Skip to main content

Advertisement

Log in

Inflammation and Programmed Cell Death in Alzheimer’s Disease: Comparison of the Central Nervous System and Peripheral Blood

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Although the central nervous system (CNS) has been defined as a privileged site in Alzheimer’s disease (AD), periphery can be more than simply witness of events leading to neurodegeneration. The CNS and peripheral blood can mutually communicate through cells and factors trafficking from the circulation into the brain and vice versa. A number of articles have reviewed inflammatory profiles and programmed cell death (PCD) in AD, separately in the CNS and at the peripheral level. This review does not provide an exhaustive account of what has been published on inflammation and PCD in AD. Rather, the aim of this review is to focus on possible linkages between the central and the peripheral compartments during AD progression, by critically analyzing, in a comparative manner, phenomena occurring in the CNS as well as the peripheral blood. In fact, growing evidence suggests that CNS and peripheral inflammation might present common features in the disease. Microarrays and metabolomics revealed that dysfunction of the glycolytic and oxidative pathways is similar in the brain and in the periphery. Moreover, dysregulated autophagosome/lysosomal molecular machinery, both at the CNS and the peripheral level, in AD-related cell damage, has been observed. Possible implications of these observations have been discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Glass CK, Saijo K, Winner B, Marchetto MC, Gage FH (2010) Mechanisms underlying inflammation in neurodegeneration. Cell 140:918–934. doi:10.1016/j.cell.2010.02.016

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  2. Gemechu JM, Bentivoglio M (2012) T cell recruitment in the brain during normal aging. Front Cell Neurosci 6:38. doi:10.3389/fncel.2012.00038

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  3. Mayeux R, Stern Y (2012) Epidemiology of Alzheimer disease. Cold Spring Harb Perspect Med 2. doi:10.1101/cshperspect.a006239

  4. Haass C, Selkoe DJ (2007) Soluble protein oligomers in neurodegeneration: lessons from the Alzheimer’s amyloid beta-peptide. Nat Rev Mol Cell Biol 8:101–112. doi:10.1038/nrm2101

    Article  PubMed  CAS  Google Scholar 

  5. Selkoe DJ (2001) Alzheimer’s disease: genes, proteins, and therapy. Physiol Rev 81:741–766

    PubMed  CAS  Google Scholar 

  6. Liu F, Iqbal K, Grundke-Iqbal I, Rossie S, Gong CX (2005) Dephosphorylation of tau by protein phosphatase 5: impairment in Alzheimer’s disease. J Biol Chem 280:1790–1796. doi:10.1074/jbc.M410775200

    Article  PubMed  CAS  Google Scholar 

  7. Woods NK, Padmanabhan J (2012) Neuronal calcium signaling and Alzheimer’s disease. Adv Exp Med Biol 740:1193–1217. doi:10.1007/978-94-007-2888-2_54

    Article  PubMed  CAS  Google Scholar 

  8. Leuner K, Muller WE, Reichert AS (2012) From mitochondrial dysfunction to amyloid beta formation: novel insights into the pathogenesis of Alzheimer’s disease. Mol Neurobiol 46:186–193. doi:10.1007/s12035-012-8307-4

    Article  PubMed  CAS  Google Scholar 

  9. Nixon RA (2013) The role of autophagy in neurodegenerative disease. Nat Med 19:983–997. doi:10.1038/nm.3232

    Article  PubMed  CAS  Google Scholar 

  10. Tan MS, Yu JT, Jiang T, Zhu XC, Tan L (2013) The NLRP3 inflammasome in Alzheimer’s Disease. Mol Neurobiol. doi:10.1007/s12035-013-8475-x

    Google Scholar 

  11. Niranjan R (2013) Molecular basis of etiological implications in Alzheimer’s disease: focus on neuroinflammation. Mol Neurobiol. doi:10.1007/s12035-013-8428-4

    Google Scholar 

  12. Tanzi RE (2012) The genetics of Alzheimer disease. Cold Spring Harb Perspect Med. doi:10.1101/cshperspect.a006296

    PubMed  Google Scholar 

  13. Akiyama H, Barger S, Barnum S, Bradt B, Bauer J, Cole GM, Cooper NR, Eikelenboom P, Emmerling M, Fiebich BL, Finch CE, Frautschy S, Griffin WS, Hampel H, Hull M, Landreth G, Lue L, Mrak R, Mackenzie IR, McGeer PL, O’Banion MK, Pachter J, Pasinetti G, Plata-Salaman C, Rogers J, Rydel R, Shen Y, Streit W, Strohmeyer R, Tooyoma I, Van Muiswinkel FL, Veerhuis R, Walker D, Webster S, Wegrzyniak B, Wenk G, Wyss-Coray T (2000) Inflammation and Alzheimer’s disease. Neurobiol Aging 21:383–421. doi:10.1016/s0197-4580(00)00124-x

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  14. Liu S, Liu Y, Hao W, Wolf L, Kiliaan AJ, Penke B, Rube CE, Walter J, Heneka MT, Hartmann T, Menger MD, Fassbender K (2012) TLR2 is a primary receptor for Alzheimer’s amyloid beta peptide to trigger neuroinflammatory activation. J Immunol 188:1098–1107. doi:10.4049/jimmunol.1101121

    Article  PubMed  CAS  Google Scholar 

  15. Reddy PH, McWeeney S, Park BS, Manczak M, Gutala RV, Partovi D, Jung Y, Yau V, Searles R, Mori M, Quinn J (2004) Gene expression profiles of transcripts in amyloid precursor protein transgenic mice: up-regulation of mitochondrial metabolism and apoptotic genes is an early cellular change in Alzheimer’s disease. Hum Mol Genet 13:1225–1240. doi:10.1093/hmg/ddh140

    Article  PubMed  CAS  Google Scholar 

  16. Brooks WM, Lynch PJ, Ingle CC, Hatton A, Emson PC, Faull RL, Starkey MP (2007) Gene expression profiles of metabolic enzyme transcripts in Alzheimer’s disease. Brain Res 1127:127–135. doi:10.1016/j.brainres.2006.09.106

    Article  PubMed  CAS  Google Scholar 

  17. Leuner K, Schutt T, Kurz C, Eckert SH, Schiller C, Occhipinti A, Mai S, Jendrach M, Eckert GP, Kruse SE, Palmiter RD, Brandt U, Drose S, Wittig I, Willem M, Haass C, Reichert AS, Muller WE (2012) Mitochondrion-derived reactive oxygen species lead to enhanced amyloid beta formation. Antioxid Redox Signal 16:1421–1433. doi:10.1089/ars.2011.4173

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  18. Howells C, Saar K, Eaton E, Ray S, Palumaa P, Shabala L, Adlard PA, Bennett W, West AK, Guillemin GJ, Chung RS (2012) Redox-active Cu(II)-A beta causes substantial changes in axonal integrity in cultured cortical neurons in an oxidative-stress dependent manner. Exp Neurol 237:499–506. doi:10.1016/j.expneuro1.2012.06.002

    Article  PubMed  CAS  Google Scholar 

  19. Terai K, Matsuo A, McGeer PL (1996) Enhancement of immunoreactivity for NF-kappa B in the hippocampal formation and cerebral cortex of Alzheimer’s disease. Brain Res 735:159–168

    Article  PubMed  CAS  Google Scholar 

  20. Chami L, Buggia-Prevot V, Duplan E, Delprete D, Chami M, Peyron JF, Checler F (2012) Nuclear factor-kappaB regulates betaAPP and beta- and gamma-secretases differently at physiological and supraphysiological Abeta concentrations. J Biol Chem 287:24573–24584. doi:10.1074/jbc.M111.333054

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  21. Nam JH, Park KW, Park ES, Lee YB, Lee HG, Baik HH, Kim YS, Maeng S, Park J, Jin BK (2012) Interleukin-13/-4-induced oxidative stress contributes to death of hippocampal neurons in abeta1-42-treated hippocampus in vivo. Antioxid Redox Signal 16:1369–1383. doi:10.1089/ars.2011.4175

    Article  PubMed  CAS  Google Scholar 

  22. Maes OC, Xu S, Yu B, Chertkow HM, Wang E, Schipper HM (2007) Transcriptional profiling of Alzheimer blood mononuclear cells by microarray. Neurobiol Aging 28:1795–1809. doi:10.1016/j.neurobiolaging.2006.08.004

    Article  PubMed  CAS  Google Scholar 

  23. Booij BB, Lindahl T, Wetterberg P, Skaane NV, Saebo S, Feten G, Rye PD, Kristiansen LI, Hagen N, Jensen M, Bardsen K, Winblad B, Sharma P, Lonneborg A (2011) A gene expression pattern in blood for the early detection of Alzheimer’s disease. J Alzheimers Dis 23:109–119. doi:10.3233/JAD-2010-101518

    PubMed  CAS  Google Scholar 

  24. Lunnon K, Ibrahim Z, Proitsi P, Lourdusamy A, Newhouse S, Sattlecker M, Furney S, Saleem M, Soininen H, Kloszewska I, Mecocci P, Tsolaki M, Vellas B, Coppola G, Geschwind D, Simmons A, Lovestone S, Dobson R, Hodges A, AddNeuroMed C (2012) Mitochondrial dysfunction and immune activation are detectable in early Alzheimer’s disease blood. J Alzheimers Dis 30:685–710. doi:10.3233/jad-2012-111592

    PubMed  CAS  Google Scholar 

  25. Sultana R, Mecocci P, Mangialasche F, Cecchetti R, Baglioni M, Butterfield DA (2011) Increased protein and lipid oxidative damage in mitochondria isolated from lymphocytes from patients with Alzheimer’s disease: insights into the role of oxidative stress in Alzheimer’s disease and initial investigations into a potential biomarker for this dementing disorder. J Alzheimers Dis 24:77–84. doi:10.3233/jad-2011-101425

    PubMed  CAS  Google Scholar 

  26. Torres LL, Quaglio NB, de Souza GT, Garcia RT, Dati LM, Moreira WL, Loureiro AP, de Souza-Talarico JN, Smid J, Porto CS, Bottino CM, Nitrini R, Barros SB, Camarini R, Marcourakis T (2011) Peripheral oxidative stress biomarkers in mild cognitive impairment and Alzheimer’s disease. J Alzheimers Dis 26:59–68. doi:10.3233/jad-2011-110284

    PubMed  CAS  Google Scholar 

  27. Trushina E, Dutta T, Persson XM, Mielke MM, Petersen RC (2013) Identification of altered metabolic pathways in plasma and CSF in mild cognitive impairment and Alzheimer’s disease using metabolomics. PLoS One 8:e63644. doi:10.1371/journal.pone.0063644

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  28. Lombardi VR, Garcia M, Rey L, Cacabelos R (1999) Characterization of cytokine production, screening of lymphocyte subset patterns and in vitro apoptosis in healthy and Alzheimer’s disease (AD) individuals. J Neuroimmunol 97:163–171. doi:10.1016/s0165-5728(99)00046-6

    Article  PubMed  CAS  Google Scholar 

  29. Sala G, Galimberti G, Canevari C, Raggi ME, Isella V, Facheris M, Appollonio I, Ferrarese C (2003) Peripheral cytokine release in Alzheimer patients: correlation with disease severity. Neurobiol Aging 24:909–914. doi:10.1016/s0197-4580(03)00010-1

    Article  PubMed  CAS  Google Scholar 

  30. Licastro F, Pedrini S, Caputo L, Annoni G, Davis LJ, Ferri C, Casadei V, Grimaldi LM (2000) Increased plasma levels of interleukin-1, interleukin-6 and alpha-1-antichymotrypsin in patients with Alzheimer’s disease: peripheral inflammation or signals from the brain? J Neuroimmunol 103:97–102. doi:10.1016/s0165-5728(99)00226-x

    Article  PubMed  CAS  Google Scholar 

  31. Swardfager W, Lanctot K, Rothenburg L, Wong A, Cappell J, Herrmann N (2010) A meta-analysis of cytokines in Alzheimer’s disease. Biol Psychiatry 68:930–941. doi:10.1016/j.biopsych.2010.06.012

    Article  PubMed  CAS  Google Scholar 

  32. Bossu P, Ciaramella A, Salani F, Bizzoni F, Varsi E, Di Iulio F, Giubilei F, Gianni W, Trequattrini A, Moro ML, Bernardini S, Caltagirone C, Spalletta G (2008) Interleukin-18 produced by peripheral blood cells is increased in Alzheimer’s disease and correlates with cognitive impairment. Brain Behav Immun 22:487–492. doi:10.1016/j.bbi.2007.10.001

    Article  PubMed  CAS  Google Scholar 

  33. Ascolani A, Balestrieri E, Minutolo A, Mosti S, Spalletta G, Bramanti P, Mastino A, Caltagirone C, Macchi B (2012) Dysregulated NF-kappa B pathway in peripheral mononuclear cells of Alzheimer’s disease patients. Curr Alzheimer Res 9:128–137. doi:10.2174/156720512799015091

    Article  PubMed  CAS  Google Scholar 

  34. Mecocci P, Cherubini A, Senin U (1997) Increased oxidative damage in lymphocytes of Alzheimer’s disease patients. J Am Geriatr Soc 45:1536–1537

    PubMed  CAS  Google Scholar 

  35. Mecocci P, Polidori MC, Cherubini A, Ingegni T, Mattioli P, Catani M, Rinaldi P, Cecchetti R, Stahl W, Senin U, Beal MF (2002) Lymphocyte oxidative DNA damage and plasma antioxidants in Alzheimer disease. Arch Neurol 59:794–798. doi:10.1001/archneur.59.5.794

    Article  PubMed  Google Scholar 

  36. Morocz M, Kalman J, Juhasz A, Sinko I, McGlynn AP, Downes CS, Janka Z, Rasko I (2002) Elevated levels of oxidative DNA damage in lymphocytes from patients with Alzheimer’s disease. Neurobiol Aging 23:47–53. doi:10.1016/s0197-4580(01)00257-3

    Article  PubMed  CAS  Google Scholar 

  37. Leutner S, Schindowski K, Frolich L, Maurer K, Kratzsch T, Eckert A, Muller WE (2005) Enhanced ROS-generation in lymphocytes from Alzheimer’s patients. Pharmacopsychiatry 38:312–315. doi:10.1055/s-2005-916186

    Article  PubMed  CAS  Google Scholar 

  38. Kadioglu E, Sardas S, Aslan S, Isik E, Esat Karakaya A (2004) Detection of oxidative DNA damage in lymphocytes of patients with Alzheimer’s disease. Biomarkers 9:203–209. doi:10.1080/13547500410001728390

    Article  PubMed  CAS  Google Scholar 

  39. Baldeiras I, Santana I, Proenca MT, Garrucho MH, Pascoal R, Rodrigues A, Duro D, Oliveira CR (2008) Peripheral oxidative damage in mild cognitive impairment and mild Alzheimer’s disease. J Alzheimers Dis 15:117–128

    PubMed  CAS  Google Scholar 

  40. Straface E, Matarrese P, Gambardella L, Vona R, Sgadari A, Silveri MC, Malorni W (2005) Oxidative imbalance and cathepsin D changes as peripheral blood biomarkers of Alzheimer disease: a pilot study. FEBS Lett 579:2759–2766. doi:10.1016/j.febslet.2005.03.094

    Article  PubMed  CAS  Google Scholar 

  41. Leuner K, Schulz K, Schutt T, Pantel J, Prvulovic D, Rhein V, Savaskan E, Czech C, Eckert A, Muller WE (2012) Peripheral mitochondrial dysfunction in Alzheimer’s disease: focus on lymphocytes. Mol Neurobiol 46:194–204. doi:10.1007/s12035-012-8300-y

    Article  PubMed  CAS  Google Scholar 

  42. Sultana R, Baglioni M, Cecchetti R, Cai J, Klein JB, Bastiani P, Ruggiero C, Mecocci P, Butterfield DA (2013) Lymphocyte mitochondria: toward identification of peripheral biomarkers in the progression of Alzheimer disease. Free Radic Biol Med 65C:595–606. doi:10.1016/j.freeradbiomed.2013.08.001

    Article  Google Scholar 

  43. Martin SJ, Henry CM, Cullen SP (2012) A perspective on mammalian caspases as positive and negative regulators of inflammation. Mol Cell 46:387–397. doi:10.1016/j.molcel.2012.04.026

    Article  PubMed  CAS  Google Scholar 

  44. Raina AK, Hochman A, Zhu X, Rottkamp CA, Nunomura A, Siedlak SL, Boux H, Castellani RJ, Perry G, Smith MA (2001) Abortive apoptosis in Alzheimer’s disease. Acta Neuropathol 101:305–310. doi:10.1007/s004010100378

    PubMed  CAS  Google Scholar 

  45. Rohn TT, Head E, Nesse WH, Cotman CW, Cribbs DH (2001) Activation of caspase-8 in the Alzheimer’s disease brain. Neurobiol Dis 8:1006–1016. doi:10.1006/nbdi.2001.0449

    Article  PubMed  CAS  Google Scholar 

  46. Pompl PN, Yemul S, Xiang ZM, Ho L, Haroutunian V, Purohit D, Mohs R, Pasinetti GM (2003) Caspase gene expression in the brain as a function of the clinical progression of Alzheimer disease. Arch Neurol 60:369–376. doi:10.1001/archneur.60.3.369

    Article  PubMed  Google Scholar 

  47. Gamblin TC, Chen F, Zambrano A, Abraha A, Lagalwar S, Guillozet AL, Lu M, Fu Y, Garcia-Sierra F, LaPointe N, Miller R, Berry RW, Binder LI, Cryns VL (2003) Caspase cleavage of tau: linking amyloid and neurofibrillary tangles in Alzheimer’s disease. Proc Natl Acad Sci U S A 100:10032–10037. doi:10.1073/pnas.1630428100

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  48. Gervais FG, Xu D, Robertson GS, Vaillancourt JP, Zhu Y, Huang J, LeBlanc A, Smith D, Rigby M, Shearman MS, Clarke EE, Zheng H, Van Der Ploeg LH, Ruffolo SC, Thornberry NA, Xanthoudakis S, Zamboni RJ, Roy S, Nicholson DW (1999) Involvement of caspases in proteolytic cleavage of Alzheimer’s amyloid-beta precursor protein and amyloidogenic A beta peptide formation. Cell 97:395–406. doi:10.1016/s0092-8674(00)80748-5

    Article  PubMed  CAS  Google Scholar 

  49. Rissman RA, Poon WW, Blurton-Jones M, Oddo S, Torp R, Vitek MP, LaFerla FM, Rohn TT, Cotman CW (2004) Caspase-cleavage of tau is an early event in Alzheimer disease tangle pathology. J Clin Invest 114:121–130. doi:10.1172/jc1200420640

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  50. Oddo S, Caccamo A, Shepherd JD, Murphy MP, Golde TE, Kayed R, Metherate R, Mattson MP, Akbari Y, LaFerla FM (2003) Triple-transgenic model of Alzheimer’s disease with plaques and tangles: intracellular A beta and synaptic dysfunction. Neuron 39:409–421. doi:10.1016/S0896-6273(03)00434-3

    Article  PubMed  CAS  Google Scholar 

  51. Oddo S, Caccamo A, Kitazawa M, Tseng BP, LaFerla FM (2003) Amyloid deposition precedes tangle formation in a triple transgenic model of Alzheimer’s disease. Neurobiol Aging 24:1063–1070. doi:10.1016/j.neurobiolaging.2003.08.012

    Article  PubMed  CAS  Google Scholar 

  52. Guo H, Albrecht S, Bourdeau M, Petzke T, Bergeron C, LeBlanc AC (2004) Active caspase-6 and caspase-6-cleaved tau in neuropil threads, neuritic plaques, and neurofibrillary tangles of Alzheimer’s disease. Am J Pathol 165:523–531. doi:10.1016/S0002-9440(10)63317-2

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  53. Albrecht S, Bourdeau M, Bennett D, Mufson EJ, Bhattacharjee M, LeBlanc AC (2007) Activation of caspase-6 in aging and mild cognitive impairment. Am J Pathol 170:1200–1209. doi:10.2353/ajpath.2007.060974

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  54. Spires TL, Orne JD, SantaCruz K, Pitstick R, Carlson GA, Ashe KH, Hyman BT (2006) Region-specific dissociation of neuronal loss and neurofibrillary pathology in a mouse model of tauopathy. Am J Pathol 168:1598–1607. doi:10.2353/ajpath.2006.050840

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  55. Morsch R, Simon W, Coleman PD (1999) Neurons may live for decades with neurofibrillary tangles. J Neuropath Exp Neur 58:188–197. doi:10.1097/00005072-199902000-00008

    Article  PubMed  CAS  Google Scholar 

  56. Spires-Jones TL, de Calignon A, Matsui T, Zehr C, Pitstick R, Wu HY, Osetek JD, Jones PB, Bacskai BJ, Feany MB, Carlson GA, Ashe KH, Lewis J, Hyman BT (2008) In vivo imaging reveals dissociation between caspase activation and acute neuronal death in tangle-bearing neurons. J Neurosci 28:862–867. doi:10.1523/jneurosci.3072-08.2008

    Article  PubMed  CAS  Google Scholar 

  57. de Calignon A, Fox LM, Pitstick R, Carlson GA, Bacskai BJ, Spires-Jones TL, Hyman BT (2010) Caspase activation precedes and leads to tangles. Nature 464:1201–1204. doi:10.1038/nature08890

    Article  PubMed  PubMed Central  Google Scholar 

  58. Burguillos MA, Deierborg T, Kavanagh E, Persson A, Hajji N, Garcia-Quintanilla A, Cano J, Brundin P, Englund E, Venero JL, Joseph B (2011) Caspase signalling controls microglia activation and neurotoxicity. Nature 472:319–324. doi:10.1038/nature09788

    Article  PubMed  CAS  Google Scholar 

  59. D’Amelio M, Cavallucci V, Middei S, Marchetti C, Pacioni S, Ferri A, Diamantini A, De Zio D, Carrara P, Battistini L, Moreno S, Bacci A, Ammassari-Teule M, Marie H, Cecconi F (2011) Caspase-3 triggers early synaptic dysfunction in a mouse model of Alzheimer’s disease. Nat Neurosci 14:69–76. doi:10.1038/nn.2709

    Article  PubMed  Google Scholar 

  60. Rohn TT, Wirawan E, Brown RJ, Harris JR, Masliah E, Vandenabeele P (2011) Depletion of Beclin-1 due to proteolytic cleavage by caspases in the Alzheimer’s disease brain. Neurobiol Dis 43:68–78. doi:10.1016/j.nbd.2010.11.003

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  61. Jaeger PA, Pickford F, Sun CH, Lucin KM, Masliah E, Wyss-Coray T (2010) Regulation of amyloid precursor protein processing by the Beclin 1 complex. PLoS One 5:e11102. doi:10.1371/journal.pone.0011102

    Article  PubMed  PubMed Central  Google Scholar 

  62. Hamano T, Gendron TF, Causevic E, Yen SH, Lin WL, Isidoro C, Deture M, Ko LW (2008) Autophagic-lysosomal perturbation enhances tau aggregation in transfectants with induced wild-type tau expression. Eur J Neurosci 27:1119–1130. doi:10.1111/j.1460-9568.2008.06084.x

    Article  PubMed  Google Scholar 

  63. Wang C, Yu JT, Miao D, Wu ZC, Tan MS, Tan L (2013) Targeting the mTOR signaling network for Alzheimer’s disease therapy. Mol Neurobiol. doi:10.1007/s12035-013-8505-8

    Google Scholar 

  64. Zhu XC, Yu JT, Jiang T, Tan L (2013) Autophagy modulation for Alzheimer’s disease therapy. Mol Neurobiol. doi:10.1007/s12035-013-8457-z

    PubMed Central  Google Scholar 

  65. Cai Z, Yan LJ (2013) Rapamycin, autophagy, and Alzheimer’s disease. J Biochem Pharmacol Res 1:84–90

    PubMed  PubMed Central  Google Scholar 

  66. Zheng L, Terman A, Hallbeck M, Dehvari N, Cowburn RF, Benedikz E, Kagedal K, Cedazo-Minguez A, Marcusson J (2011) Macroautophagy-generated increase of lysosomal amyloid beta-protein mediates oxidant-induced apoptosis of cultured neuroblastoma cells. Autophagy 7:1528–1545

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  67. Wang H, Ma J, Tan Y, Wang Z, Sheng C, Chen S, Ding J (2010) Amyloid-beta1-42 induces reactive oxygen species-mediated autophagic cell death in U87 and SH-SY5Y cells. J Alzheimers Dis 21:597–610. doi:10.3233/jad-2010-091207

    PubMed  CAS  Google Scholar 

  68. Sanchez-Varo R, Trujillo-Estrada L, Sanchez-Mejias E, Torres M, Baglietto-Vargas D, Moreno-Gonzalez I, De Castro V, Jimenez S, Ruano D, Vizuete M, Davila JC, Garcia-Verdugo JM, Jimenez AJ, Vitorica J, Gutierrez A (2012) Abnormal accumulation of autophagic vesicles correlates with axonal and synaptic pathology in young Alzheimer’s mice hippocampus. Acta Neuropathol 123:53–70. doi:10.1007/s00401-011-0896-x

    Article  PubMed  PubMed Central  Google Scholar 

  69. Tung YT, Wang BJ, Hu MK, Hsu WM, Lee H, Huang WP, Liao YF (2012) Autophagy: a double-edged sword in Alzheimer’s disease. J Biosci 37:157–165

    Article  PubMed  CAS  Google Scholar 

  70. Tacconi S, Perri R, Balestrieri E, Grelli S, Bernardini S, Annichiarico R, Mastino A, Caltagirone C, Macchi B (2004) Increased caspase activation in peripheral blood mononuclear cells of patients with Alzheimer’s disease. Exp Neurol 190:254–262. doi:10.1016/j.expneurol.2004.07.009

    Article  PubMed  CAS  Google Scholar 

  71. Blandini F, Sinforiani E, Pacchetti C, Samuele A, Bazzini E, Zangaglia R, Nappi G, Martignoni E (2006) Peripheral proteasome and caspase activity in Parkinson disease and Alzheimer disease. Neurology 66:529–534. doi:10.1212/01.wnl.0000198511.09968.b3

    Article  PubMed  CAS  Google Scholar 

  72. Cosentino M, Colombo C, Mauri M, Ferrari M, Corbetta S, Marino F, Bono G, Lecchini S (2009) Expression of apoptosis-related proteins and of mRNA for dopaminergic receptors in peripheral blood mononuclear cells from patients with Alzheimer disease. Alzheimer Dis Assoc Disord 23:88–90

    Article  PubMed  CAS  Google Scholar 

  73. Pellicano M, Larbi A, Goldeck D, Colonna-Romano G, Buffa S, Bulati M, Rubino G, Iemolo F, Candore G, Caruso C, Derhovanessian E, Pawelec G (2012) Immune profiling of Alzheimer patients. J Neuroimmunol 242:52–59. doi:10.1016/j.jneuroim.2011.11.005

    Article  PubMed  CAS  Google Scholar 

  74. Zlokovic BV, Ghiso J, Mackic JB, McComb JG, Weiss MH, Frangione B (1993) Blood-brain barrier transport of circulating Alzheimer’s amyloid beta. Biochem Biophys Res Commun 197:1034–1040. doi:10.1006/bbrc.1993.2582

    Article  PubMed  CAS  Google Scholar 

  75. Schindowski K, Peters J, Gorriz C, Schramm U, Weinandi T, Leutner S, Maurer K, Frolich L, Muller WE, Eckert A (2006) Apoptosis of CD4+ T and natural killer cells in Alzheimer’s disease. Pharmacopsychiatry 39:220–228. doi:10.1055/s-2006-954591

    Article  PubMed  CAS  Google Scholar 

  76. Eckert A, Oster M, Zerfass R, Hennerici M, Muller WE (2001) Elevated levels of fragmented DNA nucleosomes in native and activated lymphocytes indicate an enhanced sensitivity to apoptosis in sporadic Alzheimer’s disease. Specific differences to vascular dementia. Dement Geriatr Cogn Disord 12:98–105. doi:10.1159/000051242

    Article  PubMed  CAS  Google Scholar 

  77. Gatta L, Cardinale A, Wannenes F, Consoli C, Armani A, Molinari F, Mammi C, Stocchi F, Torti M, Rosano GM, Fini M (2009) Peripheral blood mononuclear cells from mild cognitive impairment patients show deregulation of Bax and Sod1 mRNAs. Neurosci Lett 453:36–40. doi:10.1016/j.neulet.2009.02.003

    Article  PubMed  CAS  Google Scholar 

  78. Zana M, Juhasz A, Rimanoczy A, Bjelik A, Baltas E, Ocsovszki I, Boda K, Penke B, Dobozy A, Kemeny L, Janka Z, Kalman J (2006) Alzheimer’s lymphocytes are resistant to ultraviolet B-induced apoptosis. Neurobiol Aging 27:831–834. doi:10.1016/j.neurobiolaging.2005.04.007

    Article  PubMed  CAS  Google Scholar 

  79. Yates SC, Zafar A, Paul H, Nagy S, Durant S, Bicknell R, Wilcock G, Christie S, Esiri MM, Smith AD, Nagy Z (2013) Dysfunction of the mTOR pathway is a risk factor for Alzheimer disease. Acta Neuropathol Commun 1. doi:10.1186/2051-5960-1-3

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Beatrice Macchi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Macchi, B., Marino-Merlo, F., Frezza, C. et al. Inflammation and Programmed Cell Death in Alzheimer’s Disease: Comparison of the Central Nervous System and Peripheral Blood. Mol Neurobiol 50, 463–472 (2014). https://doi.org/10.1007/s12035-014-8641-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-014-8641-9

Keywords

Navigation