Skip to main content

Roles of Bioactive Sphingolipids in Cancer Biology and Therapeutics

  • Chapter
Lipids in Health and Disease

Part of the book series: Subcellular Biochemistry ((SCBI,volume 49))

Abstract

In this chapter, roles of bioactive sphingolipids in the regulation of cancer pathogenesis and therapy will be reviewed. Sphingolipids have emerged as bioeffector molecules, which control various aspects of cell growth, proliferation, and anti-cancer therapeutics. Ceramide, the central molecule of sphingolipid metabolism, generally mediates anti-proliferative responses such as inhibition of cell growth, induction of apoptosis, and/or modulation of senescence. On the other hand, sphingosine 1-phosphate (S1P) plays opposing roles, and induces transformation, cancer cell growth, or angiogenesis. A network of metabolic enzymes regulates the generation of ceramide and S1P, and these enzymes serve as transducers of sphingolipid-mediated responses that are coupled to various exogenous or endogenous cellular signals. Consistent with their key roles in the regulation of cancer growth and therapy, attenuation of ceramide generation and/or increased S1P levels are implicated in the development of resistance to drug-induced apoptosis, and escape from cell death. These data strongly suggest that advances in the molecular and biochemical understanding of sphingolipid metabolism and function will lead to the development of novel therapeutic strategies against human cancers, which may also help overcome drug resistance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abe, A., Radin, N.S., Shayman, J.A., Wotring, L.L., Zipkin, R.E., Sivakumar, R., Ruggieri, J.M., Carson, K.G., and Ganem, B. Structural and stereochemical studies of potent inhibitors of glucosylceramide synthase and tumor cell growth. J Lipid Res, 36, 1995, 611–621.

    PubMed  CAS  Google Scholar 

  • Akao, Y., Banno, Y., Nakagawa, Y., Hasegawa, N., Kim, T.J., Murate, T., Igarashi, Y., and Nozawa, Y. High expression of sphingosine kinase 1 and S1P receptors in chemotherapy-resistant prostate cancer PC3 cells and their camptothecin-induced up-regulation. Biochem Biophys Res Commun, 342, 2006, 1284–1290.

    Article  PubMed  CAS  Google Scholar 

  • Alexander, S., Min, J., and Alexander, H. Dictyostelium discoideum to human cells: pharmacogenetic studies demonstrate a role for sphingolipids in chemoresistance. Biochim Biophys Acta, 1760, 2006, 301–309.

    PubMed  CAS  Google Scholar 

  • Andrieu-Abadie, N. and Levade, T. Sphingomyelin hydrolysis during apoptosis. Biochim Biophys Acta, 1585, 2002, 126–134.

    PubMed  CAS  Google Scholar 

  • Argraves, K.M., Wilkerson, B.A., Argraves, W.S., Fleming, P.A., Obeid, L.M., and Drake, C.J. Sphingosine-1-phosphate signaling promotes critical migratory events in vasculogenesis. J Biol Chem, 279, 2004, 50580–50590.

    Article  PubMed  CAS  Google Scholar 

  • Baran, Y., Salas, A., Senkal, C.E., Gunduz, U., Bielawski, J., Obeid, L.M., and Ogretmen, B. Alterations of ceramide/sphingosine 1-phosphate rheostat involved in the regulation of resistance to imatinib-induced apoptosis in K562 human chronic myeloid leukemia cells. J Biol Chem, 282, 2007, 10922–10934.

    Article  PubMed  CAS  Google Scholar 

  • Bektas, M., Jolly, P.S., Muller, C., Eberle, J., Spiegel, S., and Geilen, C.C. Sphingosine kinase activity counteracts ceramide-mediated cell death in human melanoma cells: role of Bcl-2 expression. Oncogene, 24, 2005, 178–187.

    Article  PubMed  CAS  Google Scholar 

  • Bieberich, E., Kawaguchi, T., and Yu, R.K. N-acylated serinol is a novel ceramide mimic inducing apoptosis in neuroblastoma cells. J Biol Chem, 275, 2000, 177–181.

    Article  PubMed  CAS  Google Scholar 

  • Bielawska, A., Greenberg, M.S., Perry, D., Jayadev, S., Shayman, J.A., McKay, C., and Hannun, Y.A. (1S,2R)-D-erythro-2-(N-myristoylamino)-1-phenyl-1-propanol as an inhibitor of ceramidase. J Biol Chem, 271, 1996, 12646–12654.

    Article  PubMed  CAS  Google Scholar 

  • Bielawska, A., Bielawski, J., Szulc, Z.M., Mayroo, N., Liu, X., Bai, A., Elojeimy, S., Rembiesa, B., Pierce, J., Norris, J.S., and Hannun, Y.A. Novel analogs of d-e-MAPP and B13. Part 2: Signature effects on bioactive sphingolipids. Bioorg Med Chem, 16, 2008, 1032–1045.

    Article  PubMed  CAS  Google Scholar 

  • Billich, A., Bornancin, F., Devay, P., Mechtcheriakova, D., Urtz, N., and Baumruker, T. Phosphorylation of the immunomodulatory drug FTY720 by sphingosine kinases. J Biol Chem, 278, 2003, 47408–47415.

    Article  PubMed  CAS  Google Scholar 

  • Birbes, H., El Bawab, S., Hannun, Y.A., and Obeid, L.M. Selective hydrolysis of a mitochondrial pool of sphingomyelin induces apoptosis. Faseb J, 15, 2001, 2669–2679.

    Article  PubMed  CAS  Google Scholar 

  • Blackburn, E.H. Telomeres and telomerase: their mechanisms of action and the effects of altering their functions. FEBS Lett, 579, 2005, 859–862.

    Article  PubMed  CAS  Google Scholar 

  • Borek, C. and Merrill, A.H., Jr. Sphingolipids inhibit multistage carcinogenesis and protein kinase C. Basic Life Sci, 61, 1993, 367–371.

    PubMed  CAS  Google Scholar 

  • Bose, R., Verheij, M., Haimovitz-Friedman, A., Scotto, K., Fuks, Z., and Kolesnick, R. Ceramide synthase mediates daunorubicin-induced apoptosis: an alternative mechanism for generating death signals. Cell, 82, 1995, 405–414.

    Article  PubMed  CAS  Google Scholar 

  • Bourbon, N.A., Sandirasegarane, L., and Kester, M. Ceramide-induced inhibition of Akt is mediated through protein kinase Czeta: implications for growth arrest. J Biol Chem, 277, 2002, 3286–3292.

    Article  PubMed  CAS  Google Scholar 

  • Brinkmann, V., Cyster, J.G., and Hla, T. FTY720: sphingosine 1-phosphate receptor-1 in the control of lymphocyte egress and endothelial barrier function. Am J Transplant, 4, 2004, 1019–1025.

    Article  PubMed  CAS  Google Scholar 

  • Carracedo, A., Lorente, M., Egia, A., Blazquez, C., Garcia, S., Giroux, V., Malicet, C., Villuendas, R., Gironella, M., Gonzalez-Feria, L., Piris, M.A., Iovanna, J.L., Guzman, M., and Velasco, G. The stress-regulated protein p8 mediates cannabinoid-induced apoptosis of tumor cells. Cancer Cell, 9, 2006, 301–312.

    Article  PubMed  CAS  Google Scholar 

  • Cerantola, V., Vionnet, C., Aebischer, O.F., Jenny, T., Knudsen, J., and Conzelmann, A. Yeast sphingolipids do not need to contain very long chain fatty acids. Biochem J, 401, 2007, 205–216.

    Article  PubMed  CAS  Google Scholar 

  • Chae, S.S., Paik, J.H., Furneaux, H., and Hla, T. Requirement for sphingosine 1-phosphate receptor-1 in tumor angiogenesis demonstrated by in vivo RNA interference. J Clin Invest, 114, 2004, 1082–1089.

    PubMed  CAS  Google Scholar 

  • Chalfant, C.E., Ogretmen, B., Galadari, S., Kroesen, B.J., Pettus, B.J., and Hannun, Y.A. FAS activation induces dephosphorylation of SR proteins; dependence on the de novo generation of ceramide and activation of protein phosphatase 1. J Biol Chem, 276, 2001, 44848–44855.

    Article  PubMed  CAS  Google Scholar 

  • Chalfant, C.E., Rathman, K., Pinkerman, R.L., Wood, R.E., Obeid, L.M., Ogretmen, B., and Hannun, Y.A. De novo ceramide regulates the alternative splicing of caspase 9 and Bcl-x in A549 lung adenocarcinoma cells. Dependence on protein phosphatase-1. J Biol Chem, 277, 2002, 12587–12595.

    Article  PubMed  CAS  Google Scholar 

  • Charles, R., Sandirasegarane, L., Yun, J., Bourbon, N., Wilson, R., Rothstein, R.P., Levison, S.W., and Kester, M. Ceramide-coated balloon catheters limit neointimal hyperplasia after stretch injury in carotid arteries. Circ Res, 87, 2000, 282–288.

    PubMed  CAS  Google Scholar 

  • Chun, J. and Rosen, H. Lysophospholipid receptors as potential drug targets in tissue transplantation and autoimmune diseases. Curr Pharm Des, 12, 2006, 161–171.

    Article  PubMed  CAS  Google Scholar 

  • Clarke, C.J. and Hannun, Y.A. Neutral sphingomyelinases and nSMase2: bridging the gaps. Biochim Biophys Acta, 1758, 2006, 1893–1901.

    Article  PubMed  CAS  Google Scholar 

  • Clarke, C.J., Snook, C.F., Tani, M., Matmati, N., Marchesini, N., and Hannun, Y.A. The extended family of neutral sphingomyelinases. Biochemistry, 45, 2006, 11247–11256.

    Article  PubMed  CAS  Google Scholar 

  • Crawford, K.W., Bittman, R., Chun, J., Byun, H.S., and Bowen, W.D. Novel ceramide analogues display selective cytotoxicity in drug-resistant breast tumor cell lines compared to normal breast epithelial cells. Cell Mol Biol (Noisy-le-grand), 49, 2003, 1017–1023.

    CAS  Google Scholar 

  • Cremesti, A., Paris, F., Grassme, H., Holler, N., Tschopp, J., Fuks, Z., Gulbins, E., and Kolesnick, R. Ceramide enables fas to cap and kill. J Biol Chem, 276, 2001, 23954–23961.

    Article  PubMed  CAS  Google Scholar 

  • D'Angelo, G., Polishchuk, E., Di Tullio, G., Santoro, M., Di Campli, A., Godi, A., West, G., Bielawski, J., Chuang, C.C., van der Spoel, A.C., Platt, F.M., Hannun, Y.A., Polishchuk, R., Mattjus, P., and De Matteis, M.A. Glycosphingolipid synthesis requires FAPP2 transfer of glucosylceramide. Nature, 449, 2007, 62–67.

    Article  PubMed  CAS  Google Scholar 

  • Dahm, F., Bielawska, A., Nocito, A., Georgiev, P., Szulc, Z.M., Bielawski, J., Jochum, W., Dindo, D., Hannun, Y.A., and Clavien, P.A. Mitochondrially targeted ceramide LCL-30 inhibits colorectal cancer in mice. Br J Cancer, 98, 2008, 98–105.

    Article  PubMed  CAS  Google Scholar 

  • Davis, M.D., Clemens, J.J., Macdonald, T.L., and Lynch, K.R. Sphingosine 1-phosphate analogs as receptor antagonists. J Biol Chem, 280, 2005, 9833–9841.

    Article  PubMed  CAS  Google Scholar 

  • Dbaibo, G.S., Pushkareva, M.Y., Jayadev, S., Schwarz, J.K., Horowitz, J.M., Obeid, L.M., and Hannun, Y.A. Retinoblastoma gene product as a downstream target for a ceramide-dependent pathway of growth arrest. Proc Natl Acad Sci U S A, 92, 1995, 1347–1351.

    Article  PubMed  CAS  Google Scholar 

  • Dbaibo, G.S., Perry, D.K., Gamard, C.J., Platt, R., Poirier, G.G., Obeid, L.M., and Hannun, Y.A. Cytokine response modifier A (CrmA) inhibits ceramide formation in response to tumor necrosis factor (TNF)-alpha: CrmA and Bcl-2 target distinct components in the apoptotic pathway. J Exp Med, 185, 1997, 481–490.

    Article  PubMed  CAS  Google Scholar 

  • De Rosa, M.F., Sillence, D., Ackerley, C., and Lingwood, C. Role of multiple drug resistance protein 1 in neutral but not acidic glycosphingolipid biosynthesis. J Biol Chem, 279, 2004, 7867–7876.

    Article  PubMed  CAS  Google Scholar 

  • Dindo, D., Dahm, F., Szulc, Z., Bielawska, A., Obeid, L.M., Hannun, Y.A., Graf, R., and Clavien, P.A. Cationic long-chain ceramide LCL-30 induces cell death by mitochondrial targeting in SW403 cells. Mol Cancer Ther, 5, 2006, 1520–1529.

    Article  PubMed  CAS  Google Scholar 

  • Dobrowsky, R.T. and Hannun, Y.A. Ceramide stimulates a cytosolic protein phosphatase. J Biol Chem, 267, 1992, 5048–5051.

    PubMed  CAS  Google Scholar 

  • Dobrowsky, R.T., Kamibayashi, C., Mumby, M.C., and Hannun, Y.A. Ceramide activates heterotrimeric protein phosphatase 2A. J Biol Chem, 268, 1993, 15523–15530.

    PubMed  CAS  Google Scholar 

  • Dobrowsky, R.T., Werner, M.H., Castellino, A.M., Chao, M.V., and Hannun, Y.A. Activation of the sphingomyelin cycle through the low-affinity neurotrophin receptor. Science, 265, 1994, 1596–1599.

    Article  PubMed  CAS  Google Scholar 

  • Dolgachev, V., Farooqui, M.S., Kulaeva, O.I., Tainsky, M.A., Nagy, B., Hanada, K., and Separovic, D. De novo ceramide accumulation due to inhibition of its conversion to complex sphingolipids in apoptotic photosensitized cells. J Biol Chem, 279, 2004, 23238–23249.

    Article  PubMed  CAS  Google Scholar 

  • Fishbein, J.D., Dobrowsky, R.T., Bielawska, A., Garrett, S., and Hannun, Y.A. Ceramide-mediated growth inhibition and CAPP are conserved in Saccharomyces cerevisiae. J Biol Chem, 268, 1993, 9255–9261.

    PubMed  CAS  Google Scholar 

  • Fox, T.E., Finnegan, C.M., Blumenthal, R., and Kester, M. The clinical potential of sphingolipid-based therapeutics. Cell Mol Life Sci, 63, 2006, 1017–1023.

    Article  PubMed  CAS  Google Scholar 

  • Fox, T.E., Houck, K.L., O'Neill, S.M., Nagarajan, M., Stover, T.C., Pomianowski, P.T., Unal, O., Yun, J.K., Naides, S.J., and Kester, M. Ceramide recruits and activates protein kinase C zeta (PKC zeta) within structured membrane microdomains. J Biol Chem, 282, 2007, 12450–12457.

    Article  PubMed  CAS  Google Scholar 

  • French, K.J., Upson, J.J., Keller, S.N., Zhuang, Y., Yun, J.K., and Smith, C.D. Antitumor activity of sphingosine kinase inhibitors. J Pharmacol Exp Ther, 318, 2006, 596–603.

    Article  PubMed  CAS  Google Scholar 

  • Futerman, A.H. and Hannun, Y.A. The complex life of simple sphingolipids. EMBO Rep, 5, 2004, 777–782.

    Article  PubMed  CAS  Google Scholar 

  • Futerman, A.H. and Riezman, H. The ins and outs of sphingolipid synthesis. Trends Cell Biol, 15, 2005, 312–318.

    Article  PubMed  CAS  Google Scholar 

  • Gouaze-Andersson, V. and Cabot, M.C. Glycosphingolipids and drug resistance. Biochim Biophys Acta, 1758, 2006, 2096–2103.

    Article  PubMed  CAS  Google Scholar 

  • Gouaze-Andersson, V., Yu, J.Y., Kreitenberg, A.J., Bielawska, A., Giuliano, A.E., and Cabot, M.C. Ceramide and glucosylceramide upregulate expression of the multidrug resistance gene MDR1 in cancer cells. Biochim Biophys Acta, 1771, 2007, 1407–1417.

    PubMed  CAS  Google Scholar 

  • Gouaze, V., Liu, Y.Y., Prickett, C.S., Yu, J.Y., Giuliano, A.E., and Cabot, M.C. Glucosylceramide synthase blockade down-regulates P-glycoprotein and resensitizes multidrug-resistant breast cancer cells to anticancer drugs. Cancer Res, 65, 2005, 3861–3867.

    Article  PubMed  CAS  Google Scholar 

  • Gouaze, V., Yu, J.Y., Bleicher, R.J., Han, T.Y., Liu, Y.Y., Wang, H., Gottesman, M.M., Bitterman, A., Giuliano, A.E., and Cabot, M.C. Overexpression of glucosylceramide synthase and P-glycoprotein in cancer cells selected for resistance to natural product chemotherapy. Mol Cancer Ther, 3, 2004, 633–639.

    PubMed  CAS  Google Scholar 

  • Goulding, C.W., Giuliano, A.E., and Cabot, M.C. SDZ PSC 833 the drug resistance modulator activates cellular ceramide formation by a pathway independent of P-glycoprotein. Cancer Lett, 149, 2000, 143–151.

    Article  PubMed  CAS  Google Scholar 

  • Guillas, I., Kirchman, P.A., Chuard, R., Pfefferli, M., Jiang, J.C., Jazwinski, S.M., and Conzelmann, A. C26-CoA-dependent ceramide synthesis of Saccharomyces cerevisiae is operated by Lag1p and Lac1p. Embo J, 20, 2001, 2655–2665.

    Article  PubMed  CAS  Google Scholar 

  • Hanada, K., Kumagai, K., Yasuda, S., Miura, Y., Kawano, M., Fukasawa, M., and Nishijima, M. Molecular machinery for non-vesicular trafficking of ceramide. Nature, 426, 2003, 803–809.

    Article  PubMed  CAS  Google Scholar 

  • Hannun, Y.A. and Obeid, L.M. The Ceramide-centric universe of lipid-mediated cell regulation: stress encounters of the lipid kind. J Biol Chem, 277, 2002, 25847–25850.

    Article  PubMed  CAS  Google Scholar 

  • Heinrich, M., Neumeyer, J., Jakob, M., Hallas, C., Tchikov, V., Winoto-Morbach, S., Wickel, M., Schneider-Brachert, W., Trauzold, A., Hethke, A., and Schutze, S. Cathepsin D links TNF-induced acid sphingomyelinase to Bid-mediated caspase-9 and -3 activation. Cell Death Differ, 11, 2004, 550–563.

    Article  PubMed  CAS  Google Scholar 

  • Herrera, B., Carracedo, A., Diez-Zaera, M., Gomez del Pulgar, T., Guzman, M., and Velasco, G. The CB2 cannabinoid receptor signals apoptosis via ceramide-dependent activation of the mitochondrial intrinsic pathway. Exp Cell Res, 312, 2006, 2121–2131.

    Article  PubMed  CAS  Google Scholar 

  • Hinrichs, J.W., Klappe, K., and Kok, J.W. Rafts as missing link between multidrug resistance and sphingolipid metabolism. J Membr Biol, 203, 2005, 57–64.

    Article  PubMed  CAS  Google Scholar 

  • Hla, T. Physiological and pathological actions of sphingosine 1-phosphate. Semin Cell Dev Biol, 15, 2004, 513–520.

    Article  PubMed  CAS  Google Scholar 

  • Holman, D.H., Turner, L.S., El-Zawahry, A., Elojeimy, S., Liu, X., Bielawski, J., Szulc, Z.M., Norris, K., Zeidan, Y.H., Hannun, Y.A., Bielawska, A., and Norris, J.S. Lysosomotropic acid ceramidase inhibitor induces apoptosis in prostate cancer cells. Cancer Chemother Pharmacol, 61, 2008, 231–242.

    Article  PubMed  CAS  Google Scholar 

  • Jazwinski, S.M. and Conzelmann, A. LAG1 puts the focus on ceramide signaling. Int J Biochem Cell Biol, 34, 2002, 1491–1495.

    Article  PubMed  CAS  Google Scholar 

  • Jiang, Q., Wong, J., Fyrst, H., Saba, J.D., and Ames, B.N. gamma-Tocopherol or combinations of vitamin E forms induce cell death in human prostate cancer cells by interrupting sphingolipid synthesis. Proc Natl Acad Sci U S A, 101, 2004, 17825–17830.

    Article  PubMed  CAS  Google Scholar 

  • Kageyama-Yahara, N. and Riezman, H. Transmembrane topology of ceramide synthase in yeast. Biochem J, 398, 2006, 585–593.

    Article  PubMed  CAS  Google Scholar 

  • Karahatay, S., Thomas, K., Koybasi, S., Senkal, C.E., Elojeimy, S., Liu, X., Bielawski, J., Day, T.A., Gillespie, M.B., Sinha, D., Norris, J.S., Hannun, Y.A., and Ogretmen, B. Clinical relevance of ceramide metabolism in the pathogenesis of human head and neck squamous cell carcinoma (HNSCC): attenuation of C(18)-ceramide in HNSCC tumors correlates with lymphovascular invasion and nodal metastasis. Cancer Lett, 256, 2007, 101–111.

    Article  PubMed  CAS  Google Scholar 

  • Kawamori, T., Osta, W., Johnson, K.R., Pettus, B.J., Bielawski, J., Tanaka, T., Wargovich, M.J., Reddy, B.S., Hannun, Y.A., Obeid, L.M., and Zhou, D. Sphingosine kinase 1 is up-regulated in colon carcinogenesis. Faseb J, 20, 2006, 386–388.

    PubMed  CAS  Google Scholar 

  • Kok, J.W. and Sietsma, H. Sphingolipid metabolism enzymes as targets for anticancer therapy. Curr Drug Targets, 5, 2004, 375–382.

    Article  PubMed  CAS  Google Scholar 

  • Koybasi, S., Senkal, C.E., Sundararaj, K., Spassieva, S., Bielawski, J., Osta, W., Day, T.A., Jiang, J.C., Jazwinski, S.M., Hannun, Y.A., Obeid, L.M., and Ogretmen, B. Defects in cell growth regulation by C18:0-ceramide and longevity assurance gene 1 in human head and neck squamous cell carcinomas. J Biol Chem, 279, 2004, 44311–44319.

    Article  PubMed  CAS  Google Scholar 

  • Kraveka, J.M., Li, L., Szulc, Z.M., Bielawski, J., Ogretmen, B., Hannun, Y.A., Obeid, L.M., and Bielawska, A. Involvement of dihydroceramide desaturase in cell cycle progression in human neuroblastoma cells. J Biol Chem, 282, 2007, 16718–16728.

    Article  PubMed  CAS  Google Scholar 

  • Kudo, N., Kumagai, K., Tomishige, N., Yamaji, T., Wakatsuki, S., Nishijima, M., Hanada, K., and Kato, R. Structural basis for specific lipid recognition by CERT responsible for nonvesicular trafficking of ceramide. Proc Natl Acad Sci U S A, 105, 2008, 488–493.

    Article  PubMed  CAS  Google Scholar 

  • Kumagai, K., Yasuda, S., Okemoto, K., Nishijima, M., Kobayashi, S., and Hanada, K. CERT mediates intermembrane transfer of various molecular species of ceramides. J Biol Chem, 280, 2005, 6488–6495.

    Article  PubMed  CAS  Google Scholar 

  • Lahiri, S. and Futerman, A.H. LASS5 is a bona fide dihydroceramide synthase that selectively utilizes palmitoyl-CoA as acyl donor. J Biol Chem, 280, 2005, 33735–33738.

    Article  PubMed  CAS  Google Scholar 

  • LaMontagne, K., Littlewood-Evans, A., Schnell, C., O'Reilly, T., Wyder, L., Sanchez, T., Probst, B., Butler, J., Wood, A., Liau, G., Billy, E., Theuer, A., Hla, T., and Wood, J. Antagonism of sphingosine-1-phosphate receptors by FTY720 inhibits angiogenesis and tumor vascularization. Cancer Res, 66, 2006, 221–231.

    Article  PubMed  CAS  Google Scholar 

  • Laviad, E.L., Albee, L., Pankova-Kholmyansky, I., Epstein, S., Park, H., Merrill, A.H., Jr., and Futerman, A.H. Characterization of ceramide synthase 2: Tissue distribution, substrate specificity and inhibition by sphingosine 1-phosphate. J Biol Chem 2007, in press.

    Google Scholar 

  • Lee, J.Y., Bielawska, A.E., and Obeid, L.M. Regulation of cyclin-dependent kinase 2 activity by ceramide. Exp Cell Res, 261, 2000, 303–311.

    Article  PubMed  CAS  Google Scholar 

  • Lee, S.J. Expression of growth/differentiation factor 1 in the nervous system: conservation of a bicistronic structure. Proc Natl Acad Sci U S A, 88, 1991, 4250–4254.

    Article  PubMed  CAS  Google Scholar 

  • Liu, H., Toman, R.E., Goparaju, S.K., Maceyka, M., Nava, V.E., Sankala, H., Payne, S.G., Bektas, M., Ishii, I., Chun, J., Milstien, S., and Spiegel, S. Sphingosine kinase type 2 is a putative BH3-only protein that induces apoptosis. J Biol Chem, 278, 2003, 40330–40336.

    Article  PubMed  CAS  Google Scholar 

  • Liu, X., Elojeimy, S., Turner, L.S., Mahdy, A.E., Zeidan, Y.H., Bielawska, A., Bielawski, J., Dong, J.Y., El-Zawahry, A.M., Guo, G.W., Hannun, Y.A., Holman, D.H., Rubinchik, S., Szulc, Z., Keane, T.E., Tavassoli, M., and Norris, J.S. Acid ceramidase inhibition: a novel target for cancer therapy. Front Biosci, 13, 2008, 2293–2298.

    Article  PubMed  CAS  Google Scholar 

  • Maceyka, M., Payne, S.G., Milstien, S., and Spiegel, S. Sphingosine kinase, sphingosine-1-phosphate, and apoptosis. Biochim Biophys Acta, 1585, 2002, 193–201.

    PubMed  CAS  Google Scholar 

  • Maurer, B.J., Metelitsa, L.S., Seeger, R.C., Cabot, M.C., and Reynolds, C.P. Increase of ceramide and induction of mixed apoptosis/necrosis by N-(4-hydroxyphenyl)- retinamide in neuroblastoma cell lines. J Natl Cancer Inst, 91, 1999, 1138–1146.

    Article  PubMed  CAS  Google Scholar 

  • Maurer, B.J., Melton, L., Billups, C., Cabot, M.C., and Reynolds, C.P. Synergistic cytotoxicity in solid tumor cell lines between N-(4-hydroxyphenyl)retinamide and modulators of ceramide metabolism. J Natl Cancer Inst, 92, 2000, 1897–1909.

    Article  PubMed  CAS  Google Scholar 

  • Meng, A., Luberto, C., Meier, P., Bai, A., Yang, X., Hannun, Y.A., and Zhou, D. Sphingomyelin synthase as a potential target for D609-induced apoptosis in U937 human monocytic leukemia cells. Exp Cell Res, 292, 2004, 385–392.

    Article  PubMed  CAS  Google Scholar 

  • Merrill, A.H., Jr., Wang, E., and Mullins, R.E. Kinetics of long-chain (sphingoid) base biosynthesis in intact LM cells: effects of varying the extracellular concentrations of serine and fatty acid precursors of this pathway. Biochemistry, 27, 1988, 340–345.

    Article  PubMed  CAS  Google Scholar 

  • Mesika, A., Ben-Dor, S., Laviad, E.L., and Futerman, A.H. A new functional motif in Hox domain-containing ceramide synthases: identification of a novel region flanking the Hox and TLC domains essential for activity. J Biol Chem, 282, 2007, 27366–27373.

    Article  PubMed  CAS  Google Scholar 

  • Michel, C., van Echten-Deckert, G., Rother, J., Sandhoff, K., Wang, E., and Merrill, A.H., Jr. Characterization of ceramide synthesis. A dihydroceramide desaturase introduces the 4,5-trans-double bond of sphingosine at the level of dihydroceramide. J Biol Chem, 272, 1997, 22432–22437.

    Article  PubMed  CAS  Google Scholar 

  • Min, J., Van Veldhoven, P.P., Zhang, L., Hanigan, M.H., Alexander, H., and Alexander, S. Sphingosine-1-phosphate lyase regulates sensitivity of human cells to select chemotherapy drugs in a p38-dependent manner. Mol Cancer Res, 3, 2005, 287–296.

    Article  PubMed  CAS  Google Scholar 

  • Min, J., Mesika, A., Sivaguru, M., Van Veldhoven, P.P., Alexander, H., Futerman, A.H., and Alexander, S. (Dihydro)ceramide synthase 1 regulated sensitivity to cisplatin is associated with the activation of p38 mitogen-activated protein kinase and is abrogated by sphingosine kinase 1. Mol Cancer Res, 5, 2007, 801–812.

    Article  PubMed  CAS  Google Scholar 

  • Minutolo, F., Sala, G., Bagnacani, A., Bertini, S., Carboni, I., Placanica, G., Prota, G., Rapposelli, S., Sacchi, N., Macchia, M., and Ghidoni, R. Synthesis of a resveratrol analogue with high ceramide-mediated proapoptotic activity on human breast cancer cells. J Med Chem, 48, 2005, 6783–6786.

    Article  PubMed  CAS  Google Scholar 

  • Mitra, P., Maceyka, M., Payne, S.G., Lamour, N., Milstien, S., Chalfant, C.E., and Spiegel, S. Ceramide kinase regulates growth and survival of A549 human lung adenocarcinoma cells. FEBS Lett, 581, 2007, 735–740.

    Article  PubMed  CAS  Google Scholar 

  • Mizugishi, K., Yamashita, T., Olivera, A., Miller, G.F., Spiegel, S., and Proia, R.L. Essential role for sphingosine kinases in neural and vascular development. Mol Cell Biol, 25, 2005, 11113–11121.

    Article  PubMed  CAS  Google Scholar 

  • Mizutani, Y., Kihara, A., and Igarashi, Y. Mammalian Lass6 and its related family members regulate synthesis of specific ceramides. Biochem J, 390, 2005, 263–271.

    Article  PubMed  CAS  Google Scholar 

  • Modica-Napolitano, J.S. and Aprille, J.R. Delocalized lipophilic cations selectively target the mitochondria of carcinoma cells. Adv Drug Deliv Rev, 49, 2001, 63–70.

    Article  PubMed  CAS  Google Scholar 

  • Modrak, D.E., Gold, D.V., and Goldenberg, D.M. Sphingolipid targets in cancer therapy. Mol Cancer Ther, 5, 2006, 200–208.

    Article  PubMed  CAS  Google Scholar 

  • Modrak, D.E., Cardillo, T.M., Newsome, G.A., Goldenberg, D.M., and Gold, D.V. Synergistic interaction between sphingomyelin and gemcitabine potentiates ceramide-mediated apoptosis in pancreatic cancer. Cancer Res, 64, 2004, 8405–8410.

    Article  PubMed  CAS  Google Scholar 

  • Morales, A., Paris, R., Villanueva, A., Llacuna, L., Garcia-Ruiz, C., and Fernandez-Checa, J.C. Pharmacological inhibition or small interfering RNA targeting acid ceramidase sensitizes hepatoma cells to chemotherapy and reduces tumor growth in vivo. Oncogene, 26, 2007, 905–916.

    Article  PubMed  CAS  Google Scholar 

  • Nagiec, M.M., Lester, R.L., and Dickson, R.C. Sphingolipid synthesis: identification and characterization of mammalian cDNAs encoding the Lcb2 subunit of serine palmitoyltransferase. Gene, 177, 1996, 237–241.

    Article  PubMed  CAS  Google Scholar 

  • Nava, V.E., Hobson, J.P., Murthy, S., Milstien, S., and Spiegel, S. Sphingosine kinase type 1 promotes estrogen-dependent tumorigenesis of breast cancer MCF-7 cells. Exp Cell Res, 281, 2002, 115–127.

    Article  PubMed  CAS  Google Scholar 

  • Norris-Cervetto, E., Callaghan, R., Platt, F.M., Dwek, R.A., and Butters, T.D. Inhibition of glucosylceramide synthase does not reverse drug resistance in cancer cells. J Biol Chem, 279, 2004, 40412–40418.

    Article  PubMed  CAS  Google Scholar 

  • Novgorodov, S.A., Szulc, Z.M., Luberto, C., Jones, J.A., Bielawski, J., Bielawska, A., Hannun, Y.A., and Obeid, L.M. Positively charged ceramide is a potent inducer of mitochondrial permeabilization. J Biol Chem, 280, 2005, 16096–16105.

    Article  PubMed  CAS  Google Scholar 

  • Obeid, L.M. and Hannun, Y.A. Ceramide, stress, and a "LAG" in aging. Sci Aging Knowledge Environ, 2003, 2003, pe27.

    Article  Google Scholar 

  • Ogretmen, B. Sphingolipids in cancer: regulation of pathogenesis and therapy. FEBS Lett, 580, 2006, 5467–5476.

    Article  PubMed  CAS  Google Scholar 

  • Ogretmen, B. and Hannun, Y.A. Biologically active sphingolipids in cancer pathogenesis and treatment. Nat Rev Cancer, 4, 2004, 604–616.

    Article  PubMed  CAS  Google Scholar 

  • Ogretmen, B. and Hannun, Y.A. Updates on functions of ceramide in chemotherapy-induced cell death and in multidrug resistance. Drug Resist Updat, 4, 2001, 368–377.

    Article  PubMed  CAS  Google Scholar 

  • Ogretmen, B., Kraveka, J.M., Schady, D., Usta, J., Hannun, Y.A., and Obeid, L.M. Molecular mechanisms of ceramide-mediated telomerase inhibition in the A549 human lung adenocarcinoma cell line. J Biol Chem, 276, 2001a, 32506–32514.

    Article  CAS  Google Scholar 

  • Ogretmen, B., Schady, D., Usta, J., Wood, R., Kraveka, J.M., Luberto, C., Birbes, H., Hannun, Y.A., and Obeid, L.M. Role of ceramide in mediating the inhibition of telomerase activity in A549 human lung adenocarcinoma cells. J Biol Chem, 276, 2001b, 24901–24910.

    Article  CAS  Google Scholar 

  • Ogretmen, B., Pettus, B.J., Rossi, M.J., Wood, R., Usta, J., Szulc, Z., Bielawska, A., Obeid, L.M., and Hannun, Y.A. Biochemical mechanisms of the generation of endogenous long chain ceramide in response to exogenous short chain ceramide in the A549 human lung adenocarcinoma cell line. Role for endogenous ceramide in mediating the action of exogenous ceramide. J Biol Chem, 277, 2002, 12960–12969.

    Article  PubMed  CAS  Google Scholar 

  • Okazaki, T., Bell, R.M., and Hannun, Y.A. Sphingomyelin turnover induced by vitamin D3 in HL-60 cells. Role in cell differentiation. J Biol Chem, 264, 1989, 19076–19080.

    PubMed  CAS  Google Scholar 

  • Oskouian, B., Sooriyakumaran, P., Borowsky, A.D., Crans, A., Dillard-Telm, L., Tam, Y.Y., Bandhuvula, P., and Saba, J.D. Sphingosine-1-phosphate lyase potentiates apoptosis via p53- and p38-dependent pathways and is down-regulated in colon cancer. Proc Natl Acad Sci U S A, 103, 2006, 17384–17389.

    Article  PubMed  CAS  Google Scholar 

  • Park, J.H. and Schuchman, E.H. Acid ceramidase and human disease. Biochim Biophys Acta, 1758, 2006, 2133–2138.

    Article  PubMed  CAS  Google Scholar 

  • Paugh, S.W., Payne, S.G., Barbour, S.E., Milstien, S., and Spiegel, S. The immunosuppressant FTY720 is phosphorylated by sphingosine kinase type 2. FEBS Lett, 554, 2003, 189–193.

    Article  PubMed  CAS  Google Scholar 

  • Pchejetski, D., Golzio, M., Bonhoure, E., Calvet, C., Doumerc, N., Garcia, V., Mazerolles, C., Rischmann, P., Teissie, J., Malavaud, B., and Cuvillier, O. Sphingosine kinase-1 as a chemotherapy sensor in prostate adenocarcinoma cell and mouse models. Cancer Res, 65, 2005, 11667–11675.

    Article  PubMed  CAS  Google Scholar 

  • Pettus, B.J., Chalfant, C.E., and Hannun, Y.A. Ceramide in apoptosis: an overview and current perspectives. Biochim Biophys Acta, 1585, 2002, 114–125.

    PubMed  CAS  Google Scholar 

  • Pettus, B.J., Bielawski, J., Porcelli, A.M., Reames, D.L., Johnson, K.R., Morrow, J., Chalfant, C.E., Obeid, L.M., and Hannun, Y.A. The sphingosine kinase 1/sphingosine-1-phosphate pathway mediates COX-2 induction and PGE2 production in response to TNF-alpha. Faseb J, 17, 2003, 1411–1421.

    Article  PubMed  CAS  Google Scholar 

  • Pewzner-Jung, Y., Ben-Dor, S., and Futerman, A.H. When do Lasses (longevity assurance genes) become CerS (ceramide synthases)?: Insights into the regulation of ceramide synthesis. J Biol Chem, 281, 2006, 25001–25005.

    Article  PubMed  CAS  Google Scholar 

  • Plo, I., Ghandour, S., Feutz, A.C., Clanet, M., Laurent, G., and Bettaieb, A. Involvement of de novo ceramide biosynthesis in lymphotoxin-induced oligodendrocyte death. Neuroreport, 10, 1999, 2373–2376.

    Article  PubMed  CAS  Google Scholar 

  • Radin, N.S. The development of aggressive cancer: a possible role for sphingolipids. Cancer Invest, 20, 2002, 779–786.

    Article  PubMed  Google Scholar 

  • Raisova, M., Bektas, M., Wieder, T., Daniel, P., Eberle, J., Orfanos, C.E., and Geilen, C.C. Resistance to CD95/Fas-induced and ceramide-mediated apoptosis of human melanoma cells is caused by a defective mitochondrial cytochrome c release. FEBS Lett, 473, 2000, 27–32.

    Article  PubMed  CAS  Google Scholar 

  • Rao, R.P., Yuan, C., Allegood, J.C., Rawat, S.S., Edwards, M.B., Wang, X., Merrill, A.H., Jr., Acharya, U., and Acharya, J.K. Ceramide transfer protein function is essential for normal oxidative stress response and lifespan. Proc Natl Acad Sci U S A, 104, 2007, 11364–11369.

    Article  PubMed  CAS  Google Scholar 

  • Reynolds, C.P., Maurer, B.J., and Kolesnick, R.N. Ceramide synthesis and metabolism as a target for cancer therapy. Cancer Lett, 206, 2004, 169–180.

    Article  PubMed  CAS  Google Scholar 

  • Riebeling, C., Allegood, J.C., Wang, E., Merrill, A.H., Jr., and Futerman, A.H. Two mammalian longevity assurance gene (LAG1) family members, trh1 and trh4, regulate dihydroceramide synthesis using different fatty acyl-CoA donors. J Biol Chem, 278, 2003, 43452–43459.

    Article  PubMed  CAS  Google Scholar 

  • Rosen, H. and Goetzl, E.J. Sphingosine 1-phosphate and its receptors: an autocrine and paracrine network. Nat Rev Immunol, 5, 2005, 560–570.

    Article  PubMed  CAS  Google Scholar 

  • Rossi, M.J., Sundararaj, K., Koybasi, S., Phillips, M.S., Szulc, Z.M., Bielawska, A., Day, T.A., Obeid, L.M., Hannun, Y.A., and Ogretmen, B. Inhibition of growth and telomerase activity by novel cationic ceramide analogs with high solubility in human head and neck squamous cell carcinoma cells. Otolaryngol Head Neck Surg, 132, 2005, 55–62.

    Article  PubMed  Google Scholar 

  • Saad, A.F., Meacham, W.D., Bai, A., Anelli, V., Elojeimy, S., Mahdy, A.E., Turner, L.S., Cheng, J., Bielawska, A., Bielawski, J., Keane, T.E., Obeid, L.M., Hannun, Y.A., Norris, J.S., and Liu, X. The functional effects of acid ceramidase overexpression in prostate cancer progression and resistance to chemotherapy. Cancer Biol Ther, 6, 2007, 1455–1460.

    Article  PubMed  CAS  Google Scholar 

  • Samsel, L., Zaidel, G., Drumgoole, H.M., Jelovac, D., Drachenberg, C., Rhee, J.G., Brodie, A.M., Bielawska, A., and Smyth, M.J. The ceramide analog, B13, induces apoptosis in prostate cancer cell lines and inhibits tumor growth in prostate cancer xenografts. Prostate, 58, 2004, 382–393.

    Article  PubMed  CAS  Google Scholar 

  • Sankala, H.M., Hait, N.C., Paugh, S.W., Shida, D., Lepine, S., Elmore, L.W., Dent, P., Milstien, S., and Spiegel, S. Involvement of sphingosine kinase 2 in p53-independent induction of p21 by the chemotherapeutic drug doxorubicin. Cancer Res, 67, 2007, 10466–10474.

    Article  PubMed  CAS  Google Scholar 

  • Santana, P., Pena, L.A., Haimovitz-Friedman, A., Martin, S., Green, D., McLoughlin, M., Cordon-Cardo, C., Schuchman, E.H., Fuks, Z., and Kolesnick, R. Acid sphingomyelinase-deficient human lymphoblasts and mice are defective in radiation-induced apoptosis. Cell, 86, 1996, 189–199.

    Article  PubMed  CAS  Google Scholar 

  • Sarkar, S., Maceyka, M., Hait, N.C., Paugh, S.W., Sankala, H., Milstien, S., and Spiegel, S. Sphingosine kinase 1 is required for migration, proliferation and survival of MCF-7 human breast cancer cells. FEBS Lett, 579, 2005, 5313–5317.

    Article  PubMed  CAS  Google Scholar 

  • Scarlatti, F., Sala, G., Somenzi, G., Signorelli, P., Sacchi, N., and Ghidoni, R. Resveratrol induces growth inhibition and apoptosis in metastatic breast cancer cells via de novo ceramide signaling. Faseb J, 17, 2003, 2339–2341.

    PubMed  CAS  Google Scholar 

  • Scarlatti, F., Sala, G., Ricci, C., Maioli, C., Milani, F., Minella, M., Botturi, M., and Ghidoni, R. Resveratrol sensitization of DU145 prostate cancer cells to ionizing radiation is associated to ceramide increase. Cancer Lett, 253, 2007, 124–130.

    Article  PubMed  CAS  Google Scholar 

  • Schmelz, E.M., Sullards, M.C., Dillehay, D.L., and Merrill, A.H., Jr. Colonic cell proliferation and aberrant crypt foci formation are inhibited by dairy glycosphingolipids in 1, 2-dimethylhydrazine-treated CF1 mice. J Nutr, 130, 2000, 522–527.

    PubMed  CAS  Google Scholar 

  • Schmelz, E.M., Dillehay, D.L., Webb, S.K., Reiter, A., Adams, J., and Merrill, A.H., Jr. Sphingomyelin consumption suppresses aberrant colonic crypt foci and increases the proportion of adenomas versus adenocarcinomas in CF1 mice treated with 1,2-dimethylhydrazine: implications for dietary sphingolipids and colon carcinogenesis. Cancer Res, 56, 1996, 4936–4941.

    PubMed  CAS  Google Scholar 

  • Schulz, A., Mousallem, T., Venkataramani, M., Persaud-Sawin, D.A., Zucker, A., Luberto, C., Bielawska, A., Bielawski, J., Holthuis, J.C., Jazwinski, S.M., Kozhaya, L., Dbaibo, G.S., and Boustany, R.M. The CLN9 protein, a regulator of dihydroceramide synthase. J Biol Chem, 281, 2006, 2784–2794.

    Article  PubMed  CAS  Google Scholar 

  • Segui, B., Cuvillier, O., Adam-Klages, S., Garcia, V., Malagarie-Cazenave, S., Leveque, S., Caspar-Bauguil, S., Coudert, J., Salvayre, R., Kronke, M., and Levade, T. Involvement of FAN in TNF-induced apoptosis. J Clin Invest, 108, 2001, 143–151.

    PubMed  CAS  Google Scholar 

  • Selzner, M., Bielawska, A., Morse, M.A., Rudiger, H.A., Sindram, D., Hannun, Y.A., and Clavien, P.A. Induction of apoptotic cell death and prevention of tumor growth by ceramide analogues in metastatic human colon cancer. Cancer Res, 61, 2001, 1233–1240.

    PubMed  CAS  Google Scholar 

  • Senchenkov, A., Litvak, D.A., and Cabot, M.C. Targeting ceramide metabolism--a strategy for overcoming drug resistance. J Natl Cancer Inst, 93, 2001, 347–357.

    Article  PubMed  CAS  Google Scholar 

  • Senkal, C.E., Ponnusamy, S., Rossi, M.J., Bialewski, J., Sinha, D., Jiang, J.C., Jazwinski, S.M., Hannun, Y.A., and Ogretmen, B. Role of human longevity assurance gene 1 and C18-ceramide in chemotherapy-induced cell death in human head and neck squamous cell carcinomas. Mol Cancer Ther, 6, 2007, 712–722.

    Article  PubMed  CAS  Google Scholar 

  • Senkal, C.E., Ponnusamy, S., Rossi, M.J., Sundararaj, K., Szulc, Z., Bielawski, J., Bielawska, A., Meyer, M., Cobanoglu, B., Koybasi, S., Sinha, D., Day, T.A., Obeid, L.M., Hannun, Y.A., and Ogretmen, B. Potent antitumor activity of a novel cationic pyridinium-ceramide alone or in combination with gemcitabine against human head and neck squamous cell carcinomas in vitro and in vivo. J Pharmacol Exp Ther, 317, 2006, 1188–1199.

    Article  PubMed  CAS  Google Scholar 

  • Smyth, M.J., Perry, D.K., Zhang, J., Poirier, G.G., Hannun, Y.A., and Obeid, L.M. prICE: a downstream target for ceramide-induced apoptosis and for the inhibitory action of Bcl-2. Biochem J, 316 (Pt 1), 1996, 25–28.

    PubMed  CAS  Google Scholar 

  • Snook, C.F., Jones, J.A., and Hannun, Y.A. Sphingolipid-binding proteins. Biochim Biophys Acta, 1761, 2006, 927–946.

    PubMed  CAS  Google Scholar 

  • Spassieva, S., Seo, J.G., Jiang, J.C., Bielawski, J., Alvarez-Vasquez, F., Jazwinski, S.M., Hannun, Y.A., and Obeid, L.M. Necessary role for the Lag1p motif in (dihydro)ceramide synthase activity. J Biol Chem, 281, 2006, 33931–33938.

    Article  PubMed  CAS  Google Scholar 

  • Stover, T. and Kester, M. Liposomal delivery enhances short-chain ceramide-induced apoptosis of breast cancer cells. J Pharmacol Exp Ther, 307, 2003, 468–475.

    Article  PubMed  CAS  Google Scholar 

  • Stover, T.C., Sharma, A., Robertson, G.P., and Kester, M. Systemic delivery of liposomal short-chain ceramide limits solid tumor growth in murine models of breast adenocarcinoma. Clin Cancer Res, 11, 2005, 3465–3474.

    Article  PubMed  CAS  Google Scholar 

  • Struckhoff, A.P., Bittman, R., Burow, M.E., Clejan, S., Elliott, S., Hammond, T., Tang, Y., and Beckman, B.S. Novel ceramide analogs as potential chemotherapeutic agents in breast cancer. J Pharmacol Exp Ther, 309, 2004, 523–532.

    Article  PubMed  CAS  Google Scholar 

  • Sugiura, M., Kono, K., Liu, H., Shimizugawa, T., Minekura, H., Spiegel, S., and Kohama, T. Ceramide kinase, a novel lipid kinase. Molecular cloning and functional characterization. J Biol Chem, 277, 2002, 23294–23300.

    Article  PubMed  CAS  Google Scholar 

  • Sultan, I., Senkal, C.E., Ponnusamy, S., Bielawski, J., Szulc, Z., Bielawska, A., Hannun, Y.A., and Ogretmen, B. Regulation of the sphingosine-recycling pathway for ceramide generation by oxidative stress, and its role in controlling c-Myc/Max function. Biochem J, 393, 2006, 513–521.

    Article  PubMed  CAS  Google Scholar 

  • Sundararaj, K.P., Wood, R.E., Ponnusamy, S., Salas, A.M., Szulc, Z., Bielawska, A., Obeid, L.M., Hannun, Y.A., and Ogretmen, B. Rapid shortening of telomere length in response to ceramide involves the inhibition of telomere binding activity of nuclear glyceraldehyde-3-phosphate dehydrogenase. J Biol Chem, 279, 2004, 6152–6162.

    Article  PubMed  CAS  Google Scholar 

  • Suomalainen, L., Pentikainen, V., and Dunkel, L. Sphingosine-1-phosphate inhibits nuclear factor kappaB activation and germ cell apoptosis in the human testis independently of its receptors. Am J Pathol, 166, 2005, 773–781.

    PubMed  CAS  Google Scholar 

  • Swanton, C., Marani, M., Pardo, O., Warne, P.H., Kelly, G., Sahai, E., Elustondo, F., Chang, J., Temple, J., Ahmed, A.A., Brenton, J.D., Downward, J., and Nicke, B. Regulators of mitotic arrest and ceramide metabolism are determinants of sensitivity to paclitaxel and other chemotherapeutic drugs. Cancer Cell, 11, 2007, 498–512.

    Article  PubMed  CAS  Google Scholar 

  • Szulc, Z.M., Bielawski, J., Gracz, H., Gustilo, M., Mayroo, N., Hannun, Y.A., Obeid, L.M., and Bielawska, A. Tailoring structure-function and targeting properties of ceramides by site-specific cationization. Bioorg Med Chem, 14, 2006, 7083–7104.

    Article  PubMed  CAS  Google Scholar 

  • Taha, T.A., Hannun, Y.A., and Obeid, L.M. Sphingosine kinase: biochemical and cellular regulation and role in disease. J Biochem Mol Biol, 39, 2006a, 113–131.

    CAS  Google Scholar 

  • Taha, T.A., Kitatani, K., El-Alwani, M., Bielawski, J., Hannun, Y.A., and Obeid, L.M. Loss of sphingosine kinase-1 activates the intrinsic pathway of programmed cell death: modulation of sphingolipid levels and the induction of apoptosis. Faseb J, 20, 2006b, 482–484.

    CAS  Google Scholar 

  • Testai, F.D., Landek, M.A., and Dawson, G. Regulation of sphingomyelinases in cells of the oligodendrocyte lineage. J Neurosci Res, 75, 2004, 66–74.

    Article  PubMed  CAS  Google Scholar 

  • Thomas, D.A., Sarris, A.H., Cortes, J., Faderl, S., O'Brien, S., Giles, F.J., Garcia-Manero, G., Rodriguez, M.A., Cabanillas, F., and Kantarjian, H. Phase II study of sphingosomal vincristine in patients with recurrent or refractory adult acute lymphocytic leukemia. Cancer, 106, 2006, 120–127.

    Article  PubMed  CAS  Google Scholar 

  • Thon, L., Mohlig, H., Mathieu, S., Lange, A., Bulanova, E., Winoto-Morbach, S., Schutze, S., Bulfone-Paus, S., and Adam, D. Ceramide mediates caspase-independent programmed cell death. Faseb J, 19, 2005, 1945–1956.

    Article  PubMed  CAS  Google Scholar 

  • Tilly, J.L. and Kolesnick, R.N. Sphingolipids, apoptosis, cancer treatments and the ovary: investigating a crime against female fertility. Biochim Biophys Acta, 1585, 2002, 135–138.

    PubMed  CAS  Google Scholar 

  • Van Brocklyn, J., Letterle, C., Snyder, P., and Prior, T. Sphingosine-1-phosphate stimulates human glioma cell proliferation through Gi-coupled receptors: role of ERK MAP kinase and phosphatidylinositol 3-kinase beta. Cancer Lett, 181, 2002, 195–204.

    Article  PubMed  Google Scholar 

  • Van der Luit, A.H., Budde, M., Zerp, S., Caan, W., Klarenbeek, J.B., Verheij, M., and Van Blitterswijk, W.J. Resistance to alkyl-lysophospholipid-induced apoptosis due to downregulated sphingomyelin synthase 1 expression with consequent sphingomyelin- and cholesterol-deficiency in lipid rafts. Biochem J, 401, 2007, 541–549.

    Article  PubMed  CAS  Google Scholar 

  • van Vlerken, L.E., Duan, Z., Seiden, M.V., and Amiji, M.M. Modulation of intracellular ceramide using polymeric nanoparticles to overcome multidrug resistance in cancer. Cancer Res, 67, 2007, 4843–4850.

    Article  PubMed  Google Scholar 

  • Veldman, R.J., Zerp, S., van Blitterswijk, W.J., and Verheij, M. N-hexanoyl-sphingomyelin potentiates in vitro doxorubicin cytotoxicity by enhancing its cellular influx. Br J Cancer, 90, 2004, 917–925.

    Article  PubMed  CAS  Google Scholar 

  • Veldman, R.J., Mita, A., Cuvillier, O., Garcia, V., Klappe, K., Medin, J.A., Campbell, J.D., Carpentier, S., Kok, J.W., and Levade, T. The absence of functional glucosylceramide synthase does not sensitize melanoma cells for anticancer drugs. Faseb J, 17, 2003, 1144–1146.

    PubMed  CAS  Google Scholar 

  • Venable, M.E., Lee, J.Y., Smyth, M.J., Bielawska, A., and Obeid, L.M. Role of ceramide in cellular senescence. J Biol Chem, 270, 1995, 30701–30708.

    Article  PubMed  CAS  Google Scholar 

  • Venkataraman, K., Riebeling, C., Bodennec, J., Riezman, H., Allegood, J.C., Sullards, M.C., Merrill, A.H., Jr., and Futerman, A.H. Upstream of growth and differentiation factor 1 (uog1), a mammalian homolog of the yeast longevity assurance gene 1 (LAG1), regulates N-stearoyl-sphinganine (C18-(dihydro)ceramide) synthesis in a fumonisin B1-independent manner in mammalian cells. J Biol Chem, 277, 2002, 35642–35649.

    Article  PubMed  CAS  Google Scholar 

  • Visentin, B., Vekich, J.A., Sibbald, B.J., Cavalli, A.L., Moreno, K.M., Matteo, R.G., Garland, W.A., Lu, Y., Yu, S., Hall, H.S., Kundra, V., Mills, G.B., and Sabbadini, R.A. Validation of an anti-sphingosine-1-phosphate antibody as a potential therapeutic in reducing growth, invasion, and angiogenesis in multiple tumor lineages. Cancer Cell, 9, 2006, 225–238.

    Article  PubMed  CAS  Google Scholar 

  • Wang, G., Silva, J., Krishnamurthy, K., Tran, E., Condie, B.G., and Bieberich, E. Direct binding to ceramide activates protein kinase Czeta before the formation of a pro-apoptotic complex with PAR-4 in differentiating stem cells. J Biol Chem, 280, 2005, 26415–26424.

    Article  PubMed  CAS  Google Scholar 

  • Wang, H., Maurer, B.J., Reynolds, C.P., and Cabot, M.C. N-(4-hydroxyphenyl)retinamide elevates ceramide in neuroblastoma cell lines by coordinate activation of serine palmitoyltransferase and ceramide synthase. Cancer Res, 61, 2001, 5102–5105.

    PubMed  CAS  Google Scholar 

  • Wolff, R.A., Dobrowsky, R.T., Bielawska, A., Obeid, L.M., and Hannun, Y.A. Role of ceramide-activated protein phosphatase in ceramide-mediated signal transduction. J Biol Chem, 269, 1994, 19605–19609.

    PubMed  CAS  Google Scholar 

  • Wooten-Blanks, L.G., Song, P., Senkal, C.E., and Ogretmen, B. Mechanisms of ceramide-mediated repression of the human telomerase reverse transcriptase promoter via deacetylation of Sp3 by histone deacetylase 1. Faseb J, 21, 2007, 3386–3397.

    Article  PubMed  CAS  Google Scholar 

  • Wooten, L.G. and Ogretmen, B. Sp1/Sp3-dependent regulation of human telomerase reverse transcriptase promoter activity by the bioactive sphingolipid ceramide. J Biol Chem, 280, 2005, 28867–28876.

    Article  PubMed  CAS  Google Scholar 

  • Xia, P., Gamble, J.R., Wang, L., Pitson, S.M., Moretti, P.A., Wattenberg, B.W., D'Andrea, R.J., and Vadas, M.A. An oncogenic role of sphingosine kinase. Curr Biol, 10, 2000, 1527–1530.

    Article  PubMed  CAS  Google Scholar 

  • Zhang, P., Liu, B., Jenkins, G.M., Hannun, Y.A., and Obeid, L.M. Expression of neutral sphingomyelinase identifies a distinct pool of sphingomyelin involved in apoptosis. J Biol Chem, 272, 1997, 9609–9612.

    Article  PubMed  CAS  Google Scholar 

  • Zheng, W., Kollmeyer, J., Symolon, H., Momin, A., Munter, E., Wang, E., Kelly, S., Allegood, J.C., Liu, Y., Peng, Q., Ramaraju, H., Sullards, M.C., Cabot, M., and Merrill, A.H., Jr. Ceramides and other bioactive sphingolipid backbones in health and disease: lipidomic analysis, metabolism and roles in membrane structure, dynamics, signaling and autophagy. Biochim Biophys Acta, 1758, 2006, 1864–1884.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Saddoughi, S.A., Song, P., Ogretmen, B. (2008). Roles of Bioactive Sphingolipids in Cancer Biology and Therapeutics. In: Quinn, P.J., Wang, X. (eds) Lipids in Health and Disease. Subcellular Biochemistry, vol 49. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-8831-5_16

Download citation

Publish with us

Policies and ethics