Skip to main content

Advertisement

Log in

Protein Quality Control System in Neurodegeneration: A Healing Company Hard to Beat but Failure is Fatal

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

A common feature in most neurodegenerative diseases and aging is the progressive accumulation of damaged proteins. Proteins are essential for all crucial biological functions. Under some notorious conditions, proteins loss their three dimensional native conformations and are converted into disordered aggregated structures. Such changes rise into pathological conditions and eventually cause serious protein conformation disorders. Protein aggregation and inclusion bodies formation mediated multifactorial proteotoxic stress has been reported in the progression of Parkinson’s disease (PD), Huntington’s disease (HD), Alzheimer's disease (AD), amyotrophic lateral sclerosis (ALS) and Prion disease. Ongoing studies have been remarkably informative in providing a systematic outlook for better understanding the concept and fundamentals of protein misfolding and aggregations. However, the precise role of protein quality control system and precursors of this mechanism remains elusive. In this review, we highlight recent insights and discuss emerging cytoprotective strategies of cellular protein quality control system implicated in protein deposition diseases. Our current review provides a clear, understandable framework of protein quality control system that may offer the more suitable therapeutic strategies for protein-associated diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Brandman O, Stewart-Ornstein J, Wong D, Larson A, Williams CC, Li GW, Zhou S, King D, Shen PS, Weibezahn J, Dunn JG, Rouskin S, Inada T, Frost A, Weissman JS (2012) A ribosome-bound quality control complex triggers degradation of nascent peptides and signals translation stress. Cell 151(5):1042–1054. doi:10.1016/j.cell.2012.10.044

    Article  PubMed  CAS  Google Scholar 

  2. Beckmann R, Bubeck D, Grassucci R, Penczek P, Verschoor A, Blobel G, Frank J (1997) Alignment of conduits for the nascent polypeptide chain in the ribosome-Sec61 complex. Science 278(5346):2123–2126

    Article  PubMed  CAS  Google Scholar 

  3. Chen B, Retzlaff M, Roos T, Frydman J (2011) Cellular strategies of protein quality control. Cold Spring Harb Perspect Biol 3(8):a004374. doi:10.1101/cshperspect.a004374

    Article  PubMed  CAS  Google Scholar 

  4. Chiti F, Dobson CM (2006) Protein misfolding, functional amyloid, and human disease. Annu Rev Biochem 75:333–366. doi:10.1146/annurev.biochem.75.101304.123901

    Article  PubMed  CAS  Google Scholar 

  5. Gregersen N, Bross P (2010) Protein misfolding and cellular stress: an overview. Methods Mol Biol 648:3–23. doi:10.1007/978-1-60761-756-3_1

    Article  PubMed  CAS  Google Scholar 

  6. Ross CA, Poirier MA (2004) Protein aggregation and neurodegenerative disease. Nat Med 10(Suppl):S10–S17. doi:10.1038/nm1066

    Article  PubMed  CAS  Google Scholar 

  7. Dobson CM (2003) Protein folding and misfolding. Nature 426(6968):884–890. doi:10.1038/nature02261

    Article  PubMed  CAS  Google Scholar 

  8. Selkoe DJ (2003) Folding proteins in fatal ways. Nature 426(6968):900–904. doi:10.1038/nature02264

    Article  PubMed  CAS  Google Scholar 

  9. Fulda S, Gorman AM, Hori O, Samali A (2010) Cellular stress responses: cell survival and cell death. Int J Cell Biol 2010:214074. doi:10.1155/2010/214074

    PubMed  Google Scholar 

  10. Forman MS, Trojanowski JQ, Lee VM (2004) Neurodegenerative diseases: a decade of discoveries paves the way for therapeutic breakthroughs. Nat Med 10(10):1055–1063. doi:10.1038/nm1113

    Article  PubMed  CAS  Google Scholar 

  11. Layfield R, Lowe J, Bedford L (2005) The ubiquitin–proteasome system and neurodegenerative disorders. Essays Biochem 41:157–171. doi:10.1042/EB0410157

    Article  PubMed  CAS  Google Scholar 

  12. Dennissen FJ, Kholod N, van Leeuwen FW (2012) The ubiquitin proteasome system in neurodegenerative diseases: culprit, accomplice or victim? Prog Neurobiol 96(2):190–207. doi:10.1016/j.pneurobio.2012.01.003

    Article  PubMed  CAS  Google Scholar 

  13. Glickman MH, Ciechanover A (2002) The ubiquitin–proteasome proteolytic pathway: destruction for the sake of construction. Physiol Rev 82(2):373–428. doi:10.1152/physrev.00027.2001

    PubMed  CAS  Google Scholar 

  14. Voges D, Zwickl P, Baumeister W (1999) The 26S proteasome: a molecular machine designed for controlled proteolysis. Annu Rev Biochem 68:1015–1068. doi:10.1146/annurev.biochem.68.1.1015

    Article  PubMed  CAS  Google Scholar 

  15. Chhangani D, Joshi AP, Mishra A (2012) E3 ubiquitin ligases in protein quality control mechanism. Mol Neurobiol 45(3):571–585. doi:10.1007/s12035-012-8273-x

    Article  PubMed  CAS  Google Scholar 

  16. Ardley HC, Robinson PA (2004) The role of ubiquitin–protein ligases in neurodegenerative disease. Neurodegener Dis 1(2–3):71–87. doi:10.1159/000080048

    Article  PubMed  CAS  Google Scholar 

  17. Yonashiro R, Sugiura A, Miyachi M, Fukuda T, Matsushita N, Inatome R, Ogata Y, Suzuki T, Dohmae N, Yanagi S (2009) Mitochondrial ubiquitin ligase MITOL ubiquitinates mutant SOD1 and attenuates mutant SOD1-induced reactive oxygen species generation. Mol Biol Cell 20(21):4524–4530. doi:10.1091/mbc.E09-02-0112

    Article  PubMed  CAS  Google Scholar 

  18. Mishra A, Maheshwari M, Chhangani D, Fujimori-Tonou N, Endo F, Joshi AP, Jana NR, Yamanaka K (2013) E6-AP association promotes SOD1 aggresomes degradation and suppresses toxicity. Neurobiol Aging. doi:10.1016/j.neurobiolaging.2012.08.016

  19. Niwa J, Ishigaki S, Hishikawa N, Yamamoto M, Doyu M, Murata S, Tanaka K, Taniguchi N, Sobue G (2002) Dorfin ubiquitylates mutant SOD1 and prevents mutant SOD1-mediated neurotoxicity. J Biol Chem 277(39):36793–36798. doi:10.1074/jbc.M206559200

    Article  PubMed  CAS  Google Scholar 

  20. Urushitani M, Kurisu J, Tateno M, Hatakeyama S, Nakayama K, Kato S, Takahashi R (2004) CHIP promotes proteasomal degradation of familial ALS-linked mutant SOD1 by ubiquitinating Hsp/Hsc70. J Neurochem 90(1):231–244. doi:10.1111/j.1471-4159.2004.02486.x

    Article  PubMed  CAS  Google Scholar 

  21. Ying Z, Wang H, Fan H, Zhu X, Zhou J, Fei E, Wang G (2009) Gp78, an ER associated E3, promotes SOD1 and ataxin-3 degradation. Hum Mol Genet 18(22):4268–4281. doi:10.1093/hmg/ddp380

    Article  PubMed  CAS  Google Scholar 

  22. Miyazaki K, Fujita T, Ozaki T, Kato C, Kurose Y, Sakamoto M, Kato S, Goto T, Itoyama Y, Aoki M, Nakagawara A (2004) NEDL1, a novel ubiquitin–protein isopeptide ligase for dishevelled-1, targets mutant superoxide dismutase-1. J Biol Chem 279(12):11327–11335. doi:10.1074/jbc.M312389200

    Article  PubMed  CAS  Google Scholar 

  23. Ren Y, Zhao J, Feng J (2003) Parkin binds to alpha/beta tubulin and increases their ubiquitination and degradation. J Neurosci Off J Soc Neurosci 23(8):3316–3324

    CAS  Google Scholar 

  24. Imai Y, Soda M, Hatakeyama S, Akagi T, Hashikawa T, Nakayama K, Takahashi R (2002) CHIP is associated with Parkin, a gene responsible for familial Parkinson's disease, and enhances its ubiquitin ligase activity. Mol Cell 10(1):55–67. doi:10.1016/s1097-2765(02)00583-x

    Article  PubMed  CAS  Google Scholar 

  25. Kalia L, Kalia S, Chau H, Lozano A, Hyman B, McLean P (2011) Ubiquitinylation of α-synuclein by carboxyl terminus Hsp70-interacting protein (CHIP) is regulated by Bcl-2-associated athanogene 5 (BAG5). PLoS One 6(2): doi:10.1371/journal.pone.0014695

    Article  CAS  Google Scholar 

  26. Mulherkar SA, Sharma J, Jana NR (2009) The ubiquitin ligase E6-AP promotes degradation of alpha-synuclein. J Neurochem 110(6):1955–1964. doi:10.1111/j.1471-4159.2009.06293.x

    Article  PubMed  CAS  Google Scholar 

  27. Skinner P, Koshy B, Cummings C, Klement I, Helin K, Servadio A, Zoghbi H, Orr H (1997) Ataxin-1 with an expanded glutamine tract alters nuclear matrix-associated structures. Nature 389(6654):971–974. doi:10.1038/40153

    Article  PubMed  CAS  Google Scholar 

  28. Ross C (1997) Intranuclear neuronal inclusions: a common pathogenic mechanism for glutamine-repeat neurodegenerative diseases? Neuron 19(6):1147–1150. doi:10.1016/s0896-6273(00)80405-5

    Article  PubMed  CAS  Google Scholar 

  29. Mishra A, Dikshit P, Purkayastha S, Sharma J, Nukina N, Jana NR (2008) E6-AP promotes misfolded polyglutamine proteins for proteasomal degradation and suppresses polyglutamine protein aggregation and toxicity. J Biol Chem 283(12):7648–7656. doi:10.1074/jbc.M706620200

    Article  PubMed  CAS  Google Scholar 

  30. Garyali P, Siwach P, Singh PK, Puri R, Mittal S, Sengupta S, Parihar R, Ganesh S (2009) The malin-laforin complex suppresses the cellular toxicity of misfolded proteins by promoting their degradation through the ubiquitin–proteasome system. Hum Mol Genet 18(4):688–700. doi:10.1093/hmg/ddn398

    Article  PubMed  CAS  Google Scholar 

  31. Jana NR, Dikshit P, Goswami A, Kotliarova S, Murata S, Tanaka K, Nukina N (2005) Co-chaperone CHIP associates with expanded polyglutamine protein and promotes their degradation by proteasomes. J Biol Chem 280(12):11635–11640. doi:10.1074/jbc.M412042200

    Article  PubMed  CAS  Google Scholar 

  32. Tsai YC, Fishman PS, Thakor NV, Oyler GA (2003) Parkin facilitates the elimination of expanded polyglutamine proteins and leads to preservation of proteasome function. J Biol Chem 278(24):22044–22055. doi:10.1074/jbc.M212235200

    Article  PubMed  CAS  Google Scholar 

  33. Chhangani D, Jana NR, Mishra A (2013) Misfolded proteins recognition strategies of E3 ubiquitin ligases and neurodegenerative diseases. Mol Neurobiol. doi:10.1007/s12035-012-8351-0

  34. Stefani M, Dobson C (2003) Protein aggregation and aggregate toxicity: new insights into protein folding, misfolding diseases and biological evolution. J Mol Med (Berlin, Germany) 81(11):678–699. doi:10.1007/s00109-003-0464-5

    Article  CAS  Google Scholar 

  35. Bucciantini M, Giannoni E, Chiti F, Baroni F, Formigli L, Zurdo J, Taddei N, Ramponi G, Dobson C, Stefani M (2002) Inherent toxicity of aggregates implies a common mechanism for protein misfolding diseases. Nature 416(6880):507–511. doi:10.1038/416507a

    Article  PubMed  CAS  Google Scholar 

  36. Bence NF, Sampat RM, Kopito RR (2001) Impairment of the ubiquitin–proteasome system by protein aggregation. Science 292(5521):1552–1555. doi:10.1126/science.292.5521.1552

    Article  PubMed  CAS  Google Scholar 

  37. Mizushima N, Levine B, Cuervo A, Klionsky D (2008) Autophagy fights disease through cellular self-digestion. Nature 451(7182):1069–1075. doi:10.1038/nature06639

    Article  PubMed  CAS  Google Scholar 

  38. Menzies FM, Moreau K, Rubinsztein DC (2011) Protein misfolding disorders and macroautophagy. Curr Opin Cell Biol 23(2):190–197. doi:10.1016/j.ceb.2010.10.010

    Article  PubMed  CAS  Google Scholar 

  39. Kon M, Cuervo AM (2010) Autophagy: an alternative degradation mechanism for misfolded proteins. John Wiley & Sons, Inc., Hoboken, pp 113–129

  40. Nakatogawa H, Suzuki K, Kamada Y, Ohsumi Y (2009) Dynamics and diversity in autophagy mechanisms: lessons from yeast. Nat Rev Mol Cell Biol 10(7):458–467. doi:10.1038/nrm2708

    Article  PubMed  CAS  Google Scholar 

  41. Mijaljica D, Prescott M, Devenish R (2011) Microautophagy in mammalian cells: revisiting a 40-year-old conundrum. Autophagy 7(7):673–682

    Article  PubMed  CAS  Google Scholar 

  42. Dice J (2007) Chaperone-mediated autophagy. Autophagy 3(4):295–299

    PubMed  CAS  Google Scholar 

  43. Mizushima N, Komatsu M (2011) Autophagy: renovation of cells and tissues. Cell 147(4):728–741. doi:10.1016/j.cell.2011.10.026

    Article  PubMed  CAS  Google Scholar 

  44. Nixon RA (2006) Autophagy in neurodegenerative disease: friend, foe or turncoat? Trends Neurosci 29(9):528–535. doi:10.1016/j.tins.2006.07.003

    Article  PubMed  CAS  Google Scholar 

  45. Mizushima N, Yoshimori T, Ohsumi Y (2011) The role of Atg proteins in autophagosome formation. Annu Rev Cell Dev Biol 27:107–132. doi:10.1146/annurev-cellbio-092910-154005

    Article  PubMed  CAS  Google Scholar 

  46. Ragusa MJ, Stanley RE, Hurley JH (2012) Architecture of the atg17 complex as a scaffold for autophagosome biogenesis. Cell 151(7):1501–1512. doi:10.1016/j.cell.2012.11.028

    Article  PubMed  CAS  Google Scholar 

  47. Kraft C, Peter M, Hofmann K (2010) Selective autophagy: ubiquitin-mediated recognition and beyond. Nat Cell Biol 12(9):836–841. doi:10.1038/ncb0910-836

    Article  PubMed  CAS  Google Scholar 

  48. Kirkin V, McEwan D, Novak I, Dikic I (2009) A role for ubiquitin in selective autophagy. Mol Cell 34(3):259–269. doi:10.1016/j.molcel.2009.04.026

    Article  PubMed  CAS  Google Scholar 

  49. Bjørkøy G, Lamark T, Brech A, Outzen H, Perander M, Overvatn A, Stenmark H, Johansen T (2005) p62/SQSTM1 forms protein aggregates degraded by autophagy and has a protective effect on huntingtin-induced cell death. J Cell Biol 171(4):603–614. doi:10.2307/3658468

    Article  PubMed  CAS  Google Scholar 

  50. Kirkin V, Lamark T, Sou Y-S, Bjørkøy G, Nunn J, Bruun J-A, Shvets E, McEwan D, Clausen T, Wild P, Bilusic I, Theurillat J-P, Øvervatn A, Ishii T, Elazar Z, Komatsu M, Dikic I, Johansen T (2009) A role for NBR1 in autophagosomal degradation of ubiquitinated substrates. Mol Cell 33(4):505–516. doi:10.1016/j.molcel.2009.01.020

    Article  PubMed  CAS  Google Scholar 

  51. Pankiv S, Clausen T, Lamark T, Brech A, Bruun J-A, Outzen H, Øvervatn A, Bjørkøy G, Johansen T (2007) p62/SQSTM1 binds directly to Atg8/LC3 to facilitate degradation of ubiquitinated protein aggregates by autophagy. J Biol Chem 282(33):24131–24145. doi:10.1074/jbc.M702824200

    Article  PubMed  CAS  Google Scholar 

  52. Chiang HL, Dice JF (1988) Peptide sequences that target proteins for enhanced degradation during serum withdrawal. J Biol Chem 263(14):6797–6805

    PubMed  CAS  Google Scholar 

  53. Cuervo A, Dice J (1996) A receptor for the selective uptake and degradation of proteins by lysosomes. Science (New York, NY) 273(5274):501–503

    Article  CAS  Google Scholar 

  54. Schatz G, Dobberstein B (1996) Common principles of protein translocation across membranes. Science (New York, NY) 271(5255):1519–1526

    Article  CAS  Google Scholar 

  55. Chirico W, Waters M, Blobel G (1988) 70K heat shock related proteins stimulate protein translocation into microsomes. Nature 332(6167):805–810. doi:10.1038/332805a0

    Article  PubMed  CAS  Google Scholar 

  56. Chiang H, Terlecky S, Plant C, Dice J (1989) A role for a 70-kilodalton heat shock protein in lysosomal degradation of intracellular proteins. Science (New York, NY) 246(4928):382–385

    Article  CAS  Google Scholar 

  57. Nylandsted J, Gyrd-Hansen M, Danielewicz A, Fehrenbacher N, Lademann U, Høyer-Hansen M, Weber E, Multhoff G, Rohde M, Jäättelä M (2004) Heat shock protein 70 promotes cell survival by inhibiting lysosomal membrane permeabilization. J Exp Med 200(4):425–435. doi:10.1084/jem.20040531

    Article  PubMed  CAS  Google Scholar 

  58. Kirkegaard T, Roth A, Petersen N, Mahalka A, Olsen O, Moilanen I, Zylicz A, Knudsen J, Sandhoff K, Arenz C, Kinnunen P, Nylandsted J, Jäättelä M (2010) Hsp70 stabilizes lysosomes and reverts Niemann–Pick disease-associated lysosomal pathology. Nature 463(7280):549–553. doi:10.1038/nature08710

    Article  PubMed  CAS  Google Scholar 

  59. Qi L, Zhang X-D, Wu J-C, Lin F, Wang J, Difiglia M, Qin Z-H (2012) The role of chaperone-mediated autophagy in huntingtin degradation. PLoS One 7(10): doi:10.1371/journal.pone.0046834

    Google Scholar 

  60. Hara T, Nakamura K, Matsui M, Yamamoto A, Nakahara Y, Suzuki-Migishima R, Yokoyama M, Mishima K, Saito I, Okano H, Mizushima N (2006) Suppression of basal autophagy in neural cells causes neurodegenerative disease in mice. Nature 441(7095):885–889. doi:10.1038/nature04724

    Article  PubMed  CAS  Google Scholar 

  61. Komatsu M, Waguri S, Chiba T, Murata S, Iwata J-i, Tanida I, Ueno T, Koike M, Uchiyama Y, Kominami E, Tanaka K (2006) Loss of autophagy in the central nervous system causes neurodegeneration in mice. Nature 441(7095):880–884. doi:10.1038/nature04723

    Article  PubMed  CAS  Google Scholar 

  62. Malkus K, Ischiropoulos H (2012) Regional deficiencies in chaperone-mediated autophagy underlie α-synuclein aggregation and neurodegeneration. Neurobiol Dis 46(3):732–744. doi:10.1016/j.nbd.2012.03.017

    Article  PubMed  CAS  Google Scholar 

  63. d’Azzo A, Bongiovanni A, Nastasi T (2005) E3 ubiquitin ligases as regulators of membrane protein trafficking and degradation. Traffic 6(6):429–441. doi:10.1111/j.1600-0854.2005.00294.x

    Google Scholar 

  64. Chakrabarti O, Hegde R (2009) Functional depletion of mahogunin by cytosolically exposed prion protein contributes to neurodegeneration. Cell 137(6):1136–1147. doi:10.1016/j.cell.2009.03.042

    Article  PubMed  CAS  Google Scholar 

  65. Lévy F, Muehlethaler K, Salvi S, Peitrequin A-L, Lindholm C, Cerottini J-C, Rimoldi D (2005) Ubiquitylation of a melanosomal protein by HECT-E3 ligases serves as sorting signal for lysosomal degradation. Mol Biol Cell 16(4):1777–1787. doi:10.1091/mbc.E04-09-0803

    Article  PubMed  CAS  Google Scholar 

  66. Squier TC (2001) Oxidative stress and protein aggregation during biological aging. Exp Gerontol 36(9):1539–1550

    Article  PubMed  CAS  Google Scholar 

  67. Rao RV, Bredesen DE (2004) Misfolded proteins, endoplasmic reticulum stress and neurodegeneration. Curr Opin Cell Biol 16(6):653–662. doi:10.1016/j.ceb.2004.09.012

    Article  PubMed  CAS  Google Scholar 

  68. Malhotra JD, Kaufman RJ (2007) Endoplasmic reticulum stress and oxidative stress: a vicious cycle or a double-edged sword? Antioxid Redox Signal 9(12):2277–2293. doi:10.1089/ars.2007.1782

    Article  PubMed  CAS  Google Scholar 

  69. Sato B, Schulz D, Do P, Hampton R (2009) Misfolded membrane proteins are specifically recognized by the transmembrane domain of the Hrd1p ubiquitin ligase. Mol Cell 34(2):212–222. doi:10.1016/j.molcel.2009.03.010

    Article  PubMed  CAS  Google Scholar 

  70. Mannini B, Cascella R, Zampagni M, van Waarde-Verhagen M, Meehan S, Roodveldt C, Campioni S, Boninsegna M, Penco A, Relini A, Kampinga HH, Dobson CM, Wilson MR, Cecchi C, Chiti F (2012) Molecular mechanisms used by chaperones to reduce the toxicity of aberrant protein oligomers. Proc Natl Acad Sci U S A 109(31):12479–12484. doi:10.1073/pnas.1117799109

    Article  PubMed  CAS  Google Scholar 

  71. Hartl FU, Hayer-Hartl M (2002) Molecular chaperones in the cytosol: from nascent chain to folded protein. Science 295(5561):1852–1858. doi:10.1126/science.1068408

    Article  PubMed  CAS  Google Scholar 

  72. Morimoto RI (1998) Regulation of the heat shock transcriptional response: cross talk between a family of heat shock factors, molecular chaperones, and negative regulators. Genes Dev 12(24):3788–3796

    Article  PubMed  CAS  Google Scholar 

  73. Finka A, Mattoo RU, Goloubinoff P (2011) Meta-analysis of heat- and chemically upregulated chaperone genes in plant and human cells. Cell Stress Chaperones 16(1):15–31. doi:10.1007/s12192-010-0216-8

    Article  PubMed  CAS  Google Scholar 

  74. Banerjee Mustafi S, Chakraborty PK, Dey RS, Raha S (2009) Heat stress upregulates chaperone heat shock protein 70 and antioxidant manganese superoxide dismutase through reactive oxygen species (ROS), p38MAPK, and Akt. Cell Stress Chaperones 14(6):579–589. doi:10.1007/s12192-009-0109-x

    Article  PubMed  CAS  Google Scholar 

  75. Bruening W, Roy J, Giasson B, Figlewicz DA, Mushynski WE, Durham HD (1999) Up-regulation of protein chaperones preserves viability of cells expressing toxic Cu/Zn-superoxide dismutase mutants associated with amyotrophic lateral sclerosis. J Neurochem 72(2):693–699

    Article  PubMed  CAS  Google Scholar 

  76. Morimoto RI (2008) Proteotoxic stress and inducible chaperone networks in neurodegenerative disease and aging. Genes Dev 22(11):1427–1438. doi:10.1101/gad.1657108

    Article  PubMed  CAS  Google Scholar 

  77. Goldbaum O, Oppermann M, Handschuh M, Dabir D, Zhang B, Forman MS, Trojanowski JQ, Lee VM, Richter-Landsberg C (2003) Proteasome inhibition stabilizes tau inclusions in oligodendroglial cells that occur after treatment with okadaic acid. J Neurosci 23(26):8872–8880

    PubMed  CAS  Google Scholar 

  78. Ito H, Kamei K, Iwamoto I, Inaguma Y, Garcia-Mata R, Sztul E, Kato K (2002) Inhibition of proteasomes induces accumulation, phosphorylation, and recruitment of HSP27 and alphaB-crystallin to aggresomes. J Biochem 131(4):593–603

    Article  PubMed  CAS  Google Scholar 

  79. Voellmy R, Boellmann F (2007) Chaperone regulation of the heat shock protein response. Adv Exp Med Biol 594:89–99. doi:10.1007/978-0-387-39975-1_9

    Article  PubMed  Google Scholar 

  80. Henderson B (2010) Integrating the cell stress response: a new view of molecular chaperones as immunological and physiological homeostatic regulators. Cell Biochem Funct 28(1):1–14. doi:10.1002/cbf.1609

    Article  PubMed  CAS  Google Scholar 

  81. Papp E, Nardai G, Soti C, Csermely P (2003) Molecular chaperones, stress proteins and redox homeostasis. Biofactors 17(1–4):249–257

    Article  PubMed  CAS  Google Scholar 

  82. Qian SB, McDonough H, Boellmann F, Cyr DM, Patterson C (2006) CHIP-mediated stress recovery by sequential ubiquitination of substrates and Hsp70. Nature 440(7083):551–555. doi:10.1038/nature04600

    Article  PubMed  CAS  Google Scholar 

  83. Tsuiji H, Iguchi Y, Furuya A, Kataoka A, Hatsuta H, Atsuta N, Tanaka F, Hashizume Y, Akatsu H, Murayama S, Sobue G, Yamanaka K (2012) Spliceosome integrity is defective in the motor neuron diseases ALS and SMA. EMBO Mol Med. doi:10.1002/emmm.201202303

  84. Fernandes R, Ramalho J, Pereira P (2006) Oxidative stress upregulates ubiquitin proteasome pathway in retinal endothelial cells. Mol Vis 12:1526–1535

    PubMed  CAS  Google Scholar 

  85. Imai Y, Soda M, Takahashi R (2000) Parkin suppresses unfolded protein stress-induced cell death through its E3 ubiquitin–protein ligase activity. J Biol Chem 275(46):35661–35664. doi:10.1074/jbc.C000447200

    Article  PubMed  CAS  Google Scholar 

  86. Braten O, Shabek N, Kravtsova-Ivantsiv Y, Ciechanover A (2012) Generation of free ubiquitin chains is up-regulated in stress and facilitated by the HECT domain ubiquitin ligases UFD4 and HUL5. Biochem J 444(3):611–617. doi:10.1042/BJ20111840

    Article  PubMed  CAS  Google Scholar 

  87. Ding WX, Ni HM, Gao W, Yoshimori T, Stolz DB, Ron D, Yin XM (2007) Linking of autophagy to ubiquitin–proteasome system is important for the regulation of endoplasmic reticulum stress and cell viability. Am J Pathol 171(2):513–524. doi:10.2353/ajpath.2007.070188

    Article  PubMed  CAS  Google Scholar 

  88. Bennett EJ, Bence NF, Jayakumar R, Kopito RR (2005) Global impairment of the ubiquitin–proteasome system by nuclear or cytoplasmic protein aggregates precedes inclusion body formation. Mol Cell 17(3):351–365. doi:10.1016/j.molcel.2004.12.021

    Article  PubMed  CAS  Google Scholar 

  89. Cecarini V, Bonfili L, Cuccioloni M, Mozzicafreddo M, Rossi G, Buizza L, Uberti D, Angeletti M, Eleuteri AM (2012) Crosstalk between the ubiquitin–proteasome system and autophagy in a human cellular model of Alzheimer's disease. Biochim Biophys Acta 1822(11):1741–1751. doi:10.1016/j.bbadis.2012.07.015

    Article  PubMed  CAS  Google Scholar 

  90. Ebrahimi-Fakhari D, Cantuti-Castelvetri I, Fan Z, Rockenstein E, Masliah E, Hyman BT, McLean PJ, Unni VK (2011) Distinct roles in vivo for the ubiquitin–proteasome system and the autophagy-lysosomal pathway in the degradation of alpha-synuclein. J Neurosci 31(41):14508–14520. doi:10.1523/JNEUROSCI.1560-11.2011

    Article  PubMed  CAS  Google Scholar 

  91. Gamerdinger M, Kaya AM, Wolfrum U, Clement AM, Behl C (2011) BAG3 mediates chaperone-based aggresome-targeting and selective autophagy of misfolded proteins. EMBO Rep 12(2):149–156. doi:10.1038/embor.2010.203

    Article  PubMed  CAS  Google Scholar 

  92. Behl C (2011) BAG3 and friends: co-chaperones in selective autophagy during aging and disease. Autophagy 7(7):795–798. doi:10.4161/auto.7.7.15844

    Article  PubMed  CAS  Google Scholar 

  93. Metcalf DJ, Garcia-Arencibia M, Hochfeld WE, Rubinsztein DC (2010) Autophagy and misfolded proteins in neurodegeneration. Exp Neurol 238(1):22–28. doi:10.1016/j.expneurol.2010.11.003

    Article  PubMed  CAS  Google Scholar 

  94. Ogata M, Hino S, Saito A, Morikawa K, Kondo S, Kanemoto S, Murakami T, Taniguchi M, Tanii I, Yoshinaga K, Shiosaka S, Hammarback JA, Urano F, Imaizumi K (2006) Autophagy is activated for cell survival after endoplasmic reticulum stress. Mol Cell Biol 26(24):9220–9231. doi:10.1128/MCB.01453-06

    Article  PubMed  CAS  Google Scholar 

  95. Chen Y, McMillan-Ward E, Kong J, Israels SJ, Gibson SB (2008) Oxidative stress induces autophagic cell death independent of apoptosis in transformed and cancer cells. Cell Death Differ 15(1):171–182. doi:10.1038/sj.cdd.4402233

    Article  PubMed  CAS  Google Scholar 

  96. Ge PF, Zhang JZ, Wang XF, Meng FK, Li WC, Luan YX, Ling F, Luo YN (2009) Inhibition of autophagy induced by proteasome inhibition increases cell death in human SHG-44 glioma cells. Acta Pharmacol Sin 30(7):1046–1052. doi:10.1038/aps.2009.71

    Article  PubMed  CAS  Google Scholar 

  97. Liu TT, Hu CH, Tsai CD, Li CW, Lin YF, Wang JY (2010) Heat stroke induces autophagy as a protection mechanism against neurodegeneration in the brain. Shock 34(6):643–648. doi:10.1097/SHK.0b013e3181e761c1

    Article  PubMed  CAS  Google Scholar 

  98. Yorimitsu T, Nair U, Yang Z, Klionsky DJ (2006) Endoplasmic reticulum stress triggers autophagy. J Biol Chem 281(40):30299–30304. doi:10.1074/jbc.M607007200

    Article  PubMed  CAS  Google Scholar 

  99. Adams JM, Cory S (1998) The Bcl-2 protein family: arbiters of cell survival. Science 281(5381):1322–1326

    Article  PubMed  CAS  Google Scholar 

  100. Tibbles LA, Woodgett JR (1999) The stress-activated protein kinase pathways. Cell Mol Life Sci 55(10):1230–1254

    Article  PubMed  CAS  Google Scholar 

  101. Konishi H, Matsuzaki H, Tanaka M, Takemura Y, Kuroda S, Ono Y, Kikkawa U (1997) Activation of protein kinase B (Akt/RAC-protein kinase) by cellular stress and its association with heat shock protein Hsp27. FEBS Lett 410(2–3):493–498

    Article  PubMed  CAS  Google Scholar 

  102. Nishiyama Y, Shimada Y, Yokoi T, Kobayashi H, Higuchi T, Eto Y, Ida H, Ohashi T (2012) Akt inactivation induces endoplasmic reticulum stress-independent autophagy in fibroblasts from patients with Pompe disease. Mol Genet Metab 107(3):490–495

    Article  PubMed  CAS  Google Scholar 

  103. Goswami A, Dikshit P, Mishra A, Nukina N, Jana NR (2006) Expression of expanded polyglutamine proteins suppresses the activation of transcription factor NFkappaB. J Biol Chem 281(48):37017–37024. doi:10.1074/jbc.M608095200

    Article  PubMed  CAS  Google Scholar 

  104. Shono T, Ono M, Izumi H, Jimi SI, Matsushima K, Okamoto T, Kohno K, Kuwano M (1996) Involvement of the transcription factor NF-kappaB in tubular morphogenesis of human microvascular endothelial cells by oxidative stress. Mol Cell Biol 16(8):4231–4239

    PubMed  CAS  Google Scholar 

  105. Nivon M, Abou-Samra M, Richet E, Guyot B, Arrigo AP, Kretz-Remy C (2012) NF-kappaB regulates protein quality control after heat stress through modulation of the BAG3-HspB8 complex. J Cell Sci 125(Pt 5):1141–1151. doi:10.1242/jcs.091041

    Article  PubMed  CAS  Google Scholar 

  106. Kretz-Remy C, Munsch B, Arrigo AP (2001) NFkappa B-dependent transcriptional activation during heat shock recovery. Thermolability of the NF-kappaB.Ikappa B complex. J Biol Chem 276(47):43723–43733. doi:10.1074/jbc.M010821200

    Article  PubMed  CAS  Google Scholar 

  107. Pahl HL, Baeuerle PA (1996) Activation of NF-kappa B by ER stress requires both Ca2+ and reactive oxygen intermediates as messengers. FEBS Lett 392(2):129–136

    Article  PubMed  CAS  Google Scholar 

  108. Mercurio F, Manning AM (1999) NF-kappaB as a primary regulator of the stress response. Oncogene 18(45):6163–6171. doi:10.1038/sj.onc.1203174

    Article  PubMed  CAS  Google Scholar 

  109. Meusser B, Hirsch C, Jarosch E, Sommer T (2005) ERAD: the long road to destruction. Nat Cell Biol 7(8):766–772. doi:10.1038/ncb0805-766

    Article  PubMed  CAS  Google Scholar 

  110. Lindholm D, Wootz H, Korhonen L (2006) ER stress and neurodegenerative diseases. Cell Death Differ 13(3):385–392. doi:10.1038/sj.cdd.4401778

    Article  PubMed  CAS  Google Scholar 

  111. Sekine Y, Takeda K, Ichijo H (2006) The ASK1-MAP kinase signaling in ER stress and neurodegenerative diseases. Curr Mol Med 6(1):87–97

    Article  PubMed  CAS  Google Scholar 

  112. Watanabe S, Kaneko K, Yamanaka K (2012) Accelerated disease onset with stabilized familial Amyotrophic Lateral Sclerosis (ALS)-linked TDP-43 mutations. J Biol Chem. doi:10.1074/jbc.M112.433615

  113. Nishitoh H, Kadowaki H, Nagai A, Maruyama T, Yokota T, Fukutomi H, Noguchi T, Matsuzawa A, Takeda K, Ichijo H (2008) ALS-linked mutant SOD1 induces ER stress- and ASK1-dependent motor neuron death by targeting Derlin-1. Genes Dev 22(11):1451–1464. doi:10.1101/gad.1640108

    Article  PubMed  CAS  Google Scholar 

  114. Atkin JD, Farg MA, Turner BJ, Tomas D, Lysaght JA, Nunan J, Rembach A, Nagley P, Beart PM, Cheema SS, Horne MK (2006) Induction of the unfolded protein response in familial amyotrophic lateral sclerosis and association of protein-disulfide isomerase with superoxide dismutase 1. J Biol Chem 281(40):30152–30165. doi:10.1074/jbc.M603393200

    Article  PubMed  CAS  Google Scholar 

  115. Kikuchi H, Almer G, Yamashita S, Guegan C, Nagai M, Xu Z, Sosunov AA, McKhann GM 2nd, Przedborski S (2006) Spinal cord endoplasmic reticulum stress associated with a microsomal accumulation of mutant superoxide dismutase-1 in an ALS model. Proc Natl Acad Sci U S A 103(15):6025–6030. doi:10.1073/pnas.0509227103

    Article  PubMed  CAS  Google Scholar 

  116. Patel J, McLeod LE, Vries RG, Flynn A, Wang X, Proud CG (2002) Cellular stresses profoundly inhibit protein synthesis and modulate the states of phosphorylation of multiple translation factors. Eur J Biochem 269(12):3076–3085

    Article  PubMed  CAS  Google Scholar 

  117. Stefani M, Dobson CM (2003) Protein aggregation and aggregate toxicity: new insights into protein folding, misfolding diseases and biological evolution. J Mol Med (Berl) 81(11):678–699. doi:10.1007/s00109-003-0464-5

    Article  CAS  Google Scholar 

  118. Spriggs KA, Bushell M, Willis AE (2010) Translational regulation of gene expression during conditions of cell stress. Mol Cell 40(2):228–237. doi:10.1016/j.molcel.2010.09.028

    Article  PubMed  CAS  Google Scholar 

  119. Fox S (2012) Lost in translation: misfolded proteins may cause neurodegeneration by inhibiting normal protein production. Mov Disord 27(10):1218

    Article  PubMed  Google Scholar 

  120. Bahmanyar S, Higgins GA, Goldgaber D, Lewis DA, Morrison JH, Wilson MC, Shankar SK, Gajdusek DC (1987) Localization of amyloid beta protein messenger RNA in brains from patients with Alzheimer's disease. Science 237(4810):77–80

    Article  PubMed  CAS  Google Scholar 

  121. Scheper GC, van der Knaap MS, Proud CG (2007) Translation matters: protein synthesis defects in inherited disease. Nat Rev Genet 8(9):711–723. doi:10.1038/nrg2142

    Article  PubMed  CAS  Google Scholar 

  122. Mishra A, Jana NR (2008) Regulation of turnover of tumor suppressor p53 and cell growth by E6-AP, a ubiquitin protein ligase mutated in Angelman mental retardation syndrome. Cell Mol Life Sci 65(4):656–666. doi:10.1007/s00018-007-7476-1

    Article  PubMed  CAS  Google Scholar 

  123. Mishra A, Godavarthi SK, Jana NR (2009) UBE3A/E6-AP regulates cell proliferation by promoting proteasomal degradation of p27. Neurobiol Dis 36(1):26–34. doi:10.1016/j.nbd.2009.06.010

    Article  PubMed  CAS  Google Scholar 

  124. Novoa I, Zhang Y, Zeng H, Jungreis R, Harding HP, Ron D (2003) Stress-induced gene expression requires programmed recovery from translational repression. EMBO J 22(5):1180–1187. doi:10.1093/emboj/cdg112

    Article  PubMed  CAS  Google Scholar 

  125. Harding HP, Novoa I, Zhang Y, Zeng H, Wek R, Schapira M, Ron D (2000) Regulated translation initiation controls stress-induced gene expression in mammalian cells. Mol Cell 6(5):1099–1108

    Article  PubMed  CAS  Google Scholar 

  126. Morimoto RI (1993) Cells in stress: transcriptional activation of heat shock genes. Science 259(5100):1409–1410

    Article  PubMed  CAS  Google Scholar 

  127. Lesley SA, Graziano J, Cho CY, Knuth MW, Klock HE (2002) Gene expression response to misfolded protein as a screen for soluble recombinant protein. Protein Eng 15(2):153–160

    Article  PubMed  CAS  Google Scholar 

  128. Kubota H (2009) Quality control against misfolded proteins in the cytosol: a network for cell survival. J Biochem 146(5):609–616. doi:10.1093/jb/mvp139

    Article  PubMed  CAS  Google Scholar 

  129. Bukau B, Weissman J, Horwich A (2006) Molecular chaperones and protein quality control. Cell 125(3):443–451. doi:10.1016/j.cell.2006.04.014

    Article  PubMed  CAS  Google Scholar 

  130. Schlecht R, Erbse AH, Bukau B, Mayer MP (2011) Mechanics of Hsp70 chaperones enables differential interaction with client proteins. Nat Struct Mol Biol 18(3):345–351. doi:10.1038/nsmb.2006

    Article  PubMed  CAS  Google Scholar 

  131. Albanese V, Frydman J (2002) Where chaperones and nascent polypeptides meet. Nat Struct Biol 9(10):716–718. doi:10.1038/nsb1002-716

    Article  PubMed  CAS  Google Scholar 

  132. Frydman J, Nimmesgern E, Ohtsuka K, Hartl FU (1994) Folding of nascent polypeptide chains in a high molecular mass assembly with molecular chaperones. Nature 370(6485):111–117. doi:10.1038/370111a0

    Article  PubMed  CAS  Google Scholar 

  133. Warrick JM, Chan HY, Gray-Board GL, Chai Y, Paulson HL, Bonini NM (1999) Suppression of polyglutamine-mediated neurodegeneration in Drosophila by the molecular chaperone HSP70. Nat Genet 23(4):425–428. doi:10.1038/70532

    Article  PubMed  CAS  Google Scholar 

  134. Muchowski PJ (2002) Protein misfolding, amyloid formation, and neurodegeneration: a critical role for molecular chaperones? Neuron 35(1):9–12

    Article  PubMed  CAS  Google Scholar 

  135. Forman MS, Lee VM, Trojanowski JQ (2003) 'Unfolding' pathways in neurodegenerative disease. Trends Neurosci 26(8):407–410. doi:10.1016/S0166-2236(03)00197-8

    Article  PubMed  CAS  Google Scholar 

  136. Frydman J (2001) Folding of newly translated proteins in vivo: the role of molecular chaperones. Annu Rev Biochem 70:603–647. doi:10.1146/annurev.biochem.70.1.603

    Article  PubMed  CAS  Google Scholar 

  137. Koplin A, Preissler S, Ilina Y, Koch M, Scior A, Erhardt M, Deuerling E (2010) A dual function for chaperones SSB-RAC and the NAC nascent polypeptide-associated complex on ribosomes. J Cell Biol 189(1):57–68. doi:10.1083/jcb.200910074

    Article  PubMed  CAS  Google Scholar 

  138. Pandey UB, Nie Z, Batlevi Y, McCray BA, Ritson GP, Nedelsky NB, Schwartz SL, DiProspero NA, Knight MA, Schuldiner O, Padmanabhan R, Hild M, Berry DL, Garza D, Hubbert CC, Yao TP, Baehrecke EH, Taylor JP (2007) HDAC6 rescues neurodegeneration and provides an essential link between autophagy and the UPS. Nature 447(7146):859–863. doi:10.1038/nature05853

    Article  PubMed  CAS  Google Scholar 

  139. Nedelsky NB, Todd PK, Taylor JP (2008) Autophagy and the ubiquitin–proteasome system: collaborators in neuroprotection. Biochim Biophys Acta 1782(12):691–699. doi:10.1016/j.bbadis.2008.10.002

    Article  PubMed  CAS  Google Scholar 

  140. Goldberg AL (2003) Protein degradation and protection against misfolded or damaged proteins. Nature 426(6968):895–899. doi:10.1038/nature02263

    Article  PubMed  CAS  Google Scholar 

  141. Kaganovich D, Kopito R, Frydman J (2008) Misfolded proteins partition between two distinct quality control compartments. Nature 454(7208):1088–1095. doi:10.1038/nature07195

    Article  PubMed  CAS  Google Scholar 

  142. Bagola K, Sommer T (2008) Protein quality control: on IPODs and other JUNQ. Curr Biol 18(21):R1019–R1021. doi:10.1016/j.cub.2008.09.036

    Article  PubMed  CAS  Google Scholar 

  143. Seckler R, Jaenicke R (1992) Protein folding and protein refolding. FASEB J 6(8):2545–2552

    PubMed  CAS  Google Scholar 

  144. Wong E, Cuervo AM (2010) Integration of clearance mechanisms: the proteasome and autophagy. Cold Spring Harb Perspect Biol 2(12):a006734. doi:10.1101/cshperspect.a006734

    Article  PubMed  CAS  Google Scholar 

  145. Bucciantini M, Giannoni E, Chiti F, Baroni F, Formigli L, Zurdo J, Taddei N, Ramponi G, Dobson CM, Stefani M (2002) Inherent toxicity of aggregates implies a common mechanism for protein misfolding diseases. Nature 416(6880):507–511. doi:10.1038/416507a

    Article  PubMed  CAS  Google Scholar 

  146. Perisic O, Xiao H, Lis JT (1989) Stable binding of Drosophila heat shock factor to head-to-head and tail-to-tail repeats of a conserved 5 bp recognition unit. Cell 59(5):797–806

    Article  PubMed  CAS  Google Scholar 

  147. Clos J, Rabindran S, Wisniewski J, Wu C (1993) Induction temperature of human heat shock factor is reprogrammed in a Drosophila cell environment. Nature 364(6434):252–255. doi:10.1038/364252a0

    Article  PubMed  CAS  Google Scholar 

  148. Dai Q, Zhang C, Wu Y, McDonough H, Whaley RA, Godfrey V, Li HH, Madamanchi N, Xu W, Neckers L, Cyr D, Patterson C (2003) CHIP activates HSF1 and confers protection against apoptosis and cellular stress. EMBO J 22(20):5446–5458. doi:10.1093/emboj/cdg529

    Article  PubMed  CAS  Google Scholar 

  149. Boellmann F, Guettouche T, Guo Y, Fenna M, Mnayer L, Voellmy R (2004) DAXX interacts with heat shock factor 1 during stress activation and enhances its transcriptional activity. Proc Natl Acad Sci U S A 101(12):4100–4105. doi:10.1073/pnas.0304768101

    Article  PubMed  CAS  Google Scholar 

  150. Biro K, Palhalmi J, Toth AJ, Kukorelli T, Juhasz G (1998) Bimoclomol improves early electrophysiological signs of retinopathy in diabetic rats. Neuroreport 9(9):2029–2033

    Article  PubMed  CAS  Google Scholar 

  151. Polakowski JS, Wegner CD, Cox BF (2002) Bimoclomol elevates heat shock protein 70 and cytoprotects rat neonatal cardiomyocytes. Eur J Pharmacol 435(1):73–77

    Article  PubMed  CAS  Google Scholar 

  152. Lubbers NL, Polakowski JS, Wegner CD, Burke SE, Diaz GJ, Daniell KM, Cox BF (2002) Oral bimoclomol elevates heat shock protein 70 and reduces myocardial infarct size in rats. Eur J Pharmacol 435(1):79–83

    Article  PubMed  CAS  Google Scholar 

  153. Erdo F, Erdo SL (1998) Bimoclomol protects against vascular consequences of experimental subarachnoid hemorrhage in rats. Brain Res Bull 45(2):163–166

    Article  PubMed  CAS  Google Scholar 

  154. Vigh L, Literati PN, Horvath I, Torok Z, Balogh G, Glatz A, Kovacs E, Boros I, Ferdinandy P, Farkas B, Jaszlits L, Jednakovits A, Koranyi L, Maresca B (1997) Bimoclomol: a nontoxic, hydroxylamine derivative with stress protein-inducing activity and cytoprotective effects. Nat Med 3(10):1150–1154

    Article  PubMed  CAS  Google Scholar 

  155. Hargitai J, Lewis H, Boros I, Racz T, Fiser A, Kurucz I, Benjamin I, Vigh L, Penzes Z, Csermely P, Latchman DS (2003) Bimoclomol, a heat shock protein co-inducer, acts by the prolonged activation of heat shock factor-1. Biochem Biophys Res Commun 307(3):689–695

    Article  PubMed  CAS  Google Scholar 

  156. Liu AY, Mathur R, Mei N, Langhammer CG, Babiarz B, Firestein BL (2011) Neuroprotective drug riluzole amplifies the heat shock factor 1 (HSF1)- and glutamate transporter 1 (GLT1)-dependent cytoprotective mechanisms for neuronal survival. J Biol Chem 286(4):2785–2794. doi:10.1074/jbc.M110.158220

    Article  PubMed  CAS  Google Scholar 

  157. Miller RG, Mitchell JD, Moore DH (2007) Riluzole for amyotrophic lateral sclerosis (ALS)/motor neuron disease (MND). Cochrane Database Syst Rev 3:CD001447. doi:10.1002/14651858.CD001447.pub3

    Google Scholar 

  158. Yang J, Bridges K, Chen KY, Liu AY (2008) Riluzole increases the amount of latent HSF1 for an amplified heat shock response and cytoprotection. PLoS One 3(8):e2864. doi:10.1371/journal.pone.0002864

    Article  PubMed  CAS  Google Scholar 

  159. Lillie SH, Pringle JR (1980) Reserve carbohydrate metabolism in Saccharomyces cerevisiae: responses to nutrient limitation. J Bacteriol 143(3):1384–1394

    PubMed  CAS  Google Scholar 

  160. Singer MA, Lindquist S (1998) Multiple effects of trehalose on protein folding in vitro and in vivo. Mol Cell 1(5):639–648

    Article  PubMed  CAS  Google Scholar 

  161. Tanaka M, Machida Y, Niu S, Ikeda T, Jana NR, Doi H, Kurosawa M, Nekooki M, Nukina N (2004) Trehalose alleviates polyglutamine-mediated pathology in a mouse model of Huntington disease. Nat Med 10(2):148–154. doi:10.1038/nm985

    Article  PubMed  CAS  Google Scholar 

  162. Uversky VN, Li J, Fink AL (2001) Trimethylamine-N-oxide-induced folding of alpha-synuclein. FEBS Lett 509(1):31–35

    Article  PubMed  CAS  Google Scholar 

  163. Wei H, Kim SJ, Zhang Z, Tsai PC, Wisniewski KE, Mukherjee AB (2008) ER and oxidative stresses are common mediators of apoptosis in both neurodegenerative and non-neurodegenerative lysosomal storage disorders and are alleviated by chemical chaperones. Hum Mol Genet 17(4):469–477. doi:10.1093/hmg/ddm324

    Article  PubMed  CAS  Google Scholar 

  164. Sato S, Ward CL, Krouse ME, Wine JJ, Kopito RR (1996) Glycerol reverses the misfolding phenotype of the most common cystic fibrosis mutation. J Biol Chem 271(2):635–638

    Article  PubMed  CAS  Google Scholar 

  165. Mishra R, Bhat R, Seckler R (2007) Chemical chaperone-mediated protein folding: stabilization of P22 tailspike folding intermediates by glycerol. Biol Chem 388(8):797–804. doi:10.1515/BC.2007.096

    Article  PubMed  CAS  Google Scholar 

  166. Yoshida H, Yoshizawa T, Shibasaki F, Shoji S, Kanazawa I (2002) Chemical chaperones reduce aggregate formation and cell death caused by the truncated Machado–Joseph disease gene product with an expanded polyglutamine stretch. Neurobiol Dis 10(2):88–99

    Article  PubMed  CAS  Google Scholar 

  167. Wong E, Cuervo AM (2010) Autophagy gone awry in neurodegenerative diseases. Nat Neurosci 13(7):805–811. doi:10.1038/nn.2575

    Article  PubMed  CAS  Google Scholar 

  168. Bedford L, Hay D, Devoy A, Paine S, Powe DG, Seth R, Gray T, Topham I, Fone K, Rezvani N, Mee M, Soane T, Layfield R, Sheppard PW, Ebendal T, Usoskin D, Lowe J, Mayer RJ (2008) Depletion of 26S proteasomes in mouse brain neurons causes neurodegeneration and Lewy-like inclusions resembling human pale bodies. J Neurosci 28(33):8189–8198. doi:10.1523/JNEUROSCI.2218-08.2008

    Article  PubMed  CAS  Google Scholar 

  169. Egeler EL, Urner LM, Rakhit R, Liu CW, Wandless TJ (2011) Ligand-switchable substrates for a ubiquitin–proteasome system. J Biol Chem 286(36):31328–31336. doi:10.1074/jbc.M111.264101

    Article  PubMed  CAS  Google Scholar 

  170. Banaszynski LA, Chen LC, Maynard-Smith LA, Ooi AG, Wandless TJ (2006) A rapid, reversible, and tunable method to regulate protein function in living cells using synthetic small molecules. Cell 126(5):995–1004. doi:10.1016/j.cell.2006.07.025

    Article  PubMed  CAS  Google Scholar 

  171. Ochocka AM, Kampanis P, Nicol S, Allende-Vega N, Cox M, Marcar L, Milne D, Fuller-Pace F, Meek D (2009) FKBP25, a novel regulator of the p53 pathway, induces the degradation of MDM2 and activation of p53. FEBS Lett 583(4):621–626. doi:10.1016/j.febslet.2009.01.009

    Article  PubMed  CAS  Google Scholar 

  172. Gestwicki JE, Crabtree GR, Graef IA (2004) Harnessing chaperones to generate small-molecule inhibitors of amyloid beta aggregation. Science 306(5697):865–869. doi:10.1126/science.1101262

    Article  PubMed  CAS  Google Scholar 

  173. Zhou P, Bogacki R, McReynolds L, Howley PM (2000) Harnessing the ubiquitination machinery to target the degradation of specific cellular proteins. Mol Cell 6(3):751–756

    Article  PubMed  CAS  Google Scholar 

  174. Zhang D, Baek SH, Ho A, Lee H, Jeong YS, Kim K (2004) Targeted degradation of proteins by small molecules: a novel tool for functional proteomics. Comb Chem High Throughput Screen 7(7):689–697

    Article  PubMed  CAS  Google Scholar 

  175. Sakamoto KM (2005) Chimeric molecules to target proteins for ubiquitination and degradation. Methods Enzymol 399:833–847. doi:10.1016/S0076-6879(05)99054-X

    Article  PubMed  CAS  Google Scholar 

  176. Tang YQ, Han BM, Yao XQ, Hong Y, Wang Y, Zhao FJ, Yu SQ, Sun XW, Xia SJ (2009) Chimeric molecules facilitate the degradation of androgen receptors and repress the growth of LNCaP cells. Asian J Androl 11(1):119–126. doi:10.1038/aja.2008.26

    Article  PubMed  CAS  Google Scholar 

  177. Sakamoto KM, Kim KB, Kumagai A, Mercurio F, Crews CM, Deshaies RJ (2001) Protacs: chimeric molecules that target proteins to the Skp1–Cullin-F box complex for ubiquitination and degradation. Proc Natl Acad Sci U S A 98(15):8554–8559. doi:10.1073/pnas.141230798

    Article  PubMed  CAS  Google Scholar 

  178. Pickford F, Masliah E, Britschgi M, Lucin K, Narasimhan R, Jaeger PA, Small S, Spencer B, Rockenstein E, Levine B, Wyss-Coray T (2008) The autophagy-related protein beclin 1 shows reduced expression in early Alzheimer disease and regulates amyloid beta accumulation in mice. J Clin Invest 118(6):2190–2199. doi:10.1172/JCI33585

    PubMed  CAS  Google Scholar 

  179. Mizushima N, Ohsumi Y, Yoshimori T (2002) Autophagosome formation in mammalian cells. Cell Struct Funct 27(6):421–429

    Article  PubMed  Google Scholar 

  180. Harris CD, Ermak G, Davies KJ (2007) RCAN1-1L is overexpressed in neurons of Alzheimer's disease patients. FEBS J 274(7):1715–1724. doi:10.1111/j.1742-4658.2007.05717.x

    Article  PubMed  CAS  Google Scholar 

  181. Liu H, Wang P, Song W, Sun X (2009) Degradation of regulator of calcineurin 1 (RCAN1) is mediated by both chaperone-mediated autophagy and ubiquitin proteasome pathways. FASEB J 23(10):3383–3392. doi:10.1096/fj.09-134296

    Article  PubMed  CAS  Google Scholar 

  182. Nalepa G, Rolfe M, Harper JW (2006) Drug discovery in the ubiquitin–proteasome system. Nat Rev Drug Discov 5(7):596–613. doi:10.1038/nrd2056

    Article  PubMed  CAS  Google Scholar 

  183. Ringseis R, Keller J, Lukas I, Spielmann J, Most E, Couturier A, Konig B, Hirche F, Stangl GI, Wen G, Eder K (2013) Treatment with pharmacological PPARalpha agonists stimulates the ubiquitin proteasome pathway and myofibrillar protein breakdown in skeletal muscle of rodents. Biochim Biophys Acta 1830(1):2105–2117. doi:10.1016/j.bbagen.2012.09.024

    Article  PubMed  CAS  Google Scholar 

  184. Liu J, Zheng H, Tang M, Ryu YC, Wang X (2008) A therapeutic dose of doxorubicin activates ubiquitin-proteasome system-mediated proteolysis by acting on both the ubiquitination apparatus and proteasome. Am J Physiol Heart Circ Physiol 295(6):H2541–H2550. doi:10.1152/ajpheart.01052.2008

    Article  PubMed  CAS  Google Scholar 

  185. Jin S, White E (2008) Tumor suppression by autophagy through the management of metabolic stress. Autophagy 4(5):563–566

    PubMed  CAS  Google Scholar 

  186. Beljanski V, Knaak C, Smith CD (2010) A novel sphingosine kinase inhibitor induces autophagy in tumor cells. J Pharmacol Exp Ther 333(2):454–464. doi:10.1124/jpet.109.163337

    Article  PubMed  CAS  Google Scholar 

  187. Menzies FM, Huebener J, Renna M, Bonin M, Riess O, Rubinsztein DC (2010) Autophagy induction reduces mutant ataxin-3 levels and toxicity in a mouse model of spinocerebellar ataxia type 3. Brain 133(Pt 1):93–104. doi:10.1093/brain/awp292

    Article  PubMed  CAS  Google Scholar 

  188. McGowan E, Pickford F, Kim J, Onstead L, Eriksen J, Yu C, Skipper L, Murphy MP, Beard J, Das P, Jansen K, Delucia M, Lin WL, Dolios G, Wang R, Eckman CB, Dickson DW, Hutton M, Hardy J, Golde T (2005) Abeta42 is essential for parenchymal and vascular amyloid deposition in mice. Neuron 47(2):191–199. doi:10.1016/j.neuron.2005.06.030

    Article  PubMed  CAS  Google Scholar 

  189. Spilman P, Podlutskaya N, Hart MJ, Debnath J, Gorostiza O, Bredesen D, Richardson A, Strong R, Galvan V (2010) Inhibition of mTOR by rapamycin abolishes cognitive deficits and reduces amyloid-beta levels in a mouse model of Alzheimer's disease. PLoS One 5(4):e9979. doi:10.1371/journal.pone.0009979

    Article  PubMed  CAS  Google Scholar 

  190. Harrison DE, Strong R, Sharp ZD, Nelson JF, Astle CM, Flurkey K, Nadon NL, Wilkinson JE, Frenkel K, Carter CS, Pahor M, Javors MA, Fernandez E, Miller RA (2009) Rapamycin fed late in life extends lifespan in genetically heterogeneous mice. Nature 460(7253):392–395. doi:10.1038/nature08221

    PubMed  CAS  Google Scholar 

  191. Kettern N, Dreiseidler M, Tawo R, Hohfeld J (2010) Chaperone-assisted degradation: multiple paths to destruction. Biol Chem 391(5):481–489. doi:10.1515/BC.2010.058

    Article  PubMed  CAS  Google Scholar 

  192. Mishra A, Godavarthi SK, Maheshwari M, Goswami A, Jana NR (2009) The ubiquitin ligase E6-AP is induced and recruited to aggresomes in response to proteasome inhibition and may be involved in the ubiquitination of Hsp70-bound misfolded proteins. J Biol Chem 284(16):10537–10545. doi:10.1074/jbc.M806804200

    Article  PubMed  CAS  Google Scholar 

  193. Murata S, Minami Y, Minami M, Chiba T, Tanaka K (2001) CHIP is a chaperone-dependent E3 ligase that ubiquitylates unfolded protein. EMBO Rep 2(12):1133–1138. doi:10.1093/embo-reports/kve246

    Article  PubMed  CAS  Google Scholar 

  194. Murata S, Chiba T, Tanaka K (2003) CHIP: a quality-control E3 ligase collaborating with molecular chaperones. Int J Biochem Cell Biol 35(5):572–578

    Article  PubMed  CAS  Google Scholar 

  195. Iwata A, Christianson JC, Bucci M, Ellerby LM, Nukina N, Forno LS, Kopito RR (2005) Increased susceptibility of cytoplasmic over nuclear polyglutamine aggregates to autophagic degradation. Proc Natl Acad Sci U S A 102(37):13135–13140. doi:10.1073/pnas.0505801102

    Article  PubMed  CAS  Google Scholar 

  196. Arndt V, Dick N, Tawo R, Dreiseidler M, Wenzel D, Hesse M, Furst DO, Saftig P, Saint R, Fleischmann BK, Hoch M, Hohfeld J (2010) Chaperone-assisted selective autophagy is essential for muscle maintenance. Curr Biol 20(2):143–148. doi:10.1016/j.cub.2009.11.022

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by Department of Biotechnology, Government of India. A.M. was supported by a Ramalinganswami fellowship from the Department of Biotechnology, Government of India. The authors thank Mr. Bharat Pareek and Mr. Rahul Sathya Babu for their support and management during manuscript preparation.

Conflicts of interest

The authors declare no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amit Mishra.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chhangani, D., Mishra, A. Protein Quality Control System in Neurodegeneration: A Healing Company Hard to Beat but Failure is Fatal. Mol Neurobiol 48, 141–156 (2013). https://doi.org/10.1007/s12035-013-8411-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-013-8411-0

Keywords

Navigation