Skip to main content

Advertisement

Log in

Lipid Integration in Neurodegeneration: An Overview of Alzheimer’s Disease

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Various types of lipids and their metabolic products associated with the biological membrane play a crucial role in signal transduction, modulation, and activation of receptors and as precursors of bioactive lipid mediators. Dysfunction in the lipid homeostasis in the brain could be a risk factor for the many types of neurodegenerative disorders, including Alzheimer’s disease, Huntington’s disease, Parkinson’s disease, and amyotrophic lateral sclerosis. These neurodegenerative disorders are marked by extensive neuronal apoptosis, gliosis, and alteration in the differentiation, proliferation, and development of neurons. Sphingomyelin, a constituent of plasma membrane, as well as its primary metabolite ceramide acts as a potential lipid second messenger molecule linked with the modulation of various cellular signaling pathways. Excessive production of reactive oxygen species associated with enhanced oxidative stress has been implicated with these molecules and involved in the regulation of a variety of different neurodegenerative and neuroinflammatory disorders. Studies have shown that alterations in the levels of plasma lipid/cholesterol concentration may result to neurodegenerative diseases. Alteration in the levels of inflammatory cytokines and mediators in the brain has also been found to be implicated in the pathophysiology of neurodegenerative diseases. Although several mechanisms involved in neuronal apoptosis have been described, the molecular mechanisms underlying the correlation between lipid metabolism and the neurological deficits are not clearly understood. In the present review, an attempt has been made to provide detailed information about the association of lipids in neurodegeneration especially in Alzheimer’s disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Campbell NA, Mitchell LG, Reece JB (1999) Biology, 5th edn. Benjamin/Cummings Publ. Co., Inc, Menlo Park

    Google Scholar 

  2. Schroepfer G (1981) Sterol biosynthesis. Annu Rev Biochem 50:585–621

    Article  PubMed  CAS  Google Scholar 

  3. Lees N, Skaggs B, Kirsch D, Bard M (1995) Cloning of the late genes in the ergosterol biosynthetic pathway of Saccharomyces cerevisiae—a review. Lipids 30(3):221–226

    Article  PubMed  CAS  Google Scholar 

  4. Fahy E, Subramaniam S, Murphy R et al (2009) Update of the LIPID MAPS comprehensive classification system for lipids. J Lipid Res 50(Supplement):S9–S14

    Article  PubMed  PubMed Central  Google Scholar 

  5. Subramaniam S, Fahy E, Gupta S et al (2011) Bioinformatics and systems biology of the lipidome. Chem Rev 111(10):6452–6490

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  6. Coleman RA, Lee DP (2004) Enzymes of triglyceride synthesis and their regulation. Prog Lipid Res 43(2):134–176

    Article  PubMed  CAS  Google Scholar 

  7. Zachowski A (1993) Phospholipids in animal eukaryotic membranes: transverse asymmetry and movement. Biochem J 294(Pt 1):1–14

    PubMed  PubMed Central  CAS  Google Scholar 

  8. Farooqui AA, Horrocks LA, Farooqui T (2000) Glycerophospholipids in brain: their metabolism, incorporation into membranes, functions, and involvement in neurological disorders. Chem Phys Lipids 106(1):1–29

    Article  PubMed  CAS  Google Scholar 

  9. Berridge MJ, Irvine RF (1989) Inositol phosphates and cell signalling. Nat J 341(1):197–205

    Article  CAS  Google Scholar 

  10. Bach D, Wachtel E (2003) Phospholipid/cholesterol model membranes: formation of cholesterol crystallites. Biochim Biophys Acta 1610(2):187–197

    Article  PubMed  CAS  Google Scholar 

  11. Haughey NJ, Bandaru VVR, Bai M, Mattson MM (2010) Roles for dysfunctional sphingolipid metabolism in Alzheimer’s disease neuropathogenesis. Biochim Biophys Acta 1801(8):878–886

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Jana A, Hogan EL, Pahan K (2009) Ceramide and neurodegeneration: susceptibility of neurons and oligodendrocytes to cell damage and death. J Neurol Sci 278(1–2):5–15

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. Tsui-Pierchala BA, Encinas M, Milbrandt J, Johnson EM Jr (2002) Lipid rafts in neuronal signaling and function. Trends Neurosci 8:412–417

    Article  Google Scholar 

  14. Mencarelli C, Martinez-Martinez P (2013) Ceramide function in the brain: when a slight tilt is enough. Cell Mol Life Sci 70:181–203

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. Wang X (2004) Lipid signaling. Curr Opinions Plant Biol 7(3):329–336

    Article  CAS  Google Scholar 

  16. Dinasarapu AR, Saunders B, Ozerlat I, Azam K, Subramaniam S (2011) Signaling gateway molecule pages a data model perspective. Bioinformatics 27(12):1736–1738

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Eyster KM (2007) The membrane and lipids as integral participants in signal transduction. Adv Physiol Educ 31(1):5–16

    Article  PubMed  Google Scholar 

  18. Hinkovska-Galcheva V, VanWay SM, Shanley TP, Kunkel RG (2008) The role of sphingosine-1-phosphate and ceramide-1-phosphate in calcium homeostasis. Curr Opin Investig Drugs 9(11):1192–1205

    PubMed  CAS  Google Scholar 

  19. Saddoughi SA, Song P, Ogretmen B (2008) Roles of bioactive sphingolipids in cancer biology and therapeutics. Subcell Biochem 49:413–440

    Article  PubMed  PubMed Central  Google Scholar 

  20. Klein C, Malviya AN (2008) Mechanism of nuclear calcium signaling by inositol 1,4,5-trisphosphate produced in the nucleus, nuclear located protein kinase C and cyclic AMP-dependent protein kinase. Front Biosci 13(13):1206–1226

    Article  PubMed  CAS  Google Scholar 

  21. Boyce JA (2008) Eicosanoids in asthma, allergic inflammation, and host defense. Cur Mo Med 8(5):335–349

    Article  CAS  Google Scholar 

  22. Cutler RG, Kelly J, Storie K et al (2004) Involvement of oxidative stress-induced abnormalities in ceramide and cholesterol metabolism in brain aging and Alzheimer’s disease. Proc Natl Acad Sci U S A 101:2070–2075

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. Sultana R, Perluigi M, Butterfield DA (2013) Lipid peroxidation triggers neurodegeneration: a redox proteomics view into the Alzheimer disease brain. Free Radic Biol Med 62:157–169

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. Simons K, Ikonen E (1997) Functional rafts in cell membranes. Nature 387:569–572

    Article  PubMed  CAS  Google Scholar 

  25. Brown DA, London E (2000) Structure and function of sphingolipid- and cholesterol-rich membrane rafts. J Biol Chem 275:17221–17224

    Article  PubMed  CAS  Google Scholar 

  26. Pike LJ (2008) The challenge of lipid rafts. J Lipid Res 50:S323

    Article  PubMed  Google Scholar 

  27. Korade Z, Kenworthy AK (2008) Lipid rafts, cholesterol, and the brain. Neuropharmacology 55(8):1265–1273

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. Brown DA, London E (1998) Functions of lipid rafts in biological membranes. Annu Rev Cell Dev Biol 14:111–136

    Article  PubMed  CAS  Google Scholar 

  29. Simons K, Toomre D (2000) Lipid rafts and signal transduction. Nat Rev Mol Cell Biol 1:31–39

    Article  PubMed  CAS  Google Scholar 

  30. Kamiguchi H (2006) The region-specific activities of lipid rafts during axon growth and guidance. J Neurochem 98(2):330–335

    Article  PubMed  CAS  Google Scholar 

  31. Grider MH, Park D, Spencer DM, Shine HD (2009) Lipid raft-targeted Akt promotes axonal branching and growth cone expansion via mTOR and Rac1, respectively. J Neurosci Res 87:3033–3042

    Article  PubMed  CAS  Google Scholar 

  32. Munderloh C, Solis GP, Bodrikov V et al (2009) Reggies/flotillins regulate retinal axon regeneration in the zebra fish optic nerve and differentiation of hippocampal and N2a neurons. J Neurosci 29:6607–6615

    Article  PubMed  CAS  Google Scholar 

  33. Petro KA, Schengrund CL (2009) Membrane raft disruption promotes axonogenesis in N2a neuroblastoma cells. Neurochem Res 34:29–37

    Article  PubMed  CAS  Google Scholar 

  34. Cordy JM, Hooper NM, Turner AJ (2006) The involvement of lipid rafts in Alzheimer's disease. Mol Membr Biol 23(1):111–122

    Article  PubMed  CAS  Google Scholar 

  35. Cheng H, Vetrivel KS, Gong et al (2007) Mechanisms of disease: new therapeutic strategies for Alzheimer’s disease—targeting APP processing in lipid rafts. Nat Clin Pract Neurol 3:374–382

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  36. Vetrivel KS, Thinakaran G (2010) Membrane rafts in Alzheimer’s disease β-amyloid production. Biochim Biophys Acta 1801:860–867

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  37. Han X, Holtzman MD, McKeel DW Jr, Kelley J, Morris JC (2002) Substantial sulfatide deficiency and ceramide elevation in very early Alzheimer’s disease: potential role in disease pathogenesis. J Neurochem 82:809–818

    Article  PubMed  CAS  Google Scholar 

  38. Car H, Zendzian-Piotrowska M, Fiedorowicz A, Prokopiuk S, Sadowska A, Kurek K (2012) The role of ceramides in selected brain pathologies: ischemia/hypoxia, Alzheimer disease. Postepy Hig Med Dosw 66:295–303

    Article  Google Scholar 

  39. Wenk GL (2003) Neuropathologic changes in Alzheimer's disease. J Clin Psychiatry 64(9):7–10

    PubMed  Google Scholar 

  40. Duyckaerts C, Delatour B, Potier MC (2009) Classification and basic pathology of Alzheimer disease. Acta Neuropathol 118(1):5–36

    Article  PubMed  CAS  Google Scholar 

  41. Honjo K, Black SE, Verhoeff NP (2012) Alzheimer’s disease, cerebrovascular disease, and the β-amyloid cascade. Can J Neurol Sci 39(6):712–728

    PubMed  Google Scholar 

  42. Breunig JJ, Guillot-Sestier MV, Town T (2013) Brain injury, neuroinflammation and Alzheimer's disease. Front Aging Neurosci 5:26

    Article  PubMed  PubMed Central  Google Scholar 

  43. Fadil H, Borazanci A, Ait Ben Haddou E, Yahyaoui M, Korniychuk E, Jaffe SL, Minagar A (2009) Early onset dementia. Int Rev Neurobiol 84:245–262

    Article  PubMed  CAS  Google Scholar 

  44. Jorge RE, Robinson RG (2011) Treatment of late-life depression: a role of non-invasive brain stimulation techniques. Int Rev Psychiatry 23(5):437–444

    Article  PubMed  PubMed Central  Google Scholar 

  45. Selkoe DJ (1994) Alzheimer’s disease: a central role for amyloid. J Neuropathol Exp Neurol 53(5):438–447

    Article  PubMed  CAS  Google Scholar 

  46. Hamlin AS, Windels F, Boskovic Z, Sah P, Coulson EJ (2013) Lesions of the basal forebrain cholinergic system in mice disrupt idiothetic navigation. PLoS One 8(1):e53472

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  47. Akiyama H, Barger S, Barnum S et al (2000) Inflammation and Alzheimer’s disease. Neurobiol Aging 21:383–421

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  48. Ariga T, McDonald MP, Yu RK (2008) Role of ganglioside metabolism in the pathogenesis of Alzheimer’s disease—a review. J Lipid Res 49:1157–1175

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  49. Ariga T, Jarvis WD, Yu RK (1998) Role of sphingolipid-mediated cell death in neurodegenerative diseases. J Lipid Res 39:1–16

    PubMed  CAS  Google Scholar 

  50. Cherayil GD (1968) Fatty acid composition of brain glycolipids in Alzheimer’s disease, senile dementia, and cerebrocortical atrophy. J Lipid Res 9:207–214

    PubMed  CAS  Google Scholar 

  51. Hicks DA, Nalivaeva NN, Turner AJ (2012) Lipid rafts and Alzheimer’s disease: protein-lipid interactions and perturbation of signalling. Front Physiol 3(189):1–18

    Google Scholar 

  52. Lukiw WJ, Bazan NG (2008) Docosahexaenoic acid and the aging brain. J Nutr 138:2510–2514

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  53. Bazan NG (2006) Cell survival matters: docosahexaenoic acid signaling, neuroprotection and photo-receptors. Trends Neurosci 29:263–271

    Article  PubMed  CAS  Google Scholar 

  54. Suzuki K, Katzman R, Korey SR (1965) Chemical studies on Alzheimer’s disease. J Neuropathol Exp Neurol 24:211–224

    Article  PubMed  CAS  Google Scholar 

  55. Nitsch RM, Blusztajn JK, Pittas AG et al (1992) Evidence for a membrane defect in Alzheimer disease brain. Proc Natl Acad Sci U S A 89:1671–1675

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  56. Bassett CN, Montine TJ (2003) Lipoproteins and lipid peroxidation in Alzheimer's disease. J Nutr Health Aging 7(1):24–29

    PubMed  CAS  Google Scholar 

  57. He X, Huang Y, Li B, Gong CX, Schuchman EH (2010) Deregulation of sphingolipid metabolism in Alzheimer’s disease. Neurobiol Aging 31(3):398–408

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  58. Satoi H, Tomimoto H, Ohtani R et al (2005) Astroglial expression of ceramide in Alzheimer’s disease brains: a role during neuronal apoptosis. Neuroscience 130:657–666

    Article  PubMed  CAS  Google Scholar 

  59. Markesbery WR (1999) The role of oxidative stress in Alzheimer disease. Arch Neurol 56:1449–1451

    Article  PubMed  CAS  Google Scholar 

  60. Lovell MA, Xie C et al (2000) Acrolein, a product of lipid peroxidation, inhibits glucose and glutamate uptake in primary neuronal cultures. Free Radic Biol Med 29(8):714–720

    Article  PubMed  CAS  Google Scholar 

  61. Markesbery WR, Carney JM (1999) Oxidative alterations in Alzheimer's disease. Brain Pathol 9(1):133–146

    Article  PubMed  CAS  Google Scholar 

  62. Hardas SS, Sultana R, Clark AM et al (2013) Oxidative modification of lipoic acid by HNE in Alzheimer’s disease brain. Redox Biol 1:80–85

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  63. Smith DG, Cappai R, Barnham KJ (2007) The redox chemistry of the Alzheimer's disease amyloid β peptide. Biochim Biophys Acta 1768:1976–1990

    Article  PubMed  CAS  Google Scholar 

  64. Schonfeld E, Yasharel I, Yavin E, Brand A (2007) Docosahexaenoic acid enhances iron uptake by modulating iron transporters and accelerates apoptotic death in pc12 cells. Neurochem Res 32:1673–1684

    Article  PubMed  CAS  Google Scholar 

  65. Brand A, Schonfeld E, Isharel I, Yavin E (2008) Docosahexaenoic acid-dependent iron accumulation in oligodendroglia cells protects from hydrogen peroxide-induced damage. J Neurochem 105:1325–1335

    Article  PubMed  CAS  Google Scholar 

  66. Poli G, Schaur RJ (2000) 4-Hydroxynonenal in the pathomechanisms of oxidative stress. IUBMB Life 50(4–5):315–321

    Article  PubMed  CAS  Google Scholar 

  67. Sayre LM, Zelasko DA, Harris PL et al (1997) 4-Hydroxynonenal-derived advanced lipid peroxidation end products are increased in Alzheimer's disease. J Neurochem 68:2092–2097

    Article  PubMed  CAS  Google Scholar 

  68. Montine KS, Kim PJ, Olson SJ, Markesbery WR, Montine TJ (1997) 4-Hydroxy-2-nonenal pyrrole adducts in human neurodegenerative disease. J Neuropathol Exp Neurol 56:866–871

    Article  PubMed  CAS  Google Scholar 

  69. Williams TI, Lynn BC, Markesbery WR, Lovell MA (2006) Increased levels of 4-hydroxynonenal and acrolein, neurotoxic markers of lipid peroxidation, in the brain in mild cognitive impairment and early Alzheimer's disease. Neurobiol Aging 27:1094–1099

    Article  PubMed  CAS  Google Scholar 

  70. Stadtman ER, Berlett BS (1997) Reactive oxygen-mediated protein oxidation in aging and disease. Chem Res Toxicol 10:485–494

    Article  PubMed  CAS  Google Scholar 

  71. Price JL, Morris JC (1999) Tangles and plaques in nondemented aging and “preclinical” Alzheimer’s disease. Ann Neurol 45:358–368

    Article  PubMed  CAS  Google Scholar 

  72. Su JH, Anderson AJ, Cummings BJ, Cotman CW (1994) Immunohistochemical evidence for apoptosis in Alzheimer’s disease. Neuroreport 5(18):2529–2533

    Article  PubMed  CAS  Google Scholar 

  73. Pappolla MA, Omar RA, Kim KS, Robakis NK (1992) Immunohistochemical evidence of oxidative stress in Alzheimer’s disease. Am J Pathol 140:621–628

    PubMed  PubMed Central  CAS  Google Scholar 

  74. Farooqui AA, Horrocks LA, Farooqui T (2007) Modulation of inflammation in brain: a matter of fat. J Neurochem 101(3):577–599

    Article  PubMed  CAS  Google Scholar 

  75. Bazan NG, Calandria JM, Gordon WC (2013) Docosahexaenoic acid and its derivative neuroprotectin D1 display neuroprotective properties in the retina, brain and central nervous system. Nestle Nutr Inst Workshop Ser 77:121–131

    Article  PubMed  CAS  Google Scholar 

  76. Giasson BI, Sampathu DM, Wilson CA et al (2002) The environmental toxin arsenite induces tau hyperphosphorylation. Biochemistry 41(51):15376–15387

    Article  PubMed  CAS  Google Scholar 

  77. Borenstein AR, Copenhaver CI, Mortimer JA (2006) Early-life risk factors for Alzheimer disease. Alzheimer Dis Assoc Disord 20(1):63–72

    Article  PubMed  Google Scholar 

  78. Jones N (2010) Alzheimer disease: risk of dementia and Alzheimer disease increases with occupational pesticide exposure. Nat Rev Neurol 6(7):353

    Article  PubMed  Google Scholar 

  79. Wingo TS, Rosen A, Cutler DJ, Lah JJ, Levey AI (2012) Paraoxonase-1 polymorphisms in Alzheimer's disease, Parkinson's disease, and AD-PD spectrum diseases. Neurobiol Aging 33(1):204, e13–15

    Article  PubMed  PubMed Central  Google Scholar 

  80. Namgung U, Xia Z (2001) Arsenic induces apoptosis in rat cerebellar neurons via activation of JNK3 and p38 MAP kinases. Toxicol Appl Pharmacol 174:130–138

    Article  PubMed  CAS  Google Scholar 

  81. Hull M, Lieb K, Fiebich BL (2002) Pathways of inflammatory activation in Alzheimer’s disease: potential targets for disease modifying drugs. Curr Med Chem 9:83–88

    Article  PubMed  CAS  Google Scholar 

  82. Gong G, O’bryant SE (2010) The arsenic exposure hypothesis for Alzheimer disease. Alzheimer Dis Assoc Disord 24:311–316

    Article  PubMed  CAS  Google Scholar 

  83. Gharibzadeh S, Hoseini SS (2008) Arsenic exposure may be a risk factor for Alzheimer's disease. J Neuropsychiatry Clin Neurosci 20(4):501

    Article  PubMed  Google Scholar 

  84. Yadav RS, Chandravanshi LP, Shukla RK et al (2011) Neuroprotective efficacy of curcumin in arsenic induced cholinergic dysfunctions in rats. Neurotoxicology 32:760–768

    Article  PubMed  CAS  Google Scholar 

  85. Ansari RW, Shukla RK, Yadav RS et al (2012) Cholinergic dysfunctions and enhanced oxidative stress in the neurobehavioral toxicity of lambda-cyhalothrin in developing rats. Neurotox Res 22:292–309

    Article  PubMed  CAS  Google Scholar 

  86. Sankhwar ML, Yadav RS, Shukla RK et al (2012) Impaired cholinergic mechanisms following exposure to monocrotophos in young rats. Hum Exp Toxicol 31(6):606–616

    Article  PubMed  CAS  Google Scholar 

  87. Eberhardt JL, Persson BR, Brun AE, Salford LG, Malmgren LO (2008) Blood-brain barrier permeability and nerve cell damage in rat brain 14 and 28 days after exposure to microwaves from GSM mobile phones. Electromagn Biol Med 27:215–229

    Article  PubMed  CAS  Google Scholar 

  88. Eulitz C, Ullsperger P, Freude G, Elbert T (1998) Mobile phones modulate response patterns of human brain activity. Neuroreport 9:3229–3232

    Article  PubMed  CAS  Google Scholar 

  89. Freude G, Ullsperger P, Eggert S, Ruppe I (1998) Effects of microwaves emitted by cellular phones on human slow brain potentials. Bioelectromagnetics 19:384–387

    Article  PubMed  CAS  Google Scholar 

  90. Koivisto M, Krause CM, Revonsuo A, Laine M, Hamalainen H (2000) The effects of electromagnetic field emitted by GSM phones on working memory. Neuroreport 11:1641–1643

    Article  PubMed  CAS  Google Scholar 

  91. Smythe JW, Costall B (2003) Mobile phone use facilitates memory in male, but not female, subjects. Neuroreport 14:243–246

    Article  PubMed  Google Scholar 

  92. Trosic I, Busljeta I, Modlic B (2004) Investigation of the genotoxic effect of microwave irradiation in rat bone marrow cells: in vivo exposure. Mutagenesis 19:361–364

    Article  PubMed  CAS  Google Scholar 

  93. Lee TM, Ho SM, Tsang LY et al (2001) Effect on human attention of exposure to the electromagnetic field emitted by mobile phones. Neuroreport 12:729–731

    Article  PubMed  CAS  Google Scholar 

  94. Krause CM, Sillanmaki L, Koivisto M et al (2000) Effects of electromagnetic fields emitted by cellular phones on the electroencephalogram during a visual working memory task. Int J Radiat Biol 76:1659–1667

    Article  PubMed  CAS  Google Scholar 

  95. Krause CM, Sillanmaki L, Koivisto M et al (2000) Effects of electromagnetic field emitted by cellular phones on the EEG during a memory task. Neuroreport 11(2000b):761–764

    Article  PubMed  CAS  Google Scholar 

  96. Kesari KK, Siddiqui MH, Meena R, Verma HN, Kumar S (2013) Cell phone radiation exposure on brain and associated biological systems. Indian J Exp Biol 51(3):187–200

    PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The authors are thankful to Dr. Harisingh Gour Central University, Sagar (MP), India and SRM University, Barabanki (UP), India for providing the opportunity to work and for their support and interest. Neeraj Kumar Tiwari is also thankful to the Uttar Pradesh Council of Science and Technology (UPCST), Lucknow, India for providing the Young Scientist Fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Neeraj Kumar Tiwari.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yadav, R.S., Tiwari, N.K. Lipid Integration in Neurodegeneration: An Overview of Alzheimer’s Disease. Mol Neurobiol 50, 168–176 (2014). https://doi.org/10.1007/s12035-014-8661-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-014-8661-5

Keywords

Navigation