Skip to main content

Advertisement

Log in

Catalytic Immunoglobulin Gene Delivery in a Mouse Model of Alzheimer’s Disease: Prophylactic and Therapeutic Applications

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Accumulation of amyloid beta-peptide (Aβ) in the brain is hypothesized to be a causal event leading to dementia in Alzheimer’s disease (AD). Aβ vaccination removes Aβ deposits from the brain. Aβ immunotherapy, however, may cause T cell- and/or Fc-receptor-mediated brain inflammation and relocate parenchymal Aβ deposits to blood vessels leading to cerebral hemorrhages. Because catalytic antibodies do not form stable immune complexes and Aβ fragments produced by catalytic antibodies are less likely to form aggregates, Aβ-specific catalytic antibodies may have safer therapeutic profiles than reversibly-binding anti-Aβ antibodies. Additionally, catalytic antibodies may remove Aβ more efficiently than binding antibodies because a single catalytic antibody can hydrolyze thousands of Aβ molecules. We previously isolated Aβ-specific catalytic antibody, IgVL5D3, with strong Aβ-hydrolyzing activity. Here, we evaluated the prophylactic and therapeutic efficacy of brain-targeted IgVL5D3 gene delivery via recombinant adeno-associated virus serotype 9 (rAAV9) in an AD mouse model. One single injection of rAAV9-IgVL5D3 into the right ventricle of AD model mice yielded widespread, high expression of IgVL5D3 in the unilateral hemisphere. IgVL5D3 expression was readily detectable in the contralateral hemisphere but to a much lesser extent. IgVL5D3 expression was also confirmed in the cerebrospinal fluid. Prophylactic and therapeutic injection of rAAV9-IgVL5D3 reduced Aβ load in the ipsilateral hippocampus of AD model mice. No evidence of hemorrhages, increased vascular amyloid deposits, increased proinflammatory cytokines, or infiltrating T-cells in the brains was found in the experimental animals. AAV9-mediated anti-Aβ catalytic antibody brain delivery can be prophylactic and therapeutic options for AD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Hardy J (2006) Amyloid double trouble. Nat Genet 38:11–12

    Article  CAS  PubMed  Google Scholar 

  2. Schenk D, Barbour R, Dunn W, Gordon G, Grajeda H, Guido T, Hu K, Huang J, Johnson-Wood K, Khan K et al (1999) Immunization with amyloid-beta attenuates Alzheimer-disease-like pathology in the PDAPP mouse. Nature 400:173–177

    Article  CAS  PubMed  Google Scholar 

  3. Janus C, Pearson J, McLaurin J, Mathews PM, Jiang Y, Schmidt SD, Chishti MA, Horne P, Heslin D, French J et al (2000) A beta peptide immunization reduces behavioural impairment and plaques in a model of Alzheimer’s disease. Nature 408:979–982

    Article  CAS  PubMed  Google Scholar 

  4. Morgan D, Diamond DM, Gottschall PE, Ugen KE, Dickey C, Hardy J, Duff K, Jantzen P, DiCarlo G, Wilcock D et al (2000) A beta peptide vaccination prevents memory loss in an animal model of Alzheimer’s disease. Nature 408:982–985

    Article  CAS  PubMed  Google Scholar 

  5. Check E (2002) Nerve inflammation halts trial for Alzheimer’s drug. Nature 415:462

    Article  CAS  PubMed  Google Scholar 

  6. Orgogozo JM, Gilman S, Dartigues JF, Laurent B, Puel M, Kirby LC, Jouanny P, Dubois B, Eisner L, Flitman S et al (2003) Subacute meningoencephalitis in a subset of patients with AD after Abeta42 immunization. Neurology 61:46–54

    Article  CAS  PubMed  Google Scholar 

  7. Sigurdsson EM, Wisniewski T, Frangione B (2002) A safer vaccine for Alzheimer’s disease? Neurobiol Aging 23:1001–1008

    Article  CAS  PubMed  Google Scholar 

  8. Hock C, Konietzko U, Papassotiropoulos A, Wollmer A, Streffer J, von Rotz RC, Davey G, Moritz E, Nitsch RM (2002) Generation of antibodies specific for beta-amyloid by vaccination of patients with Alzheimer disease. Nat Med 8:1270–1275

    Article  CAS  PubMed  Google Scholar 

  9. Bayer AJ, Bullock R, Jones RW, Wilkinson D, Paterson KR, Jenkins L, Millais SB, Donoghue S (2005) Evaluation of the safety and immunogenicity of synthetic Abeta42 (AN1792) in patients with AD. Neurology 64:94–101

    Article  CAS  PubMed  Google Scholar 

  10. Salloway S, Gregg K, Black R, Grundman M, Sperling R. (2009) Cognitive and functional outcomes from a phase II trial of bapineuzumab in mild to moderate Alzheimer’s disease. American Academy of Neurology Abs S32.002

  11. Sperling R, Salloway S, Fox N, Barackos J, Morris K, Francis G, Black R, Grundman M (2009) Risk factors and clinical course associated with vasogenic edema in a phase II trial of bapineuzumab. Presentation at: 16th Congress of the European Federation of Neurological Societies, Stockholm, Sweden. http://www.stevenderoover.be/EFNS/Presentations/EFNS2012/WC220/. Accessed 08 Sept 2012

  12. Piazza F, Greenberg SM, Savoiardo M, Gardinetti M, Chiapparini L, Raicher I, Nitrini R, Sakaguchi H, Brioschi M, Billo G et al (2013) Anti-amyloid beta autoantibodies in cerebral amyloid angiopathy-related inflammation: Implications for Amyloid-Modifying Therapies. Ann Neurol 73(4):449–458

    Article  CAS  PubMed  Google Scholar 

  13. Ostrowitzki S, Deptula D, Thurfjell L, Barkhof F, Bohrmann B, Brooks DJ, Klunk WE, Ashford E, Yoo K, Xu ZX et al (2012) Mechanism of amyloid removal in patients with Alzheimer disease treated with gantenerumab. Arch Neurol 69:198–207

    Article  PubMed  Google Scholar 

  14. Wilcock DM, Rojiani A, Rosenthal A, Subbarao S, Freeman MJ, Gordon MN, Morgan D (2004) Passive immunotherapy against Abeta in aged APP-transgenic mice reverses cognitive deficits and depletes parenchymal amyloid deposits in spite of increased vascular amyloid and microhemorrhage. J Neuroinflammation 1:24

    Article  PubMed Central  PubMed  Google Scholar 

  15. Racke MM, Boone LI, Hepburn DL, Parsadainian M, Bryan MT, Ness DK, Piroozi KS, Jordan WH, Brown DD, Hoffman WP et al (2005) Exacerbation of cerebral amyloid angiopathy-associated microhemorrhage in amyloid precursor protein transgenic mice by immunotherapy is dependent on antibody recognition of deposited forms of amyloid beta. J Neurosci 25:629–636

    Article  CAS  PubMed  Google Scholar 

  16. Callaway E (2012) Alzheimer’s drugs take a new tack. Nature 489:13–14

    Article  CAS  PubMed  Google Scholar 

  17. Weksler ME, Relkin N, Turkenich R, LaRusse S, Zhou L, Szabo P (2002) Patients with Alzheimer disease have lower levels of serum anti-amyloid peptide antibodies than healthy elderly individuals. Exp Gerontol 37:943–948

    Article  CAS  PubMed  Google Scholar 

  18. Mruthinti S, Buccafusco JJ, Hill WD, Waller JL, Jackson TW, Zamrini EY, Schade RF (2004) Autoimmunity in Alzheimer’s disease: Increased levels of circulating IgGs binding Abeta and RAGE peptides. Neurobiol Aging 25:1023–1032

    Article  CAS  PubMed  Google Scholar 

  19. Kellner A, Matschke J, Bernreuther C, Moch H, Ferrer I, Glatzel M (2009) Autoantibodies against beta-amyloid are common in Alzheimer’s disease and help control plaque burden. Ann Neurol 65:24–31

    Article  PubMed  Google Scholar 

  20. Britschgi M, Olin CE, Johns HT, Takeda-Uchimura Y, LeMieux MC, Rufibach K, Rajadas J, Zhang H, Tomooka B, Robinson WH et al (2009) Neuroprotective natural antibodies to assemblies of amyloidogenic peptides decrease with normal aging and advancing Alzheimer’s disease. Proc Natl Acad Sci U S A 106:12145–12150

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  21. Taguchi H, Planque S, Nishiyama Y, Szabo P, Weksler ME, Friedland RP, Paul S (2008) Catalytic antibodies to amyloid beta peptide in defense against Alzheimer disease. Autoimmun Rev 7:391–397

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  22. Taguchi H, Planque S, Sapparapu G, Boivin S, Hara M, Nishiyama Y, Paul S (2008) Exceptional amyloid beta peptide hydrolyzing activity of nonphysiological immunoglobulin variable domain scaffolds. J Biol Chem 283:36724–36733

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  23. Gao QS, Sun M, Rees AR, Paul S (1995) Site-directed mutagenesis of proteolytic antibody light chain. J Mol Biol 253:658–664

    Article  CAS  PubMed  Google Scholar 

  24. Ramsland PA, Terzyan SS, Cloud G, Bourne CR, Farrugia W, Tribbick G, Geysen HM, Moomaw CR, Slaughter CA, Edmundson AB (2006) Crystal structure of a glycosylated Fab from an IgM cryoglobulin with properties of a natural proteolytic antibody. Biochem J 395:473–481

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  25. Liu Y, Studzinski C, Beckett T, Guan H, Hersh MA, Murphy MP, Klein R, Hersh LB (2009) Expression of neprilysin in skeletal muscle reduces amyloid burden in a transgenic mouse model of Alzheimer disease. Mol Ther 17:1381–1386

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  26. Iwata N, Mizukami H, Shirotani K, Takaki Y, Muramatsu S, Lu B, Gerard NP, Gerard C, Ozawa K, Saido TC (2004) Presynaptic localization of neprilysin contributes to efficient clearance of amyloid-beta peptide in mouse brain. J Neurosci 24:991–998

    Article  CAS  PubMed  Google Scholar 

  27. Mukherjee A, Song E, Kihiko-Ehmann M, Goodman JP Jr, Pyrek JS, Estus S, Hersh LB (2000) Insulysin hydrolyzes amyloid beta peptides to products that are neither neurotoxic nor deposit on amyloid plaques. J Neurosci 20:8745–8749

    CAS  PubMed  Google Scholar 

  28. Chesneau V, Vekrellis K, Rosner MR, Selkoe DJ (2000) Purified recombinant insulin-degrading enzyme degrades amyloid beta-protein but does not promote its oligomerization. Biochem J 351(Pt 2):509–516

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  29. Kou J, Kim HD, Pattanyak A, Song M, Lim J, Taguchi H, Paul S, Cirrito JR, Ponnazhagan S, Fukuchi K (2011) Anti-Abeta single-chain antibody brain delivery via AAV reduces amyloid load but may increase cerebral hemorrhages in an Alzheimer mouse model. J Alzheimers Dis 27:23–28

    CAS  PubMed Central  PubMed  Google Scholar 

  30. Niwa H, Yamamura K, Miyazaki J (1991) Efficient selection for high-expression transfectants with a novel eukaryotic vector. Gene 108:193–199

    Article  CAS  PubMed  Google Scholar 

  31. Grimm D, Kay MA, Kleinschmidt JA (2003) Helper virus-free, optically controllable, and two-plasmid-based production of adeno-associated virus vectors of serotypes 1 to 6. Mol Ther 7:839–850

    Article  CAS  PubMed  Google Scholar 

  32. Zolotukhin S, Potter M, Zolotukhin I, Sakai Y, Loiler S, Fraites TJ Jr, Chiodo VA, Phillipsberg T, Muzyczka N, Hauswirth WW et al (2002) Production and purification of serotype 1, 2, and 5 recombinant adeno-associated viral vectors. Methods 28:158–167

    Article  CAS  PubMed  Google Scholar 

  33. Fukuchi KI, Tahara K, Kim HD, Maxwell JA, Lewis TL, Accavitti-Loper M, Kim H, Ponnazhagan S, Lalonde R (2006) Anti-Aß single chain antibody delivery via adeno-associated virus for treatment of Alzheimer’s disease. Neurobiol Dis 23:502–511

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  34. Jankowsky JL, Fadale DJ, Anderson J, Xu GM, Gonzales V, Jenkins NA, Copeland NG, Lee MK, Younkin LH, Wagner SL et al (2004) Mutant presenilins specifically elevate the levels of the 42 residue beta-amyloid peptide in vivo: Evidence for augmentation of a 42-specific gamma secretase. Hum Mol Genet 13:159–170

    Article  CAS  PubMed  Google Scholar 

  35. DeMattos RB, Bales KR, Parsadanian M, O’Dell MA, Foss EM, Paul SM, Holtzman DM (2002) Plaque-associated disruption of CSF and plasma amyloid-beta (Abeta) equilibrium in a mouse model of Alzheimer’s disease. J Neurochem 81:229–236

    Article  CAS  PubMed  Google Scholar 

  36. Minkeviciene R, Rheims S, Dobszay MB, Zilberter M, Hartikainen J, Fulop L, Penke B, Zilberter Y, Harkany T, Pitkanen A et al (2009) Amyloid beta-induced neuronal hyperexcitability triggers progressive epilepsy. J Neurosci 29:3453–3462

    Article  CAS  PubMed  Google Scholar 

  37. Blennow K, Zetterberg H, Rinne JO, Salloway S, Wei J, Black R, Grundman M, Liu E (2012) Effect of immunotherapy with bapineuzumab on cerebrospinal fluid biomarker levels in patients with mild to moderate Alzheimer disease. Arch Neurol 69:1002–1010

    Article  PubMed  Google Scholar 

  38. Rinne JO, Brooks DJ, Rossor MN, Fox NC, Bullock R, Klunk WE, Mathis CA, Blennow K, Barakos J, Okello AA et al (2010) 11C-PiB PET assessment of change in fibrillar amyloid-beta load in patients with Alzheimer’s disease treated with bapineuzumab: a phase 2, double-blind, placebo-controlled, ascending-dose study. Lancet Neurol 9:363–372

    Article  CAS  PubMed  Google Scholar 

  39. Ferrer I, Boada RM, Sanchez Guerra ML, Rey MJ, Costa-Jussa F (2004) Neuropathology and pathogenesis of encephalitis following amyloid-beta immunization in Alzheimer’s disease. Brain Pathol 14:11–20

    Article  CAS  PubMed  Google Scholar 

  40. Pfeifer M, Boncristiano S, Bondolfi L, Stalder A, Deller T, Staufenbiel M, Mathews PM, Jucker M (2002) Cerebral hemorrhage after passive anti-Abeta immunotherapy. Science 298:1379

    Article  CAS  PubMed  Google Scholar 

  41. Wilcock DM, Munireddy SK, Rosenthal A, Ugen KE, Gordon MN, Morgan D (2004) Microglial activation facilitates Abeta plaque removal following intracranial anti-Abeta antibody administration. Neurobiol Dis 15:11–20

    Article  CAS  PubMed  Google Scholar 

  42. Nicoll JA, Barton E, Boche D, Neal JW, Ferrer I, Thompson P, Vlachouli C, Wilkinson D, Bayer A, Games D et al (2006) Abeta species removal after abeta42 immunization. J Neuropathol Exp Neurol 65:1040–1048

    Article  CAS  PubMed  Google Scholar 

  43. Moreth J, Mavoungou C, Schindowski K (2013) Passive anti-amyloid immunotherapy in Alzheimer’s disease: What are the most promising targets? Immun Ageing 10:18

    Article  PubMed Central  PubMed  Google Scholar 

  44. Tayeb HO, Murray ED, Price BH, Tarazi FI (2013) Bapineuzumab and solanezumab for Alzheimer’s disease: Is the ‘amyloid cascade hypothesis’ still alive? Expert Opin Biol Ther 13:1075–1084

    Article  CAS  PubMed  Google Scholar 

  45. Adolfsson O, Pihlgren M, Toni N, Varisco Y, Buccarello AL, Antoniello K, Lohmann S, Piorkowska K, Gafner V, Atwal JK et al (2012) An effector-reduced anti-beta-amyloid (Abeta) antibody with unique abeta binding properties promotes neuroprotection and glial engulfment of Abeta. J Neurosci 32:9677–9689

    Article  CAS  PubMed  Google Scholar 

  46. Fukuchi KI, Accavitti-Loper M, Kim HD, Tahara K, Cao Y, Lewis TL, Caughey RC, Kim H, Lalonde R (2006) Amelioration of amyloid load by anti-A[beta] single-chain antibody in Alzheimer mouse model. Biochem Biophys Res Commun 344:79–86

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  47. Kou J, Song M, Pattanayak A, Lim J, Yang J, Cao D, Li L, Fukuchi K (2012) Combined treatment of Aß immunization with statin in a mouse model of Alzheimer’s disease. J Neuroimmunol 244:70–83

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  48. Cearley CN, Wolfe JH (2006) Transduction characteristics of adeno-associated virus vectors expressing cap serotypes 7, 8, 9, and Rh10 in the mouse brain. Mol Ther 13:528–537

    Article  CAS  PubMed  Google Scholar 

  49. Cearley CN, Wolfe JH (2007) A single injection of an adeno-associated virus vector into nuclei with divergent connections results in widespread vector distribution in the brain and global correction of a neurogenetic disease. J Neurosci 27:9928–9940

    Article  CAS  PubMed  Google Scholar 

  50. Van der Perren A, Toelen J, Carlon M, Van Den Haute C, Coun F, Heeman B, Reumers V, Vandenberghe LH, Wilson JM, Debyser Z et al (2011) Efficient and stable transduction of dopaminergic neurons in rat substantia nigra by rAAV 2/1, 2/2, 2/5, 2/6.2, 2/7, 2/8 and 2/9. Gene Ther 18:517–527

    Article  PubMed  Google Scholar 

  51. Samaranch L, Salegio EA, San SW, Kells AP, Bringas JR, Forsayeth J, Bankiewicz KS (2013) Strong cortical and spinal cord transduction after AAV7 and AAV9 delivery into the cerebrospinal fluid of nonhuman primates. Hum Gene Ther 24:526–532

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  52. Harry GJ (2013) Microglia during development and aging. Pharmacol Ther 139:313–326

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  53. Jimenez S, Baglietto-Vargas D, Caballero C, Moreno-Gonzalez I, Torres M, Sanchez-Varo R, Ruano D, Vizuete M, Gutierrez A, Vitorica J (2008) Inflammatory response in the hippocampus of PS1M146L/APP751SL mouse model of Alzheimer’s disease: Age-dependent switch in the microglial phenotype from alternative to classic. J Neurosci 28:11650–11661

    Article  CAS  PubMed  Google Scholar 

  54. Bard F, Cannon C, Barbour R, Burke RL, Games D, Grajeda H, Guido T, Hu K, Huang J, Johnson-Wood K et al (2000) Peripherally administered antibodies against amyloid beta-peptide enter the central nervous system and reduce pathology in a mouse model of Alzheimer disease. Nat Med 6:916–919

    Article  CAS  PubMed  Google Scholar 

  55. Banks WA, Terrell B, Farr SA, Robinson SM, Nonaka N, Morley JE (2002) Passage of amyloid beta protein antibody across the blood-brain barrier in a mouse model of Alzheimer’s disease. Peptides 23:2223–2226

    Article  CAS  PubMed  Google Scholar 

  56. Iwata N, Sekiguchi M, Hattori Y, Takahashi A, Asai M, Ji B, Higuchi M, Staufenbiel M, Muramatsu S, Saido TC (2013) Global brain delivery of neprilysin gene by intravascular administration of AAV vector in mice. Sci Rep 3:1472

    PubMed Central  PubMed  Google Scholar 

  57. Carty N, Nash KR, Brownlow M, Cruite D, Wilcock D, Selenica ML, Lee DC, Gordon MN, Morgan D (2013) Intracranial injection of AAV expressing NEP but not IDE reduces amyloid pathology in APP + PS1 transgenic mice. PLoS ONE 8:e59626

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  58. Tucker HM, Kihiko-Ehmann M, Estus S (2002) Urokinase-type plasminogen activator inhibits amyloid-beta neurotoxicity and fibrillogenesis via plasminogen. J Neurosci Res 70:249–255

    Article  CAS  PubMed  Google Scholar 

  59. Fu H, Muenzer J, Samulski RJ, Breese G, Sifford J, Zeng X, McCarty DM (2003) Self-complementary adeno-associated virus serotype 2 vector: Global distribution and broad dispersion of AAV-mediated transgene expression in mouse brain. Mol Ther 8:911–917

    Article  CAS  PubMed  Google Scholar 

  60. Foust KD, Nurre E, Montgomery CL, Hernandez A, Chan CM, Kaspar BK (2009) Intravascular AAV9 preferentially targets neonatal neurons and adult astrocytes. Nat Biotechnol 27:59–65

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  61. Duque S, Joussemet B, Riviere C, Marais T, Dubreil L, Douar AM, Fyfe J, Moullier P, Colle MA, Barkats M (2009) Intravenous administration of self-complementary AAV9 enables transgene delivery to adult motor neurons. Mol Ther 17:1187–1196

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  62. Fu H, Dirosario J, Killedar S, Zaraspe K, McCarty DM (2011) Correction of neurological disease of mucopolysaccharidosis IIIB in adult mice by rAAV9 trans-blood-brain barrier gene delivery. Mol Ther 19:1025–1033

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  63. Spampanato C, De LE, Dama P, Gargiulo A, Fraldi A, Sorrentino NC, Russo F, Nusco E, Auricchio A, Surace EM et al (2011) Efficacy of a combined intracerebral and systemic gene delivery approach for the treatment of a severe lysosomal storage disorder. Mol Ther 19:860–869

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported in part by grants from the National Institutes of Health (AG037814, AG030399, and EY018478). We thank Dr. James Wilson at University of Pennsylvania for providing pAAV9 packaging plasmid and Ms. Linda Walter for assistance in preparation of this manuscript.

Competing Interests

Stephanie Planque and Sudhir Paul have a financial interest in Covalent Bioscience, Inc. and patents concerning catalytic antibodies. The other authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ken-ichiro Fukuchi.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplemental Fig. S1

High magnification pictures of the areas indicated by the squares in Fig. 3. IgVL5D3 expression in the brain by rAAV9-IgVL5D3 injection was detected by immunohistochemistry using anti-c-Myc antibody. Cytoplasmic accumulation of IgVL5D3 in some ependymal cells in the choroid plexus (a) and neurons in the neocortex (b) and hippocampus (c) is shown. A strong neuropil staining in the neocortex (b) and hippocampus (c) is suggestive of IgVL5D3 secretion from cells. Scale bars 50 μm (a) and 200 μm (b and c) (GIF 561 kb)

High Resolution Image (TIFF 1155 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kou, J., Yang, J., Lim, JE. et al. Catalytic Immunoglobulin Gene Delivery in a Mouse Model of Alzheimer’s Disease: Prophylactic and Therapeutic Applications. Mol Neurobiol 51, 43–56 (2015). https://doi.org/10.1007/s12035-014-8691-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-014-8691-z

Keywords

Navigation