Skip to main content

Advertisement

Log in

BK Induces cPLA2 Expression via an Autocrine Loop Involving COX-2-Derived PGE2 in Rat Brain Astrocytes

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Bradykinin (BK) is a proinflammatory mediator and elevated in several brain injury and inflammatory diseases. The deleterious effects of BK on brain astrocytes may aggravate brain inflammation mediated through the upregulation of cytosolic phospholipase A2 (cPLA2)/cyclooxygenase-2 (COX-2)-derived prostaglandin E2 (PGE2) production. However, the signaling mechanisms underlying BK-induced cPLA2 expression in brain astrocytes remain unclear. Herein, we investigated the effects of activation of cPLA2/COX-2 system on BK-induced cPLA2 upregulation in rat brain astrocytes (RBA-1). The data obtained with Western blotting, RT-PCR, and immunofluorescent staining analyses showed that BK-induced de novo cPLA2 expression was mediated through activation of cPLA2/COX-2 system. Upregulation of native cPLA2/COX-2 system by BK through activation of PKCδ, c-Src, MAPKs (ERK1/2 and JNK1/2) cascades led to PGE2 biosynthesis and release. Subsequently, the released PGE2 induced cPLA2 expression via the same signaling pathways (PKCδ, c-Src, ERK1/2, and JNK1/2) and then activated the cyclic AMP response element-binding protein (CREB) via B2 BK receptor-mediated cPLA2/COX-2 system-derived PGE2/EP-dependent manner. Finally, upregulation of cPLA2 by BK may promote more PGE2 production. These results demonstrated that in RBA-1, activation of CREB by PGE2/EP-mediated PKCδ/c-Src/MAPK cascades is essential for BK-induced de novo cPLA2 protein. More importantly, upregulation of cPLA2 by BK through native cPLA2/COX-2 system may be a positive feedback mechanism that enhances prolonged brain inflammatory responses. Understanding the mechanisms of cPLA2/COX-2 system upregulated by BK on brain astrocytes may provide rational therapeutic interventions for brain injury and inflammatory diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Yedgar S, Lichtenberg D, Schnitzer E (2000) Inhibition of phospholipase A2 as a therapeutic target. Biochim Biophys Acta 1488:182–187

    Article  CAS  PubMed  Google Scholar 

  2. Murakami M, Kudo I (2002) Phospholipase A2. J Biochem 131:285–292

    Article  CAS  PubMed  Google Scholar 

  3. Farooqui AA, Horrocks LA (2004) Brain phospholipases A2: a perspective on the history. Prostaglandins Leukot Essent Fatty Acids 71:161–169

    Article  CAS  PubMed  Google Scholar 

  4. Hernández M, Nieto ML, Sánchez Crespo M (2000) Cytosolic phospholipase A2 and the distinct transcriptional programs of astrocytoma cells. Trends Neurosci 23:259–264

    Article  PubMed  Google Scholar 

  5. Niknami M, Patel M, Witting PK, Dong Q (2009) Molecules in focus: cytosolic phospholipase A. Int J Biochem Cell Biol 41:994–997

    Article  CAS  PubMed  Google Scholar 

  6. Leslie CC (1997) Properties and regulation of cytosolic phospholipase A2. J Biol Chem 272:16709–16712

    Article  CAS  PubMed  Google Scholar 

  7. Kishimoto K, Matsumura K, Kataoka Y, Morii H, Watanabe Y (1999) Localization of cytosolic phospholipase A2 messenger RNA mainly in neurons in the rat brain. Neuroscience 92:1061–1077

    Article  CAS  PubMed  Google Scholar 

  8. Stephenson DT, Manetta JV, White DL, Chiou XG, Cox L, Gitter B, May PC, Sharp JD, Kramer RM, Clemens JA (1994) Calcium-sensitive cytosolic phospholipase A2 (cPLA2) is expressed in human brain. Brain Res 637:97–105

    Article  CAS  PubMed  Google Scholar 

  9. Sun GY, Xu J, Jensen MD, Yu S, Wood WG, González FA, Simonyi A, Sun AY, Weisman GA (2005) Phospholipase A2 in astrocytes: responses to oxidative stress, inflammation, and G protein-coupled receptor agonists. Mol Neurobiol 31:27–41

    Article  CAS  PubMed  Google Scholar 

  10. Stephenson D, Rash K, Smalstig B, Roberts E, Johnstone E, Sharp J, Panetta J, Little S, Kramer R, Clemens J (1999) Cytosolic phospholipase A2 is induced in reactive glia following different forms of neurodegeneration. Glia 27:110–128

    Article  CAS  PubMed  Google Scholar 

  11. Gentile MT, Reccia MG, Sorrentino PP, Vitale E, Sorrentino G, Puca AA, Colucci-D'Amato L (2012) Role of cytosolic calcium-dependent phospholipase A2 in Alzheimer's disease pathogenesis. Mol Neurobiol 45:596–604

    Article  CAS  PubMed  Google Scholar 

  12. Balboa MA, Varela-Nieto I, Lucas KK, Dennis EA (2002) Expression and function of phospholipase A2 in brain. FEBS Lett 531:12–17

    Article  CAS  PubMed  Google Scholar 

  13. Xu J, Chalimoniuk M, Shu Y, Simonyi A, Sun AY, Gonzalez FA, Weisman GA, Wood WG, Sun GY (2003) Prostaglandin E2 production in astrocytes: regulation by cytokines, extracellular ATP, and oxidative agents. Prostaglandins Leukot Essent Fatty Acids 69:437–448

    Article  CAS  PubMed  Google Scholar 

  14. Levinson SW, Goldman JE (1993) Astrocyte origins. In: Murphy S (ed) Astrocytes: pharmacology and function. Academic, San Diego, pp 1–22

    Google Scholar 

  15. Kimelberg HK (1995) Receptors on astrocytes—what possible functions? Neurochem Int 26:27–40

    Article  CAS  PubMed  Google Scholar 

  16. Eng LF, Ghirnikar RS (1994) GFAP and astrogliosis. Brain Pathol 4:229–237

    Article  CAS  PubMed  Google Scholar 

  17. Ridet JL, Malhotra SK, Privat A, Gage FH (1997) Reactive astrocytes: cellular and molecular cues to biological function. Trends Neurosci 20:570–577

    Article  CAS  PubMed  Google Scholar 

  18. Ellis EF, Chao J, Heizer ML (1989) Brain kininogen following experimental brain injury: evidence for a secondary event. J Neurosurg 71:437–442

    Article  CAS  PubMed  Google Scholar 

  19. Schwaninger M, Sallmann S, Petersen N, Schneider A, Prinz S, Libermann TA, Spranger M (1999) Bradykinin induces interleukin-6 expression in astrocytes through activation of nuclear factor-κB. J Neurochem 73:1461–1466

    Article  CAS  PubMed  Google Scholar 

  20. Richardson JD, Vasko MR (2002) Cellular mechanisms of neurogenic inflammation. J Pharmacol Exp Ther 302:839–845

    Article  CAS  PubMed  Google Scholar 

  21. Hsieh HL, Yen MH, Jou MJ, Yang CM (2004) Intracellular signalings underlying bradykinin-induced matrix metalloproteinase-9 expression in rat brain astrocyte-1. Cell Signal 16:1163–1176

    Article  CAS  PubMed  Google Scholar 

  22. Hsieh HL, Wu CY, Hwang TL, Yen MH, Parker P, Yang CM (2006) BK-induced cytosolic phospholipase A2 expression via sequential PKC-δ, p42/p44 MAPK, and NF-κB activation in rat brain astrocytes. J Cell Physiol 206:246–254

    Article  CAS  PubMed  Google Scholar 

  23. Bhoola K, Figueroa C, Worthy K (1992) Bioregulation of kinins: kallikreins, kininogens, and kininases. Pharmacol Rev 44:1–80

    CAS  PubMed  Google Scholar 

  24. Nishizuka Y (1992) Intracellular signaling by hydrolysis of phospholipids and activation of protein kinase C. Science 258:607–614

    Article  CAS  PubMed  Google Scholar 

  25. Chen CC, Chang J, Chen WC (1995) Role of protein kinase C subtypes α and δ in the regulation of bradykinin-stimulated phosphoinositide breakdown in astrocytes. Mol Pharmacol 48:39–47

    PubMed  Google Scholar 

  26. Cobb MH, Goldsmith EJ (1995) How MAP kinases are regulated. J Biol Chem 270:14843–14846

    Article  CAS  PubMed  Google Scholar 

  27. Pyne NJ, Tolan D, Pyne S (1997) Bradykinin stimulates cAMP synthesis via mitogen-activated protein kinase-dependent regulation of cytosolic phospholipase A2 and prostaglandin E2 release in airway smooth muscle. Biochem J 328:689–694

    PubMed Central  CAS  PubMed  Google Scholar 

  28. Xing M, Tao L, Insel PA (1997) Role of extracellular signal-regulated kinase and PKCα in cytosolic PLA2 activation by bradykinin in MDCK-D1 cells. Am J Physiol 272:C1380–C1387

    CAS  PubMed  Google Scholar 

  29. Xu J, Weng YI, Simonyi A, Krugh BW, Liao Z, Weisman GA, Sun GY, Simoni A (2002) Role of PKC and MAPK in cytosolic PLA2 phosphorylation and arachidonic acid release in primary murine astrocytes. J Neurochem 83:259–270

    Article  CAS  PubMed  Google Scholar 

  30. Hai CM (2007) Airway smooth muscle cell as therapeutic target of inflammation. Curr Med Chem 14:67–76

    Article  CAS  PubMed  Google Scholar 

  31. Rosethorne EM, Nahorski SR, Challiss RA (2008) Regulation of cyclic AMP response-element binding-protein (CREB) by Gq/11-protein-coupled receptors in human SH-SY5Y neuroblastoma cells. Biochem Pharmacol 75:942–955

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  32. Hazan-Eitan Z, Weinstein Y, Hadad N, Konforty A, Levy R (2006) Induction of FcγRIIA expression in myeloid PLB cells during differentiation depends on cytosolic phospholipase A2 activity and is regulated via activation of CREB by PGE2. Blood 108:1758–1766

    Article  CAS  PubMed  Google Scholar 

  33. Guo C, Li J, Myatt L, Zhu X, Sun K (2010) Induction of Gαs contributes to the paradoxical stimulation of cytosolic phospholipase A expression by cortisol in human amnion fibroblasts. Mol Endocrinol 24:1052–1061

    Article  CAS  PubMed  Google Scholar 

  34. Tay A, Maxwell P, Li Z, Goldberg H, Skorecki K (1994) Isolation of promoter for cytosolic phospholipase A2 (cPLA2). Biochim Biophys Acta 1217:345–347

    Article  CAS  PubMed  Google Scholar 

  35. Shi J, Wang Q, Johansson JU, Liang X, Woodling NS, Priyam P, Loui TM, Merchant M, Breyer RM, Montine TJ, Andreasson K (2012) Inflammatory prostaglandin E2 signaling in a mouse model of Alzheimer disease. Ann Neurol 72:788–798

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  36. Mukherjee AB (1990) PLA2 central role in inflammation. In: Mukherjee AB (ed) Biochemistry, molecular biology and physiology of phospholipase A2 and its regulatory factors. Plenum, New York and London, pp 52–60

    Chapter  Google Scholar 

  37. Sanchez-Mejia RO, Newman JW, Toh S, Yu GQ, Zhou Y, Halabisky B, Cissé M, Scearce-Levie K, Cheng IH, Gan L, Palop JJ, Bonventre JV, Mucke L (2008) Phospholipase A2 reduction ameliorates cognitive deficits in a mouse model of Alzheimer's disease. Nat Neurosci 11:1311–1318

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  38. Murakami M, Kambe T, Shimbara S, Kudo I (1999) Functional coupling between various phospholipase A2s and cyclooxygenases in immediate and delayed prostanoid biosynthetic pathways. J Biol Chem 274:3103–3115

    Article  CAS  PubMed  Google Scholar 

  39. Bosetti F, Weerasinghe GR (2003) The expression of brain cyclooxygenase-2 is down-regulated in the cytosolic phospholipase A2 knockout mouse. J Neurochem 87:1471–1477

    Article  CAS  PubMed  Google Scholar 

  40. Lin CC, Lin WN, Wang WJ, Sun CC, Tung WH, Wang HH, Yang CM (2009) Functional coupling expression of COX-2 and cPLA2 induced by ATP in rat vascular smooth muscle cells: role of ERK1/2, p38 MAPK, and NF-κB. Cardiovasc Res 82:522–531

    Article  CAS  PubMed  Google Scholar 

  41. Walker K, Perkins M, Dray A (1995) Kinins and kinin receptors in the nervous system. Neurochem Int 26:1–16

    Article  CAS  PubMed  Google Scholar 

  42. de Carvalho MG, McCormack AL, Olson E, Ghomashchi F, Gelb MH, Yates JR 3rd, Leslie CC (1996) Identification of phosphorylation sites of human 85-kDa cytosolic phospholipase A2 expressed in insect cells and present in human monocytes. J Biol Chem 271:6987–6997

    Article  PubMed  Google Scholar 

  43. Hirabayashi T, Murayama T, Shimizu T (2004) Regulatory mechanism and physiological role of cytosolic phospholipase A2. Biol Pharm Bull 27:1168–1173

    Article  CAS  PubMed  Google Scholar 

  44. Börsch-Haubold AG, Bartoli F, Asselin J, Dudler T, Kramer RM, Apitz-Castro R, Watson SP, Gelb MH (1998) Identification of the phosphorylation sites of cytosolic phospholipaseA2 in agonist-stimulated human platelets and HeLa cells. J Biol Chem 273:4449–4458

    Article  PubMed  Google Scholar 

  45. Lin LL, Wartmann M, Lin AY, Knopf JL, Seth A, Davis RJ (1993) cPLA2 is phosphorylated and activated by MAP kinase. Cell 72:269–278

    Article  CAS  PubMed  Google Scholar 

  46. Kaminska B, Gozdz A, Zawadzka M, Ellert-Miklaszewska A, Lipko M (2009) MAPK signal transduction underlying brain inflammation and gliosis as therapeutic target. Anat Rec (Hoboken) 292:1902–1913

    Article  CAS  Google Scholar 

  47. Matsuzawa Y, Kiuchi Y, Toyomura K, Matsumoto I, Nakamura H, Fujino H, Murayama T, Kawashima T (2009) Activation of cytosolic phospholipase A by epidermal growth factor (EGF) and phorbol ester in HeLa cells: different effects of inhibitors for EGF receptor, protein kinase C, Src, and C-Raf. J Pharmacol Sci 111:182–192

    Article  CAS  PubMed  Google Scholar 

  48. Zhang Q, Wang D, Singh NK, Kundumani-Sridharan V, Gadiparthi L, Rao CM, Rao GN (2011) Activation of cytosolic phospholipase A2 downstream of the Src-phospholipase D1 (PLD1)-protein kinase C γ (PKCγ) signaling axis is required for hypoxia-induced pathological retinal angiogenesis. J Biol Chem 286:22489–22498

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  49. Loos B, Smith R, Engelbrecht AM (2008) Ischaemic preconditioning and TNF-α-mediated preconditioning is associated with a differential cPLA2 translocation pattern in early ischaemia. Prostaglandins Leukot Essent Fatty Acids 78:403–413

    Article  CAS  PubMed  Google Scholar 

  50. Sun GY, Shelat PB, Jensen MB, He Y, Sun AY, Simonyi A (2010) Phospholipases A2 and inflammatory responses in the central nervous system. Neuromolecular Med 12:133–148

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  51. Josselyn SA, Nguyen PV (2005) CREB, synapses and memory disorders: past progress and future challenges. Curr Drug Targets CNS Neurol Disord 4:481–497

    Article  CAS  PubMed  Google Scholar 

  52. Kitagawa K (2007) CREB and cAMP response element-mediated gene expression in the ischemic brain. FEBS J 274:3210–3217

    Article  CAS  PubMed  Google Scholar 

  53. Szaingurten-Solodkin I, Hadad N, Levy R (2009) Regulatory role of cytosolic phospholipase A in NADPH oxidase activity and in inducible nitric oxide synthase induction by aggregated Aβ1–42 in microglia. Glia 57:1727–1740

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Science Council, Taiwan; Grant numbers: NSC102-2321-B-182-011, NSC101-2320-B-182-039-MY3, NSC101-2314-B-182-182A-112, and NSC102-2320-B-255-005-MY3; the Chang Gung Medical Research Foundation, Grant numbers: CMRPD1C0102, CMRPD1B0383, CMRPD1C0562, CMRPG3B1093, CMRPG3C1302, CMRPD1B0331, CMRPG5C0061, CMRPF1C0191, and CMRPF1A0063; and the Ministry of Education, Taiwan; Grant numbers: EMRPD1D0231 and EMRPD1D0241.

Conflict of Interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chuen-Mao Yang.

Additional information

Chih-Chung Lin and Hsi-Lung Hsieh are equal contributors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lin, CC., Hsieh, HL., Liu, SW. et al. BK Induces cPLA2 Expression via an Autocrine Loop Involving COX-2-Derived PGE2 in Rat Brain Astrocytes. Mol Neurobiol 51, 1103–1115 (2015). https://doi.org/10.1007/s12035-014-8777-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-014-8777-7

Keywords

Navigation