MA, Mohsen M, Ibrahim M, El-Sawy Mahmoud R (2014) Serum level of brain derived neurotrophic factor (BDNF) among patients with bipolar disorder. J Affect Disord 162:67–72. doi:10.1016/j.jad.2014.02.038

    Article  CAS  PubMed  Google Scholar 

  13. Södersten K, Pålsson E, Ishima T, Funa K, Landén M, Hashimoto K, Ågren H (2014) Abnormality in serum levels of mature brain-derived neurotrophic factor (BDNF) and its precursor proBDNF in mood-stabilized patients with bipolar disorder: a study of two independent cohorts. J Affect Disord 160:1–9. doi:10.1016/j.jad.2014.01.009

    Article  PubMed  Google Scholar 

  14. Soontornniyomkij B, Everall IP, Chana G, Tsuang MT, Achim CL, Soontornniyomkij V (2011) Tyrosine kinase B protein expression is reduced in the cerebellum of patients with bipolar disorder. J Affect Disord 133:646–654. doi:10.1016/j.jad.2011.04.044

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Ray MT, Shannon Weickert C, Webster MJ (2014) Decreased BDNF and TrkB mRNA expression in multiple cortical areas of patients with schizophrenia and mood disorders. Transl Psychiatry 4:e389. doi:10.1038/tp.2014.26

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Andreazza AC, Cassini C, Rosa AR, Leite MC, de Almeida LM, Nardin P, Cunha AB, Cereser KM, Santin A, Gottfried C, Salvador M, Kapczinski F, Gonçalves CA (2007) Serum S100B and antioxidant enzymes in bipolar patients. J Psychiatr Res 41:523–529

    Article  PubMed  Google Scholar 

  17. Kapczinski F, Frey BN, Andreazza AC, Kauer-Sant’Anna M, Cunha AB, Post RM (2008) Increased oxidative stress as a mechanism for decreased BDNF levels in acute manic episodes. Rev Bras Psiquiatr 30:243–245

    Article  PubMed  Google Scholar 

  18. Jornada LK, Moretti M, Valvassori SS, Ferreira CL, Padilha PT, Arent CO, Fries GR, Kapczinski F, Quevedo J (2010) Effects of mood stabilizers on hippocampus and amygdala BDNF levels in an animal model of mania induced by ouabain. J Psychiatr Res 44:506–510. doi:10.1016/j.jpsychires.2009.11.002

    Article  PubMed  Google Scholar 

  19. Jornada LK, Valvassori SS, Steckert AV, Moretti M, Mina F, Ferreira CL, Arent CO, Dal-Pizzol F, Quevedo J (2011) Lithium and valproate modulate antioxidant enzymes and prevent ouabain-induced oxidative damage in an animal model of mania. J Psychiatr Res 45:162–168. doi:10.1016/j.jpsychires.2010.05.011

    Article  PubMed  Google Scholar 

  20. Kamata H, Hirata H (1999) Redox regulation of cellular signalling. Cell Signal 11:1–14

    Article  CAS  PubMed  Google Scholar 

  21. Allen RG, Tresini M (2000) Oxidative stress and gene regulation. Free Radic Biol Med 28:463–499

    Article  CAS  PubMed  Google Scholar 

  22. Floyd RA (1999) Antioxidants, oxidative stress, and degenerative neurological disorders. Proc Soc Exp Biol Med 222:236e45

    Article  Google Scholar 

  23. Calabrese JR, Hirschfiel RM, Reed M (2001) Impact of bipolar disorder on U.S. community sample. Journal Clinical Psychiatry 64:425e32

    Google Scholar 

  24. Ozcan ME, Gulec M, Ozerol E, Polat R, Akyol O (2004) Antioxidant enzyme activities and oxidative stress in affective disorders. Int Clin Psychopharmacol 19:89–95

    Article  PubMed  Google Scholar 

  25. Frey BN, Andreazza AC, Kunz M, Gomes FA, Quevedo J, Salvador M, Goncalves CA, Kapczinski F (2007) Increased oxidative stress and DNA damage in bipolar disorder: a twin-case report. Prog Neuropsychopharmacol Biol Psychiatry 31:283–285

    Article  CAS  PubMed  Google Scholar 

  26. Gergerlioglu HS, Savas HA, Bulbul F, Selek S, Uz E, Yumru M (2007) Changes in nitric oxide level and superoxide dismutase activity during antimanic treatment. Prog Neuropsychopharmacol Biol Psychiatry 31:697–702

    Article  CAS  PubMed  Google Scholar 

  27. Halliwell B (2001) Role of free radicals in the neurodegenerative diseases: therapeutic implications for antioxidant treatment. Drugs Aging 18:685–716

    Article  CAS  PubMed  Google Scholar 

  28. Dringen R, Hirrlinger J (2003) Glutathione pathways in the brain. Biol Chem 384:505–516

    Article  CAS  PubMed  Google Scholar 

  29. Young JW, Henry BL, Geyer MA (2011) Predictive animal models of mania: hits, misses and future directions. Br J Pharmacol 164:1263–1284

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. El-Mallakh RS, Wyatt RJ (1995) The Na, K-ATPase hypothesis for bipolar illness. Biol Psychiatry 37:235–244

    Article  CAS  PubMed  Google Scholar 

  31. Machado-Vieira R, Kapczinski F, Soares JC (2004) Perspectives for the development of animalmodels of bipolar disorder. Prog Neuropsychopharmacol Biol Psychiatry 28:209–224

    Article  PubMed  Google Scholar 

  32. Riegel RE, Valvassori SS, Elias G, Réus GZ, Steckert AV, de Souza B, Petronilho F, Gavioli EC, Dal-Pizzol F, Quevedo J (2009) Animal model of mania induced by ouabain: evidence of oxidative stress in submitochondrial particles of the rat brain. Neurochem Int 55:491–495

    Article  CAS  PubMed  Google Scholar 

  33. Riegel RE, Valvassori SS, Moretti M, Ferreira CL, Steckert AV, de Souza B, Dal-Pizzol F, Quevedo J (2010) Intracerebroventricular ouabain administration induces oxidative stress in the rat brain. Int J Dev Neurosci 28:233–237. doi:10.1016/j.ijdevneu.2010.02.002

    Article  CAS  PubMed  Google Scholar 

  34. Jornada LK, Valvassori SS, Resende WR, Moretti M, Ferreira CL, Fries GR, Kapczinski F, Quevedo J (2012) Decreased BDNF levels in amygdala and hippocampus after intracerebroventricular administration of ouabain. Rev Psiquiatr Clín 39:157–160. doi:10.1590/S0101-60832012000500002

    Article  Google Scholar 

  35. Huff MO, Li XP, Ginns E, El-Mallakh RS (2010) Effect of ethacrynic acid on the sodium- and potassium-activated adenosine triphosphatase activity and expression in Old Order Amish bipolar individuals. J Affect Disord 123:303–307. doi:10.1016/j.jad.2009.09.018

    Article  CAS  PubMed  Google Scholar 

  36. Banerjee U, Dasgupta A, Rout JK, Singh OP (2012) Effects of lithium therapy on Na + −K + −ATPase activity and lipid peroxidation in bipolar disorder. Prog Neuropsychopharmacol Biol Psychiatry 37:56–61. doi:10.1016/j.pnpbp.2011.12.006

    Article  CAS  PubMed  Google Scholar 

  37. Paxinos G, Watson C (1986) The rat brain in stereotaxic coordinates. Academic, San Diego

    Google Scholar 

  38. El-Mallakh RS, El-Masri MA, Huff MO, Li XP, Decker S, Levy RS (2003) Intracerebroventricular administration of ouabain as a model of mania in rats. Bipolar Disord 5:362–365

    Article  CAS  PubMed  Google Scholar 

  39. Alonso M, Bekinschtein P, Cammarota M, Vianna MR, Izquierdo I, Medina JH (2005) Endogenous BDNF is required for long-term memory formation in the rat parietal cortex. Learn Mem 12:504–510

    Article  PubMed  PubMed Central  Google Scholar 

  40. Walsh RN, Cummins RA (1976) The open-field test: a critical review. Psychol Bull 83:482–504

    Article  CAS  PubMed  Google Scholar 

  41. Capaz FR, Vanconcellos LE, De Moraes S, Neto JP (1981) The open field: a simple method to show ethanol withdrawal symptoms. Arch Int Pharmacodyn Ther 251:228–236

    CAS  PubMed  Google Scholar 

  42. Esterbauer H, Cheeseman KH (1990) Determination of aldehydic lipid peroxidation products: malonaldehyde and 4-hydroxynonenal. Methods Enzymol 186:407–421

    Article  CAS  PubMed  Google Scholar 

  43. Levine RL, Williams JA, Stadtman ER, Shacter E (1994) Carbonyl assays for determination of oxidatively modified proteins. Methods Enzymol 233:346–357

    Article  CAS  PubMed  Google Scholar 

  44. Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193:265–275

    CAS  PubMed  Google Scholar 

  45. Decker S, Grider G, Cobb M, Li XP, Huff MO, El-Mallakh RS, Levy RS (2000) Open field is more sensitive than automated activity monitor in documenting ouabain-induced hyperlocomotion in the development of an animal model for bipolar illness. Prog Neuropsychopharmacol Biol Psychiatry 24:455–462

    Article  CAS  PubMed  Google Scholar 

  46. Ruktanonchai DJ, El-Mallakh RS, Li R, Levy RS (1998) Persistent hyperactivity following a single intracerebroventricular dose of ouabain. Physiol Behav 63:403–406

    Article  CAS  PubMed  Google Scholar 

  47. Herman L, Hougland T, El-Mallakh RS (2007) Mimicking human bipolar ion dysregulation models mania in rats. Neurosci Biobehav Rev 31:874–881

    Article  CAS  PubMed  Google Scholar 

  48. Gray JD, Milner TA, McEwen BS (2013) Dynamic plasticity: the role of glucocorticoids, brain-derived neurotrophic factor and other trophic factors. Neuroscience 239:214–227. doi:10.1016/j.neuroscience.2012.08.034

    Article  CAS  PubMed  Google Scholar 

  49. Dias VV, Brissos S, Frey BN, Andreazza AC, Cardoso C, Kapczinski F (2009) Cognitive function and serum levels of brain-derived neurotrophic factor in patients with bipolar disorder. Bipolar Disord 11:663–671

    Article  CAS  PubMed  Google Scholar 

  50. Suri D, Veenit V, Sarkar A, Thiagarajan D, Kumar A, Nestler EJ, Galande S, Vaidya VA (2013) Early stress evokes age-dependent biphasic changes in hippocampal neurogenesis, BDNF expression, and cognition. Biol Psychiatry 73:658–666. doi:10.1016/j.biopsych.2012.10.023

    Article  CAS  PubMed  Google Scholar 

  51. Chuang DM, Chen RW, Chalecka-Franaszek E, Ren M, Hashimoto R, Senatorov V, Kanai H, Hough C, Hiroi T, Leeds P (2002) Neuroprotective effects of lithium in cultured cells and animal models of diseases. Bipolar Disord 4:129–136

    Article  CAS  PubMed  Google Scholar 

  52. Li X, Ketter TA, Frye MA (2002) Synaptic, intracellular, and neuroprotective mechanisms of anticonvulsants: are they relevant for the treatment and course of bipolar disorders? J Affect Disord 69:1–14

    Article  CAS  PubMed  Google Scholar 

  53. Frey BN, Valvassori SS, Reus GZ, Martins MR, Petronilho FC, Bardini K, Dal-Pizzol F, Kapczinski F, Quevedo J (2006) Effects of lithium and valproate on amphetamine-induced oxidative stress generation in an animal model of mania. J Psychiatry Neurosci 31:326–332

    PubMed  PubMed Central  Google Scholar 

  54. De Sarno P, Li X, Jope RS (2002) Regulation of Akt and glycogen synthase kinase-3 beta phosphorylation by sodium valproate and lithium. Neuropharmacology 43:1158–1164

    Article  PubMed  Google Scholar 

  55. Meijer L, Flajolet M, Greengard P (2004) Pharmacological inhibitors of glycogen synthase kinase 3. Trends Pharmacol Sci 25:471–480

    Article  CAS  PubMed  Google Scholar 

  56. Cole AR (2013) Glycogen synthase kinase 3 substrates in mood disorders and schizophrenia. FEBS J 280:5213–5227. doi:10.1111/febs.12407

    Article  CAS  PubMed  Google Scholar 

  57. DiazGranados N, Zarate CA Jr (2008) A review of the preclinical and clinical evidence for protein kinase C as a target for drug development for bipolar disorder. Curr Psychiatry Rep 10:510–519

    Article  PubMed  PubMed Central  Google Scholar 

  58. Amrollahi Z, Rezaei F, Salehi B, Modabbernia AH, Maroufi A, Esfandiari GR, Naderi M, Ghebleh F, Ahmadi-Abhari SA, Sadeghi M, Tabrizi M, Akhondzadeh S (2011) Double-blind, randomized, placebo-controlled 6-week study on the efficacy and safety of the tamoxifen adjunctive to lithium in acute bipolar mania. J Affect Disord 129:327–331. doi:10.1016/j.jad.2010.08.015

    Article  CAS  PubMed  Google Scholar 

  59. Zarate CA, Manji HK (2009) Protein kinase C inhibitors: rationale for use and potential in the treatment of bipolar disorder. CNS Drugs 23:569–582. doi:10.2165/00023210-200923070-00003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Beaulieu JM, Sotnikova TD, Yao WD, Kockeritz L, Woodgett JR, Gainetdinov RR, Caron MG (2004) Lithium antagonizes dopamine-dependent behaviors mediated by an AKT/glycogen synthase kinase 3 signaling cascade. Proc Natl Acad Sci U S A 101:5099–5104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Steckert AV, Valvassori SS, Mina F, Lopes-Borges J, Varela RB, Kapczinski F, Dal-Pizzol F, Quevedo J (2012) Protein kinase C and oxidative stress in an animal model of mania. Curr Neurovasc Res 9:47–57. doi:10.2174/156720212799297056

    Article  CAS  PubMed  Google Scholar 

  62. Caberlotto L, Carboni L, Zanderigo F, Andreetta F, Andreoli M, Gentile G, Razzoli M (2013) Differential effects of glycogen synthase kinase 3 (GSK3) inhibition by lithium or selective inhibitors in the central nervous system. Naunyn Schmiedebergs Arch Pharmacol 386:893–903. doi:10.1007/s00210-013-0893-9

    Article  CAS  PubMed  Google Scholar 

  63. Wu A, Ying Z, Gomez-Pinilla F (2004) The interplay between oxidative stress and brain-derived neurotrophic factor modulates the outcome of a saturated fat diet on synaptic plasticity and cognition. Eur J Neurosci 19:1699–1707

    Article  PubMed  Google Scholar 

  64. Shao L, Young LT, Wang JF (2005) Chronic treatment with mood stabilizers lithium and valproate prevents excitotoxicity by inhibiting oxidative stress in rat cerebral cortical cells. Biol Psychiatry 58:879–884

    Article  CAS  PubMed  Google Scholar 

  65. Hwang IK, Yoo KY, Yoo DY, Choi JW, Lee CH, Choi JH, Yoon YS, Won MH (2011) Time-course of changes in phosphorylated CREB in neuroblasts and BDNF in the mouse dentate gyrus at early postnatal stages. Cell Mol Neurobiol 31:669–674. doi:10.1007/s10571-011-9686-1

    Article  CAS  PubMed  Google Scholar 

  66. Boyadjieva NI, Sarkar DK (2013) Cyclic adenosine monophosphate and brain-derived neurotrophic factor decreased oxidative stress and apoptosis in developing hypothalamic neuronal cells: role of microglia. Alcohol Clin Exp Res 37:1370–1379. doi:10.1111/acer.12104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Lee J, Kim CH, Simon DK, Aminova LR, Andreyev AY, Kushnareva YE, Murphy AN, Lonze BE, Kim KS, Ginty DD, Ferrante RJ, Ryu H, Ratan RR (2005) Mitochondrial cyclic AMP response element-binding protein (CREB) mediates mitochondrial gene expression and neuronal survival. J Biol Chem 280:40398–40401

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Franko A, Mayer S, Thiel G, Mercy L, Arnould T, Hornig-Do HT, Wiesner RJ, Goffart S (2008) CREB-1alpha is recruited to and mediates upregulation of the cytochrome c promoter during enhanced mitochondrial biogenesis accompanying skeletal muscle differentiation. Mol Cell Biol 28:2446–2459

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Scarpulla RC (2002) Transcriptional activators and coactivators in the nuclear control of mitochondrial function in mammalian cells. Gene 286:81–89

    Article  CAS  PubMed  Google Scholar 

  70. McCord JM, Fridovich I (1988) Superoxide dismutase: the first twenty years (1968–1988). Free Radic Biol Med 5:363–369

    Article  CAS  PubMed  Google Scholar 

  71. Flohé L (1971) Glutathione peroxidase: enzymology and biological aspects. Klin Wochenschr 49:669–683

    Article  PubMed  Google Scholar 

  72. Chelikani P, Fita I, Loewen PC (2004) Diversity of structures and properties among catalases. Cell Mol Life Sci 61:192–208, Review

    Article  CAS  PubMed  Google Scholar 

  73. Krohne-Ehrich G, Schirmer RH, Untucht-Grau R (1977) Glutathione reductase from human erythrocytes. Isolation of the enzyme and sequence analysis of the redox-active peptide. Eur J Biochem 80:65–71

    Article  CAS  PubMed  Google Scholar 

  74. Jakoby WB (1978) The glutathione S-transferases: a group of multifunctional detoxification proteins. Adv Enzymol Relat Areas Mol Biol 46:383–414, Review

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank CNPq, FAPESC, CAPES, and UNESC for financial support.

Conflict of Interest

None of the authors or funding sources has conflict of interest.

Role of Funding Source

No external funding was used for this study.

Contributors

Samira S. Valvassori, João Quevedo, and Flavio Kapczinski designed the study, wrote the protocol and the first draft of the manuscript. Amanda V. Steckert, Camila O. Arent, and Josiane Budni made the biochemical analysis. Samira S. Valvassori and Luciano K. Jornada undertook the statistical analysis. Edemilson Mariot, Paula Tonin, and Samira S. Valvassori were responsible for the surgical procedures, pharmacological treatment, and behavioral tests. All authors contributed to and have approved the final manuscript.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Samira S. Valvassori or João Quevedo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Valvassori, S.S., Arent, C.O., Steckert, A.V. et al. Intracerebral Administration of BDNF Protects Rat Brain Against Oxidative Stress Induced by Ouabain in an Animal Model of Mania. Mol Neurobiol 52, 353–362 (2015). https://doi.org/10.1007/s12035-014-8873-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-014-8873-8

Keywords

Navigation