Skip to main content
Log in

Multiple Factors from Bradykinin-Challenged Astrocytes Contribute to the Neuronal Apoptosis: Involvement of Astroglial ROS, MMP-9, and HO-1/CO System

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Bradykinin (BK) has been shown to induce the expression of several inflammatory mediators, including reactive oxygen species (ROS) and matrix metalloproteinases (MMPs), in brain astrocytes. These mediators may contribute to neuronal dysfunction and death in various neurological disorders. However, the effects of multiple inflammatory mediators released from BK-challenged astrocytes on neuronal cells remain unclear. Here, we found that multiple factors were released from brain astrocytes (RBA-1) exposed to BK in the conditioned culture media (BK-CM), including ROS, MMP-9, and heme oxygenase-1 (HO-1)/carbon monoxide (CO), leading to neuronal cell (SK-N-SH) death. Exposure of SK-N-SH cells to BK-CM or H2O2 reduced cell viability and induced cell apoptosis which were attenuated by N-acetyl cysteine, indicating a role of ROS in these responses. The effect of BK-CM on cell viability and cell apoptosis was also reversed by immunoprecipitation of BK-CM with anti-MMP-9 antibody (MMP-9-IP-CM) or MMP2/9 inhibitor, suggesting the involvement of MMP-9 in BK-CM-mediated responses. Astroglial HO-1/CO in BK-CM induced cell apoptosis and reduced cell viability which was reversed by hemoglobin. Consistently, the involvement of CO in these cellular responses was revealed by incubation with a CO donor CO-RM2 which was reversed by hemoglobin. The role of HO-1 in BK-CM-induced responses was confirmed by overexpression of HO-1 in SK-N-SH infected with Adv-HO-1. BK-CM-induced cell apoptosis was due to the activation of caspase-3 and cleavage of PARP. Together, we demonstrate that BK-induced several neurotoxic factors, including ROS, MMP-9, and CO released from astrocytes, may induce neuronal death through a caspase-3-dependent apoptotic pathway.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Levinson SW, Goldman JE (1993) Astrocyte origins. In: Murphy S (ed) Astrocytes: pharmacology and function. Academic, San Diego, pp 1–22

    Google Scholar 

  2. Kimelberg HK (1995) Receptors on astrocytes—what possible functions? Neurochem Int 26:27–40

    Article  PubMed  CAS  Google Scholar 

  3. Pekny M, Nilsson M (2005) Astrocyte activation and reactive gliosis. Glia 50:427–434

    Article  PubMed  Google Scholar 

  4. Hamby ME, Sofroniew MV (2010) Reactive astrocytes as therapeutic targets for CNS disorders. Neurotherapeutics 7:494–506

    Article  PubMed  CAS  Google Scholar 

  5. Zhao Y, Rempe DA (2010) Targeting astrocytes for stroke therapy. Neurotherapeutics 7:439–451

    Article  PubMed  CAS  Google Scholar 

  6. Verkhratsky A, Olabarria M, Noristani HN, Yeh CY, Rodriguez JJ (2010) Astrocytes in Alzheimer's disease. Neurotherapeutics 7:399–412

    Article  PubMed  CAS  Google Scholar 

  7. Kamiya T, Katayama Y, Kashiwagi F, Terashi A (1993) The role of bradykinin in mediating ischemic brain edema in rats. Stroke 24:571–575

    Article  PubMed  CAS  Google Scholar 

  8. Richardson JD, Vasko MR (2002) Cellular mechanisms of neurogenic inflammation. J Pharmacol Exp Ther 302:839–845

    Article  PubMed  CAS  Google Scholar 

  9. Verkhratsky A, Orkand RK, Kettenmann H (1998) Glial calcium: homeostasis and signaling function. Physiol Rev 78:99–141

    PubMed  CAS  Google Scholar 

  10. Liu HT, Akita T, Shimizu T, Sabirov RZ, Okada Y (2009) Bradykinin-induced astrocyte-neuron signalling: glutamate release is mediated by ROS-activated volume-sensitive outwardly rectifying anion channels. J Physiol 587:2197–2209

    Article  PubMed  CAS  Google Scholar 

  11. Park MH, Lee YK, Lee YH, Kim YB, Yun YW, Nam SY, Hwang SJ, Han SB, Kim SU, Hong JT (2009) Chemokines released from astrocytes promote chemokine receptor 5-mediated neuronal cell differentiation. Exp Cell Res 315:2715–2726

    Article  PubMed  CAS  Google Scholar 

  12. Hsieh HL, Wang HH, Wu CY, Jou MJ, Yen MH, Parker P, Yang CM (2007) BK-induced COX-2 expression via PKC-δ-dependent activation of p42/p44 MAPK and NF-κB in astrocytes. Cell Signal 19:330–340

    Article  PubMed  CAS  Google Scholar 

  13. Hsieh HL, Wang HH, Wu WB, Chu PJ, Yang CM (2010) Transforming growth factor-β1 induces matrix metalloproteinase-9 and cell migration in astrocytes: roles of ROS-dependent ERK- and JNK-NF-κB pathways. J Neuroinflammation 7:88

    Article  PubMed  CAS  Google Scholar 

  14. Chrissobolis S, Faraci FM (2008) The role of oxidative stress and NADPH oxidase in cerebrovascular disease. Trends Mol Med 14:495–502

    Article  PubMed  CAS  Google Scholar 

  15. Valko M, Leibfritz D, Moncol J, Cronin MT, Mazur M, Telser J (2007) Free radicals and antioxidants in normal physiological functions and human disease. Int J Biochem Cell Biol 39:44–84

    Article  PubMed  CAS  Google Scholar 

  16. Halliwell B (2006) Oxidative stress and neurodegeneration: where are we now? J Neurochem 97:1634–1658

    Article  PubMed  CAS  Google Scholar 

  17. Kamata H, Hirata H (1999) Redox regulation of cellular signalling. Cell Signal 11:1–14

    Article  PubMed  CAS  Google Scholar 

  18. Demchenko IT, Oury TD, Crapo JD, Piantadosi CA (2002) Regulation of the brain’s vascular responses to oxygen. Circ Res 91:1031–1037

    Article  PubMed  CAS  Google Scholar 

  19. Brian JE Jr, Faraci FM, Moore SA (2001) COX-2-dependent delayed dilatation of cerebral arterioles in response to bradykinin. Am J Physiol Heart Circ Physiol 280:H2023–H2029

    PubMed  CAS  Google Scholar 

  20. Chan PH (2001) Reactive oxygen radicals in signaling and damage in the ischemic brain. J Cereb Blood Flow Metab 21:2–14

    Article  PubMed  CAS  Google Scholar 

  21. Lewén A, Matz P, Chan PH (2000) Free radical pathways in CNS injury. J Neurotrauma 17:871–890

    Article  PubMed  Google Scholar 

  22. Kang J, Park EJ, Jou I, Kim JH, Joe EH (2001) Reactive oxygen species mediate Aβ (25–35)-induced activation of BV-2 microglia. Neuroreport 12:1449–1452

    Article  PubMed  CAS  Google Scholar 

  23. Qin L, Liu Y, Wang T, Wei SJ, Block ML, Wilson B, Liu B, Hong JS (2004) NADPH oxidase mediates lipopolysaccharide-induced neurotoxicity and proinflammatory gene expression in activated microglia. J Biol Chem 279:1415–1421

    Article  PubMed  CAS  Google Scholar 

  24. Chiang WC, Chien CT, Lin WW, Lin SL, Chen YM, Lai CF, Wu KD, Chao J, Tsai TJ (2006) Early activation of bradykinin B2 receptor aggravates reactive oxygen species generation and renal damage in ischemia/reperfusion injury. Free Radic Biol Med 41:1304–1314

    Article  PubMed  CAS  Google Scholar 

  25. Yong VW, Krekoski CA, Forsyth PA, Bell R, Edwards DR (1998) Matrix metalloproteinases and diseases of the CNS. Trends Neurosci 21:75–80

    Article  PubMed  CAS  Google Scholar 

  26. Aoki T, Sumii T, Mori T, Wang X, Lo EH (2002) Blood–brain barrier disruption and matrix metalloproteinase-9 expression during reperfusion injury: mechanical versus embolic focal ischemia in spontaneously hypertensive rats. Stroke 33:2711–2717

    Article  PubMed  Google Scholar 

  27. Wang X, Mori T, Jung JC, Fini ME, Lo EH (2002) Secretion of matrix metalloproteinase-2 and -9 after mechanical trauma injury in rat cortical cultures and involvement of MAP kinase. J Neurotrauma 19:615–625

    Article  PubMed  Google Scholar 

  28. Yong VW, Power C, Forsyth P, Edwards DR (2001) Metalloproteinases in biology and pathology of the nervous system. Nat Rev Neurosci 2:502–511

    Article  PubMed  CAS  Google Scholar 

  29. Rosenberg GA (2002) Matrix metalloproteinases in neuroinflammation. Glia 39:279–291

    Article  PubMed  Google Scholar 

  30. Wu CY, Hsieh HL, Jou MJ, Yang CM (2004) Involvement of p42/p44 MAPK, p38 MAPK, JNK and nuclear factor-κB in interleukin-1β-induced matrix metalloproteinase-9 expression in rat brain astrocytes. J Neurochem 90:1477–1488

    Article  PubMed  CAS  Google Scholar 

  31. Hsieh HL, Wu CY, Yang CM (2008) Bradykinin induces matrix metalloproteinase-9 expression and cell migration through a PKC-δ-dependent ERK/Elk-1 pathway in astrocytes. Glia 56:619–632

    Article  PubMed  Google Scholar 

  32. Maines MD (1997) The heme oxygenase system: a regulator of second messenger gases. Annu Rev Pharmacol Toxicol 37:517–554

    Article  PubMed  CAS  Google Scholar 

  33. Syapin PJ (2008) Regulation of haeme oxygenase-1 for treatment of neuroinflammation and brain disorders. Br J Pharmacol 155:623–640

    Article  PubMed  CAS  Google Scholar 

  34. Fukuda K, Richmon JD, Sato M, Sharp FR, Panter SS, Noble LJ (1996) Induction of heme oxygenase-1 (HO-1) in glia after traumatic brain injury. Brain Res 736:68–75

    Article  PubMed  CAS  Google Scholar 

  35. Ryter SW, Alam J, Choi AM (2006) Heme oxygenase-1/carbon monoxide: from basic science to therapeutic applications. Physiol Rev 86:583–650

    Article  PubMed  CAS  Google Scholar 

  36. Cuadrado A, Rojo AI (2008) Heme oxygenase-1 as a therapeutic target in neurodegenerative diseases and brain infections. Curr Pharm Des 14:429–442

    Article  PubMed  CAS  Google Scholar 

  37. Schipper HM, Bennett DA, Liberman A, Bienias JL, Schneider JA, Kelly J, Arvanitakis Z (2006) Glial heme oxygenase-1 expression in Alzheimer disease and mild cognitive impairment. Neurobiol Aging 27:252–261

    Article  PubMed  CAS  Google Scholar 

  38. Song L, Song W, Schipper HM (2007) Astroglia overexpressing heme oxygenase-1 predispose co-cultured PC12 cells to oxidative injury. J Neurosci Res 85:2186–2195

    Article  PubMed  CAS  Google Scholar 

  39. Ferrándiz ML, Devesa I (2008) Inducers of heme oxygenase-1. Curr Pharm Des 14:473–486

    Article  PubMed  Google Scholar 

  40. Tung WH, Hsieh HL, Yang CM (2010) Enterovirus 71 induces COX-2 expression via MAPKs, NF-κB, and AP-1 in SK-N-SH cells: role of PGE(2) in viral replication. Cell Signal 22:234–246

    Article  PubMed  CAS  Google Scholar 

  41. Zhang G, Gurtu V, Kain SR, Yan G (1997) Early detection of apoptosis using a fluorescent conjugate of annexin V. Biotechniques 23:525–531

    PubMed  CAS  Google Scholar 

  42. Minkenberg I, Ferber E (1984) Lucigenin-dependent chemiluminescence as a new assay for NAD(P)H-oxidase activity in particulate fractions of human polymorphonuclear leukocytes. J Immunol Methods 71:61–67

    Article  PubMed  CAS  Google Scholar 

  43. Hsieh HL, Wang HH, Wu CY, Yang CM (2010) Reactive oxygen species-dependent c-Fos/activator protein 1 induction upregulates heme oxygenase-1 expression by bradykinin in brain astrocytes. Antioxid Redox Signal 13:1829–1844

    Article  PubMed  CAS  Google Scholar 

  44. Porter AG, Jänicke RU (1999) Emerging roles of caspase-3 in apoptosis. Cell Death Differ 6:99–104

    Article  PubMed  CAS  Google Scholar 

  45. Brown GC, Neher JJ (2010) Inflammatory neurodegeneration and mechanisms of microglial killing of neurons. Mol Neurobiol 41:242–247

    Article  PubMed  CAS  Google Scholar 

  46. Glass CK, Saijo K, Winner B, Marchetto MC, Gage FH (2010) Mechanisms underlying inflammation in neurodegeneration. Cell 140:918–934

    Article  PubMed  CAS  Google Scholar 

  47. Wyss-Coray T (2006) Inflammation in Alzheimer disease: driving force, bystander or beneficial response? Nat Med 12:1005–1015

    PubMed  CAS  Google Scholar 

  48. McGeer EG, McGeer PL (2010) Neuroinflammation in Alzheimer’s disease and mild cognitive impairment: a field in its infancy. J Alzheimer’s Dis 19:355–361

    Google Scholar 

  49. Floyd RA (1999) Neuroinflammatory processes are important in neurodegenerative diseases: an hypothesis to explain the increased formation of reactive oxygen and nitrogen species as major factors involved in neurodegenerative disease development. Free Radic Biol Med 26:1346–1355

    Article  PubMed  CAS  Google Scholar 

  50. Infanger DW, Sharma RV, Davisson RL (2006) NADPH oxidases of the brain: distribution, regulation, and function. Antioxid Redox Signal 8:1583–1596

    Article  PubMed  CAS  Google Scholar 

  51. Uttara B, Singh AV, Zamboni P, Mahajan RT (2009) Oxidative stress and neurodegenerative diseases: a review of upstream and downstream antioxidant therapeutic options. Curr Neuropharmacol 7:65–74

    Article  PubMed  CAS  Google Scholar 

  52. Franklin JL (2011) Redox regulation of the intrinsic pathway in neuronal apoptosis. Antioxid Redox Signal 14:1437–1448

    Article  PubMed  CAS  Google Scholar 

  53. Alam J, Igarashi K, Immenschuh S, Shibahara S, Tyrrell RM (2004) Regulation of heme oxygenase-1 gene transcription: recent advances and highlights from the International Conference (Uppsala, 2003) on Heme Oxygenase. Antioxid Redox Signal 6:924–933

    PubMed  CAS  Google Scholar 

  54. Wagener FA, Volk HD, Willis D, Abraham NG, Soares MP, Adema GJ, Figdor CG (2003) Different faces of the heme-heme oxygenase system in inflammation. Pharmacol Rev 55:551–571

    Article  PubMed  CAS  Google Scholar 

  55. Schipper HM, Cissé S, Stopa EG (1995) Expression of heme oxygenase-1 in the senescent and Alzheimer-diseased brain. Ann Neurol 37:758–768

    Article  PubMed  CAS  Google Scholar 

  56. Piantadosi CA, Zhang J, Levin ED, Folz RJ, Schmechel DE (1997) Apoptosis and delayed neuronal damage after carbon monoxide poisoning in the rat. Exp Neurol 147:103–114

    Article  PubMed  CAS  Google Scholar 

  57. Imuta N, Hori O, Kitao Y, Tabata Y, Yoshimoto T, Matsuyama T, Ogawa S (2007) Hypoxia-mediated induction of heme oxygenase type I and carbon monoxide release from astrocytes protects nearby cerebral neurons from hypoxia-mediated apoptosis. Antioxid Redox Signal 9:543–552

    Article  PubMed  CAS  Google Scholar 

  58. Kitao Y, Ozawa K, Miyazaki M, Tamatani M, Kobayashi T, Yanagi H, Okabe M, Ikawa M, Yamashima T, Stern DM, Hori O, Ogawa S (2001) Expression of 150 kda oxygen regulated protein (ORP150), a molecular chaperone in the endoplasmic reticulum, rescues hippocampal neurons from glutamate toxicity. J Clin Invest 108:1439–1450

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Ministry of Education, Taiwan, Grant number: EMRPD1B0311 and EMRPD1B0321; National Science Council, Taiwan, Grant number: NSC101-2321-B-182-013, NSC101-2320-B-182-039-MY3, NSC98-2320-B-182-004-MY3, NSC98-2314-B-182-021-MY3, NSC99-2321-B182-003, and NSC98-2320-B-255-001-MY3; Chang Gung Medical Research Foundation, Grant number: CMRPD180373, CMRPG391033, CMRPG3B1091, CMRPD1B0381, CMRPF1A0061, and CMRPF1A0062.

Conflict of Interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chuen-Mao Yang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yang, CM., Hsieh, HL., Lin, CC. et al. Multiple Factors from Bradykinin-Challenged Astrocytes Contribute to the Neuronal Apoptosis: Involvement of Astroglial ROS, MMP-9, and HO-1/CO System. Mol Neurobiol 47, 1020–1033 (2013). https://doi.org/10.1007/s12035-013-8402-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-013-8402-1

Keywords

Navigation