Skip to main content

Advertisement

Log in

Crystallins in Retinal Ganglion Cell Survival and Regeneration

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Crystallins are heterogeneous proteins classified into alpha, beta, and gamma families. Although crystallins were first identified as the major structural components of the ocular lens with a principal function to maintain lens transparency, further studies have demonstrated the expression of these proteins in a wide variety of tissues and cell types. Alpha crystallins (alpha A and alpha B) share significant homology with small heat shock proteins and have chaperone-like properties, including the ability to bind and prevent the precipitation of denatured proteins and to increase cellular resistance to stress-induced apoptosis. Stress-induced upregulation of crystallin expression is a commonly observed phenomenon and viewed as a cellular response mechanism against environmental and metabolic insults. However, several studies reported downregulation of crystallin gene expression in various models of glaucomatous nerodegeneration suggesting that that the decreased levels of crystallins may affect the survival properties of retinal ganglion cells (RGCs) and thus, be associated with their degeneration. This hypothesis was corroborated by increased survival of axotomized RGCs in retinas overexpressing alpha A or alpha B crystallins. In addition to RGC protective functions of alpha crystallins, beta and gamma crystallins were implicated in RGC axonal regeneration. These findings demonstrate the importance of crystallin genes in RGC survival and regeneration and further in-depth studies are necessary to better understand the mechanisms underlying the functions of these proteins in healthy RGCs as well as during glaucomatous neurodegeneration, which in turn could help in designing new therapeutic strategies to preserve or regenerate these cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Bhat SP, Nagineni CN (1989) Alpha B subunit of lens-specific protein alpha-crystallin is present in other ocular and non-ocular tissues. Biochem Biophys Res Commun 158:319–325

    Google Scholar 

  2. Srinivasan AN, Nagineni CN, Bhat SP (1992) Alpha A-crystallin is expressed in non-ocular tissues. J Biol Chem 267:23337–23341

    Google Scholar 

  3. Dubin RA, Wawrousek EF, Piatigorsky J (1989) Expression of the murine alpha B-crystallin gene is not restricted to the lens. Mol Cell Biol 9:1083–1091

    CAS  PubMed Central  PubMed  Google Scholar 

  4. Kato K, Shinohara H, Kurobe N, Inaguma Y, Shimizu K, Ohshima K (1991) Tissue distribution and developmental profiles of immunoreactive αB crystallin in the rat determined with a sensitive immunoassay system. Biochim Biophys Acta 1074:201–208

    Article  CAS  PubMed  Google Scholar 

  5. Piatigorsky J (1998) Multifunctional lens crystallins and corneal enzymes: more than meets the eye. Ann N Y Acad Sci 842:7–15

    Article  CAS  PubMed  Google Scholar 

  6. Andley UP, Song Z, Wawrousek EF, Fleming TP, Bassnett S (2000) Differential protective activity of alpha A- and alphaB-crystallin in lens epithelial cells. J Biol Chem 275:36823–36831

    Article  CAS  PubMed  Google Scholar 

  7. Alge CS, Priglinger SG, Neubauer AS, Kampik A, Zillig M, Bloemendal H, Welge-Lussen U (2002) Retinal pigment epithelium is protected against apoptosis by alphaB-crystallin. Investig Ophthalmol Vis Sci 43:3575–3582

    Google Scholar 

  8. Horwitz J (2003) Alpha-crystallin. Exp Eye Res 76:145–153

    Article  CAS  PubMed  Google Scholar 

  9. Xi JH, Bai F, Andley UP (2003) Reduced survival of lens epithelial cells in the alphaA-crystallin-knockout mouse. J Cell Sci 116:1073–1085

    Article  CAS  PubMed  Google Scholar 

  10. Liu JP, Schlosser R, Ma WY, Dong Z, Feng H, Lui L, Huang XQ, Liu Y, Li DW (2004) Human alphaA- and alphaB-crystallins prevent UVA-induced apoptosis through regulation of PKCalpha, RAF/MEK/ERK and AKT signaling pathways. Exp Eye Res 79:393–403

    Article  CAS  Google Scholar 

  11. Mehlen P, Kretz-Remy C, Préville X, Arrigo AP (1996) Human hsp27, Drosophila hsp27 and human alphaB-crystallin expression-mediated increase in glutathione is essential for the protective activity of these proteins against TNFalpha-induced cell death. EMBO J 15:2695–2706

    CAS  PubMed  Google Scholar 

  12. Kamradt MC, Chen F, Cryns VL (2001) The small heat shock protein alpha B-crystallin negatively regulates cytochrome c- and caspase-8-dependent activation of caspase-3 by inhibiting its autoproteolytic maturation. J Biol Chem 276:16059–16063

    Article  CAS  PubMed  Google Scholar 

  13. Kamradt MC, Chen F, Cryns VL (2002) The small heat shock protein alpha B-crystallin negatively regulates apoptosis during myogenic differentiation by inhibiting caspase-3 activation. J Biol Chem 277:38731–38736

    Article  CAS  PubMed  Google Scholar 

  14. Mao YW, Liu JP, Xiang H, Li DW (2004) Human alphaA- and alphaB-crystallins bind to Bax and Bcl-X(S) to sequester their translocation during staurosporine-induced apoptosis. Cell Death Differ 11:512–526

    Article  CAS  PubMed  Google Scholar 

  15. Rao NA, Saraswathy S, Wu GS, Katselis GS, Wawrousek EF, Bhat S (2008) Elevated retina-specific expression of the small heat shock protein, alphaA-crystallin, is associated with photoreceptor protection in experimental uveitis. Investig Ophthalmol Vis Sci 49:1161–1171

    Article  Google Scholar 

  16. Kamradt MC, Lu M, Werner ME, Kwan T, Chen F, Strohecker A, Oshita S, Wilkinson JC, Yu C, Oliver PG, Duckett CS, Buchsbaum DJ, LoBuglio AF, Jordan VC, Cryns VL (2005) The small heat shock protein alpha B-crystallin is a novel inhibitor of TRAIL-induced apoptosis that suppresses the activation of caspase-3. J Biol Chem 280:11059–11066

    Article  CAS  PubMed  Google Scholar 

  17. Morozov V, Wawrousek EF (2006) Caspase-dependent secondary lens fiber cell disintegration in {alpha}A-/{alpha}B-crystallin double-knockout mice. Development 133:813–821

    Article  CAS  PubMed  Google Scholar 

  18. Kumar PA, Haseeb A, Suryanarayana P, Ehtesham NZ, Reddy GB (2005) Elevated expression of alphaA- and alphaB-crystallins in streptozotocin-induced diabetic rat. Arch Biochem Biophys 444:77–83

    Article  CAS  PubMed  Google Scholar 

  19. Kim YH, Choi MY, Kim YS, Han JM, Lee JH, Park CH, Kang SS, Choi WS, Cho GJ (2007) Protein kinase C delta regulates anti-apoptotic alphaB-crystallin in the retina of type 2 diabetes. Neurobiol Dis 28:293–303

    Article  CAS  PubMed  Google Scholar 

  20. Wang YD, Wu JD, Jiang ZL, Wang YB, Wang XH, Liu C, Tong MQ (2007) Comparative proteome analysis of neural retinas from type 2 diabetic rats by two-dimensional electrophoresis. Curr Eye Res 32:891–901

    Article  CAS  PubMed  Google Scholar 

  21. Fort PE, Freeman WM, Losiewicz MK, Singh RS, Gardner TW (2009) The retinal proteome in experimental diabetic retinopathy: up-regulation of crystallins and reversal by systemic and periocular insulin. Mol Cell Proteomics 8:767–779

    Article  CAS  PubMed  Google Scholar 

  22. Kase S, Ishida S, Rao NA (2011) Increased expression of αA-crystallin in human diabetic eye. Int J Mol Med 28:505–511

    CAS  PubMed  Google Scholar 

  23. Whiston EA, Sugi N, Kamradt MC, Sack C, Heimer SR, Engelbert M, Wawrousek EF, Gilmore MS, Ksander BR (2008) Gregory MS: alphaB-crystallin protects retinal tissue during Staphylococcus aureus-induced endophthalmitis. Infect Immun 76:1781–1790

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  24. Yoshimura N, Kikuchi T, Kuroiwa S, Gaun S (2003) Differential temporal and spatial expression of immediate early genes in retinal neurons after ischemia-reperfusion injury. Investig Ophthalmol Vis Sci 44:2211–2220

    Article  Google Scholar 

  25. Sakaguchi H, Miyagi M, Darrow RM, Crabb JS, Hollyfield JG, Organisciak DT, Crabb JW (2003) Intense light exposure changes the crystallin content in retina. Exp Eye Res 76:131–3

    Article  CAS  PubMed  Google Scholar 

  26. Vazquez-Chona F, Song BK, Geisert EE (2004) Temporal changes in gene expression after injury in the rat retina. Investig Ophthalmol Vis Sci 45:2737–2746

    Article  Google Scholar 

  27. Iwaki T, Iwaki A, Tateishi J, Sakaki Y, Goldman JE (1993) Alpha B-crystallin and 27-kd heat shock protein are regulated by stress conditions in the central nervous system and accumulate in Rosenthal fibers. Am J Pathol 143:487–495

    CAS  PubMed  Google Scholar 

  28. Head MW, Corbin E, Goldman JE (1993) Overexpression and abnormal modification of the stress proteins alpha B-crystallin and HSP27 in Alexander disease. Am J Pathol 143:1743–1753

    CAS  PubMed  Google Scholar 

  29. Renkawek K, de Jong WW, Merck KB, Frenken CW, van Workum FP, Bosman GJ (1992) Alpha B-crystallin is present in reactive glia in Creutzfeldt–Jakob disease. Acta Neuropathol 83:324–327

    Article  CAS  PubMed  Google Scholar 

  30. Renkawek K, Voorter CE, Bosman GJ, van Workum FP, de Jong WW (1994) Expression of alpha B-crystallin in Alzheimer's disease. Acta Neuropathol 87:155–160

    Article  CAS  PubMed  Google Scholar 

  31. Renkawek K, Stege GJ, Bosman GJ (1999) Dementia, gliosis and expression of the small heat shock proteins hsp27 and alpha B-crystallin in Parkinson's disease. Neuroreport 10:2273–2276

    Article  CAS  PubMed  Google Scholar 

  32. Stege GJ, Renkawek K, Overkamp PS, Verschuure P, van Rijk AF, Reijnen-Aalbers A, Boelens WC, Bosman GJ, de Jong WW (1999) The molecular chaperone alphaB-crystallin enhances amyloid beta neurotoxicity. Biochem Biophys Res Commun 262:152–156

    Article  CAS  PubMed  Google Scholar 

  33. Wilhelmus MM, Boelens WC, Otte-Holler I, Kamps B, de Waal RM, Verbeek MM (2006) Small heat shock proteins inhibit amyloid-beta protein aggregation and cerebrovascular amyloid-beta protein toxicity. Brain Res 1089:67–78

    Article  CAS  PubMed  Google Scholar 

  34. Santhoshkumar P, Sharma KK (2004) Inhibition of amyloid fibrillogenesis and toxicity by a peptide chaperone. Mol Cell Biochem 267:147–155

    Article  CAS  PubMed  Google Scholar 

  35. Leske MC (1983) The epidemiology of open-angle glaucoma: a review. Am J Epidemiol 118:166–191

    CAS  PubMed  Google Scholar 

  36. Quigley HA, Broman AT (2006) The number of people with glaucoma worldwide in 2010 and 2020. Br J Ophthalmol 90:262–267

    Article  CAS  PubMed  Google Scholar 

  37. Ishii Y, Kwong JM, Caprioli J (2003) Retinal ganglion cell protection with geranylgeranylacetone, a heat shock protein inducer, in a rat glaucoma model. Investig Ophthalmol Vis Sci 44:1982–1992

    Article  Google Scholar 

  38. Piri N, Song M, Kwong JM, Caprioli J (2007) Modulation of alpha and beta crystallin expression in rat retinas with ocular hypertension-induced ganglion cell degeneration. Brain Res 1141:1–9

    Article  CAS  PubMed  Google Scholar 

  39. Ahmed F, Brown KM, Stephan DA, Morrison JC, Johnson EC, Tomarev SI (2004) Microarray analysis of changes in mRNA levels in the rat retina after experimental elevation of intraocular pressure. Investig Ophthalmol Vis Sci 45:1247–1258

    Article  Google Scholar 

  40. Naskar R, Thanos S (2006) Retinal gene profiling in a hereditary rodent model of elevated intraocular pressure. Mol Vis 12:1199–1210

    CAS  PubMed  Google Scholar 

  41. Steele MR, Inman DM, Calkins DJ, Horner PJ, Vetter ML (2006) Microarray analysis of retinal gene expression in the DBA/2J model of glaucoma. Investig Ophthalmol Vis Sci 47:977–985

    Article  Google Scholar 

  42. Yang Z, Quigley HA, Pease ME, Yang Y, Qian J, Valenta D, Zack DJ (2007) Changes in gene expression in experimental glaucoma and optic nerve transection: the equilibrium between protective and detrimental mechanisms. Investig Ophthalmol Vis Sci 48:5539–5548

    Article  Google Scholar 

  43. Cvekl A, Piatigorsky J (1996) Lens development and crystallin gene expression: many roles for Pax-6. Bioessays 18:621–630

    Article  CAS  PubMed  Google Scholar 

  44. Cvekl A, Yang Y, Chauhan BK, Cveklova K (2004) Regulation of gene expression by Pax6 in ocular cells: a case of tissue-preferred expression of crystallins in lens. Int J Dev Biol 48:829–844

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  45. Somasundaram T, Bhat SP (2004) Developmentally dictated expression of heat shock factors: exclusive expression of HSF4 in the postnatal lens and its specific interaction with alphaB-crystallin heat shock promoter. J Biol Chem 279:44497–44503

    Article  CAS  PubMed  Google Scholar 

  46. Cvekl A, Duncan MK (2007) Genetic and epigenetic mechanisms of gene regulation during lens development. Prog Retin Eye Res 26:555–597

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  47. Wolf L, Yang Y, Wawrousek E, Cvekl A (2008) Transcriptional regulation of mouse alpha A-crystallin gene in a 148kb Cryaa BAC and its derivates. BMC Dev Biol 8:88

    Article  PubMed Central  PubMed  Google Scholar 

  48. Jones SE, Jomary C, Grist J, Thomas MR, Neal MJ (1998) Expression of Pax-6 mRNA in the retinal degeneration (rd) mouse. Biochem Biophys Res Commun 252:236–240

    Article  CAS  PubMed  Google Scholar 

  49. Steinmayr M, Andre E, Conquet F, Rondi-Reig L, Delhaye-Bouchaud N, Auclair N, Daniel H, Crepel F, Mariani J, Sotelo C (1998) Becker-Andre M: staggerer phenotype in retinoid-related orphan receptor alpha-deficient mice. Proc Natl Acad Sci U S A 95:3960–3965

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  50. Kaneko Y, Matsumoto G, Hanyu Y (1999) Pax-6 expression during retinal regeneration in the adult newt. Develop Growth Differ 41:723–729

    Article  CAS  Google Scholar 

  51. Bhat SP, Rayner SA, Chau SC, Ariyasu RG (2004) Pax-6 expression in posthatch chick retina during and recovery from form-deprivation myopia. Dev Neurosci 26:328–335

    Article  CAS  PubMed  Google Scholar 

  52. Marquardt T, Ashery-Padan R, Andrejewski N, Scardigli R, Guillemot F, Gruss P (2001) Pax6 is required for the multipotent state of retinal progenitor cells. Cell 105:43–55

    Article  CAS  PubMed  Google Scholar 

  53. Ton CC, Hirvonen H, Miwa H, Weil MM, Monaghan P, Jordan T, van Heyningen V, Hastie ND, Meijers-Heijboer H, Drechsler M, Royer-Pokora B, Collins F, Swaroop A, Strong LC, Saunders GF (1991) Positional cloning and characterization of a paired box and homeobox containing gene from the aniridia region. Cell 67:1059–1074

    Article  CAS  PubMed  Google Scholar 

  54. Glaser T, Walton DS, Maas RL (1992) Genomic structure, evolutionary conservation and aniridia mutations in the human PAX6 gene. Nat Genet 2:232–238

    Article  CAS  PubMed  Google Scholar 

  55. Glaser T, Jepeal L, Edwards JG, Young SR, Favor J, Maas RL (1994) Pax6 gene dosage effect in a family with congenital cataracts, aniridia, anophthalmia and central nervous system defects. Nat Genet 7:463–471

    Article  CAS  PubMed  Google Scholar 

  56. Mikkola I, Bruun JA, Bjorkoy G, Holm T, Johansen T (1999) Phosphorylation of the transactivation domain of Pax6 by extracellular signal-regulated kinase and p38 mitogen-activated protein kinase. J Biol Chem 274:15115–15126

    Article  CAS  PubMed  Google Scholar 

  57. Miyara N, Shinzato M, Yamashiro Y, Iwamatsu A, Kariya K, Sawaguchi S (2008) Proteomic analysis of rat retina in a steroid-induced ocular hypertension model: potential vulnerability to oxidative stress. Jpn J Ophthalmol 52:84–90

    Article  CAS  PubMed  Google Scholar 

  58. Young DB (1992) Heat-shock proteins: immunity and autoimmunity. Curr Opin Immunol 4:396–400

    Article  CAS  PubMed  Google Scholar 

  59. van Noort JM, van Sechel AC, Bajramovic JJ, el Ouagmiri M, Polman CH, Lassmann H, Ravid R (1995) The small heat-shock protein alpha B-crystallin as candidate autoantigen in multiple sclerosis. Nature 375:798–801

    Article  PubMed  Google Scholar 

  60. Srivastava PK (2000) Heat shock protein-based novel immunotherapies. Drug News Perspect 13:517–522

    Article  CAS  PubMed  Google Scholar 

  61. Joachim SC, Bruns K, Lackner KJ, Pfeiffer N, Grus FH (2007) Antibodies to alpha B-crystallin, vimentin, and heat shock protein 70 in aqueous humor of patients with normal tension glaucomaand IgG antibody patterns against retinal antigen in aqueous humor. Curr Eye Res 32:501–509

    Article  CAS  PubMed  Google Scholar 

  62. Tezel G, Seigel GM, Wax MB (1998) Autoantibodies to small heat shock proteins in glaucoma. Investig Ophthalmol Vis Sci 39:2277–3287

    CAS  Google Scholar 

  63. Munemasa Y, Kwong JM, Caprioli J, Piri N (2009) The role of alphaA- and alphaB-crystallins in the survival of retinal ganglion cells after optic nerve axotomy. Investig Ophthalmol Vis Sci 50:3869–3875

    Article  Google Scholar 

  64. Ying X, Zhang J, Wang Y, Wu N, Wang Y, Yew DT (2008) Alpha-crystallin protected axons from optic nerve degeneration after crushing in rats. J Mol Neurosci 35:253–258

    Article  CAS  PubMed  Google Scholar 

  65. Chiu K, Zhou Y, Yeung SC, Lok CK, Chan OO, Chang RC, So KF, Chiu JF (2010) Up-regulation of crystallins is involved in the neuroprotective effect of wolfberry on survival of retinal ganglion cells in rat ocular hypertension model. J Cell Biochem 110:311–320

    CAS  PubMed  Google Scholar 

  66. Li XM (2007) Protective effect of Lycium barbarum polysaccharides on streptozotocin-induced oxidative stress in rats. Int J Biol Macromol 40:461–465

    Article  CAS  PubMed  Google Scholar 

  67. Yu MS, Leung SKY, Lai SW, Che CM, Zee SY, So KF, Yuen WH, Chang RC (2005) Neuroprotective effects of anti-aging oriental medicine Lycium barbarum against [beta]-amyloid peptide neurotoxicity. Exp Gerontol 40:716–727

    Article  PubMed  Google Scholar 

  68. Yu MS, Lai CS, Ho YS, Zee SY, So KF, Yuen WH, Chang RC (2007) Characterization of the effects of anti-aging medicine Fructus lycii on beta-amyloid peptide neurotoxicity. Int J Mol Med 20:261–268

    CAS  PubMed  Google Scholar 

  69. Chan HC, Chang RCC, Ip AKC, Chiu K, Yuen WH, Zee SY, So KF (2007) Neuroprotective effects of Lycium barbarum Lynn on protecting retinal ganglion cells in an ocular hypertension model of glaucoma. Exp Neurol 203:269–273

    Article  PubMed  Google Scholar 

  70. Leon S, Yin Y, Nguyen J, Irwin N, Benowitz LI (2000) Lens injury stimulates axon regeneration in the mature rat optic nerve. J Neurosci 20:4615–4626

    CAS  PubMed  Google Scholar 

  71. Fischer D, Pavlidis M, Thanos S (2000) Cataractogenic lens injury prevents traumatic ganglion cell death and promotes axonal regeneration both in vivo and in culture. Investig Ophthalmol Vis Sci 41:3943–3954

    CAS  Google Scholar 

  72. Fischer D, Heiduschka P, Thanos S (2001) Lens-injury-stimulated axonal regeneration throughout the optic pathway of adult rats. Exp Neurol 172:257–272

    Article  CAS  PubMed  Google Scholar 

  73. Teng FY, Tang BL (2006) Axonal regeneration in adult CNS neurons–signaling molecules and pathways. J Neurochem 96:1501–1508

    Article  CAS  PubMed  Google Scholar 

  74. Park KK, Liu K, Hu Y, Smith PD, Wang C, Cai B, Xu B, Connolly L, Kramvis I, Sahin M, He Z (2008) Promoting axon regeneration in the adult CNS by modulation of the PTEN/mTOR pathway. Science 322:963–966

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  75. Moore DL, Blackmore MG, Hu Y, Kaestner KH, Bixby JL, Lemmon VP, Goldberg JL (2009) KLF family members regulate intrinsic axon regeneration ability. Science 326:298–301

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  76. Smith PD, Sun F, Park KK, Cai B, Wang C, Kuwako K, Martinez-Carrasco I, Connolly L, He Z (2009) SOCS3 deletion promotes optic nerve regeneration in vivo. Neuron 64:617–623

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  77. Wong EV, David S, Jacob MH, Jay DG (2003) Inactivation of myelin-associated glycoprotein enhances optic nerve regeneration. J Neurosci 23:3112–3117

    CAS  PubMed  Google Scholar 

  78. Silver J, Miller JH (2004) Regeneration beyond the glial scar. Nat Rev Neurosci 5:146–156

    Article  CAS  PubMed  Google Scholar 

  79. Yiu G, He Z (2006) Glial inhibition of CNS axon regeneration. Nat Rev Neurosci 7:617–627

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  80. Yin Y, Cui Q, Li Y, Irwin N, Fischer D, Harvey AR, Benowitz LI (2003) Macrophage-derived factors stimulate optic nerve regeneration. J Neurosci 23:2284–2293

    CAS  PubMed  Google Scholar 

  81. Berry M, Carlile J, Hunter A (1996) Peripheral nerve explants grafted into the vitreous body of the eye promote the regeneration of retinal ganglion cell axons severed in the optic nerve. J Neurocytol 25:147–170

    Article  CAS  PubMed  Google Scholar 

  82. Yin Y, Henzl MT, Lorber B, Nakazawa T, Thomas TT, Jiang F, Langer R, Benowitz LI (2006) Oncomodulin is a macrophage-derived signal for axon regeneration in retinal ganglion cells. Nat Neurosci 9:843–852

    Article  CAS  PubMed  Google Scholar 

  83. Lorber B, Berry M, Logan A (2005) Lens injury stimulates adult mouse retinal ganglion cell axon regeneration via both macrophage- and lens-derived factors. Eur J Neurosci 21:2029–2034

    Article  PubMed  Google Scholar 

  84. Müller A, Hauk TG, Fischer D (2007) Astrocyte-derived CNTF switches mature RGCs to a regenerative state following inflammatory stimulation. Brain 130:3308–3320

    Article  PubMed  Google Scholar 

  85. Hauk TG, Müller A, Lee J, Schwendener R, Fischer D (2008) Neuroprotective and axon growth promoting effects of intraocular inflammation do not depend on oncomodulin or the presence of large numbers of activated macrophages. Exp Neurol 209:469–482

    Article  CAS  PubMed  Google Scholar 

  86. Leibinger M, Müller A, Andreadaki A, Hauk TG, Kirsch M, Fischer D (2009) Neuroprotective and axon growth-promoting effects following inflammatory stimulation on mature retinal ganglion cells in mice depend on ciliary neurotrophic factor and leukemia inhibitory factor. J Neurosci 29:14334–14341

    Article  PubMed  Google Scholar 

  87. Fischer D, Hauk TG, Müller A, Thanos S (2008) Crystallins of the beta/gamma-superfamily mimic the effects of lens injury and promote axon regeneration. Mol Cell Neurosci 37:471–479

    Article  CAS  PubMed  Google Scholar 

  88. Liedtke T, Schwamborn JC, Schröer U, Thanos S (2007) Elongation of axons during regeneration involves retinal crystallin beta b2 (crybb2). Mol Cell Proteomics 6:895–907

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Institutes of Health/National Eye Institute Grant EY018644 (NP) and the Research to Prevent Blindness (JC).

Conflict of Interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Natik Piri.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Piri, N., Kwong, J.M.K. & Caprioli, J. Crystallins in Retinal Ganglion Cell Survival and Regeneration. Mol Neurobiol 48, 819–828 (2013). https://doi.org/10.1007/s12035-013-8470-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-013-8470-2

Keywords

Navigation