Skip to main content

Advertisement

Log in

Glucagon-Like Peptide-2 (GLP-2) Modulates the cGMP Signalling Pathway by Regulating the Expression of the Soluble Guanylyl Cyclase Receptor Subunits in Cultured Rat Astrocytes

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

The aim of this work was to study the effect of glucagon-like peptide-2 (GLP-2) on the cyclic guanosine monophosphate (cGMP) signalling pathway and whether insulin or epidermal growth factor (EGF) might modulate the effects of GLP-2. GLP-2 produced a dose-dependent decrease in intracellular sodium nitroprusside-induced cGMP production. However, insulin induced an increase in the levels of cGMP that was dose-dependently decreased by the addition of GLP-2. By contrast, EGF induced a decrease in cGMP production, which was further reduced by the addition of GLP-2. To assess whether variations in cGMP production might be related with changes in some component of soluble guanylyl cyclase (sGC), the expression of the α1, α2, and β1 subunits were determined by Western blot analysis. At 1 h, GLP-2 produced a decrease in the expression of both α1 and β1 in the cytosolic fraction, but at 24 h only β1was reduced. As expected, insulin induced an increase in the expression of both subunits after 1 h of incubation; this was decreased by the addition of GLP-2. Likewise, incubation with EGF for 24 h produced a decrease in the expression of both subunits that was maximal when GLP-2 was added. In addition, incubation with insulin for 1 h produced an increase in the expression of the α2 subunit, which was reduced by the addition of GLP-2. These results suggest that GLP-2 inhibits cGMP production by decreasing the cellular content of at least one subunit of the heterodimeric active form of the sGC, independently of the presence of insulin or EFG. This may open new insights into the actions of this neuropeptide.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Hartmann B, Johnsen AH, Orskov C, Adelhorst K, Thim L, Holst JJ (2000) Structure, measurement, and secretion of human glucagon-like peptide-2. Peptides 21(1):73–80

    Article  PubMed  CAS  Google Scholar 

  2. Munroe DG, Gupta AK, Kooshesh F, Vyas TB, Rizkalla G, Wang H, Demchyshyn L, Yang ZJ, Kamboj RK, Chen H, McCallum K, Sumner-Smith M, Drucker DJ, Crivici A (1999) Prototypic G protein-coupled receptor for the intestinotrophic factor glucagon-like peptide 2. Proc Natl Acad Sci USA 96(4):1569–1573

    Article  PubMed  CAS  Google Scholar 

  3. Pacheco-Pantoja EL, Ranganath LR, Gallagher JA, Wilson PJ, Fraser WD (2011) Receptors and effects of gut hormones in three osteoblastic cell lines. BMC Physiol 11:12

    Article  PubMed  CAS  Google Scholar 

  4. Angelone T, Filice E, Quintieri AM, Imbrogno S, Amodio N, Pasqua T, Pellegrino D, Mule F, Cerra MC (2012) Receptor identification and physiological characterisation of glucagon-like peptide-2 in the rat heart. Nutr Metab Cardiovasc Dis 22(6):486–494

    Article  PubMed  CAS  Google Scholar 

  5. Yusta B, Holland D, Koehler JA, Maziarz M, Estall JL, Higgins R, Drucker DJ (2009) ErbB signaling is required for the proliferative actions of GLP-2 in the murine gut. Gastroenterology 137(3):986–996

    Article  PubMed  CAS  Google Scholar 

  6. Koehler JA, Yusta B, Drucker DJ (2005) The HeLa cell glucagon-like peptide-2 receptor is coupled to regulation of apoptosis and ERK1/2 activation through divergent signaling pathways. Mol Endocrinol 19(2):459–473

    Article  PubMed  CAS  Google Scholar 

  7. Burrin DG, Stoll B, Guan X, Cui L, Chang X, Hadsell D (2007) GLP-2 rapidly activates divergent intracellular signaling pathways involved in intestinal cell survival and proliferation in neonatal piglets. Am J Physiol Endocrinol Metab 292(1):E281–E291

    Article  PubMed  CAS  Google Scholar 

  8. Dube PE, Brubaker PL (2007) Frontiers in glucagon-like peptide-2: multiple actions, multiple mediators. Am J Physiol Endocrinol Metab 293(2):E460–E465

    Article  PubMed  CAS  Google Scholar 

  9. Rowland KJ, Brubaker PL (2011) The "cryptic" mechanism of action of glucagon-like peptide-2. Am J Physiol Gastrointest Liver Physiol 301(1):G1–G8

    Article  PubMed  CAS  Google Scholar 

  10. Wang Y, Guan X (2010) GLP-2 potentiates l-type Ca2+ channel activity associated with stimulated glucose uptake in hippocampal neurons. Am J Physiol Endocrinol Metab 298(2):E156–E166

    Article  PubMed  CAS  Google Scholar 

  11. Velazquez E, Ruiz-Albusac JM, Blazquez E (2003) Glucagon-like peptide-2 stimulates the proliferation of cultured rat astrocytes. Eur J Biochem 270(14):3001–3009

    Article  PubMed  CAS  Google Scholar 

  12. Velazquez E, Blazquez E, Ruiz-Albusac JM (2009) Synergistic effect of glucagon-like peptide 2 (GLP-2) and of key growth factors on the proliferation of cultured rat astrocytes. Evidence for reciprocal upregulation of the mRNAs for GLP-2 and IGF-I receptors. Mol Neurobiol 40(2):183–193

    Article  PubMed  CAS  Google Scholar 

  13. Bredt DS, Snyder SH (1994) Nitric oxide: a physiologic messenger molecule. Annu Rev Biochem 63:175–195

    Article  PubMed  CAS  Google Scholar 

  14. Bellamy TC, Garthwaite J (2002) The receptor-like properties of nitric oxide-activated soluble guanylyl cyclase in intact cells. Mol Cell Biochem 230(1–2):165–176

    Article  PubMed  CAS  Google Scholar 

  15. Pilz RB, Casteel DE (2003) Regulation of gene expression by cyclic GMP. Circ Res 93(11):1034–1046

    Article  PubMed  CAS  Google Scholar 

  16. Russwurm M, Koesling D (2002) Isoforms of NO-sensitive guanylyl cyclase. Mol Cell Biochem 230(1–2):159–164

    Article  PubMed  CAS  Google Scholar 

  17. Madhusoodanan KS, Murad F (2007) NO-cGMP signaling and regenerative medicine involving stem cells. Neurochem Res 32(4–5):681–694

    Article  PubMed  CAS  Google Scholar 

  18. Sardon T, Baltrons MA, Garcia A (2004) Nitric oxide-dependent and independent down-regulation of NO-sensitive guanylyl cyclase in neural cells. Toxicol Lett 149(1–3):75–83

    Article  PubMed  CAS  Google Scholar 

  19. Kloss S, Srivastava R, Mulsch A (2004) Down-regulation of soluble guanylyl cyclase expression by cyclic AMP is mediated by mRNA-stabilizing protein HuR. Mol Pharmacol 65(6):1440–1451

    Article  PubMed  Google Scholar 

  20. Chen ZJ, Che D, Vetter M, Liu S, Chang CH (2001) 17beta-estradiol inhibits soluble guanylate cyclase activity through a protein tyrosine phosphatase in PC12 cells. J Steroid Biochem Mol Biol 78(5):451–458

    Article  PubMed  CAS  Google Scholar 

  21. Meurer S, Pioch S, Gross S, Muller-Esterl W (2005) Reactive oxygen species induce tyrosine phosphorylation of and Src kinase recruitment to NO-sensitive guanylyl cyclase. J Biol Chem 280(39):33149–33156

    Article  PubMed  CAS  Google Scholar 

  22. Russwurm M, Wittau N, Koesling D (2001) Guanylyl cyclase/PSD-95 interaction: targeting of the nitric oxide-sensitive alpha2beta1 guanylyl cyclase to synaptic membranes. J Biol Chem 276(48):44647–44652

    Article  PubMed  CAS  Google Scholar 

  23. Sharina IG, Jelen F, Bogatenkova EP, Thomas A, Martin E, Murad F (2008) Alpha1 soluble guanylyl cyclase (sGC) splice forms as potential regulators of human sGC activity. J Biol Chem 283(22):15104–15113

    Article  PubMed  CAS  Google Scholar 

  24. Baltrons MA, Pifarre P, Berciano MT, Lafarga M, Garcia A (2008) LPS-induced down-regulation of NO-sensitive guanylyl cyclase in astrocytes occurs by proteasomal degradation in clastosomes. Mol Cell Neurosci 37(3):494–506

    Article  PubMed  CAS  Google Scholar 

  25. Guan X, Stoll B, Lu X, Tappenden KA, Holst JJ, Hartmann B, Burrin DG (2003) GLP-2-mediated up-regulation of intestinal blood flow and glucose uptake is nitric oxide-dependent in TPN-fed piglets 1. Gastroenterology 125(1):136–147

    Article  PubMed  CAS  Google Scholar 

  26. Guan X, Karpen HE, Stephens J, Bukowski JT, Niu S, Zhang G, Stoll B, Finegold MJ, Holst JJ, Hadsell D, Nichols BL, Burrin DG (2006) GLP-2 receptor localizes to enteric neurons and endocrine cells expressing vasoactive peptides and mediates increased blood flow. Gastroenterology 130(1):150–164

    Article  PubMed  CAS  Google Scholar 

  27. Cinci L, Faussone-Pellegrini MS, Rotondo A, Mule F, Vannucchi MG (2011) GLP-2 receptor expression in excitatory and inhibitory enteric neurons and its role in mouse duodenum contractility. Neurogastroenterol Motil 23(9):e383–e392

    Article  PubMed  CAS  Google Scholar 

  28. Ruiz-Albusac JM, Velazquez E, Iglesias J, Jimenez E, Blazquez E (1997) Insulin promotes the hydrolysis of a glycosyl phosphatidylinositol in cultured rat astroglial cells. J Neurochem 68(1):10–19

    Article  PubMed  CAS  Google Scholar 

  29. Baltrons MA, Pedraza CE, Heneka MT, Garcia A (2002) Beta-amyloid peptides decrease soluble guanylyl cyclase expression in astroglial cells. Neurobiol Dis 10(2):139–149

    Article  PubMed  CAS  Google Scholar 

  30. Baltrons MA, Garcia A (1999) Nitric oxide-independent down-regulation of soluble guanylyl cyclase by bacterial endotoxin in astroglial cells. J Neurochem 73(5):2149–2157

    PubMed  CAS  Google Scholar 

  31. Haghikia A, Mergia E, Friebe A, Eysel UT, Koesling D, Mittmann T (2007) Long-term potentiation in the visual cortex requires both nitric oxide receptor guanylyl cyclases. J Neurosci 27(4):818–823

    Article  PubMed  CAS  Google Scholar 

  32. Nedvetsky PI, Kleinschnitz C, Schmidt HH (2002) Regional distribution of protein and activity of the nitric oxide receptor, soluble guanylyl cyclase, in rat brain suggests multiple mechanisms of regulation. Brain Res 950(1–2):148–154

    Article  PubMed  CAS  Google Scholar 

  33. Pifarre P, Baltrons MA, Foldi I, Garcia A (2009) NO-sensitive guanylyl cyclase beta1 subunit is peripherally associated to chromosomes during mitosis. Novel role in chromatin condensation and cell cycle progression. Int J Biochem Cell Biol 41(8–9):1719–1730

    Article  PubMed  CAS  Google Scholar 

  34. Haase N, Haase T, Seeanner M, Behrends S (2010) Nitric oxide sensitive guanylyl cyclase activity decreases during cerebral postnatal development because of a reduction in heterodimerization. J Neurochem 112(2):542–551

    Article  PubMed  CAS  Google Scholar 

  35. Zabel U, Hausler C, Weeger M, Schmidt HH (1999) Homodimerization of soluble guanylyl cyclase subunits. Dimerization analysis using a glutathione s-transferase affinity tag. J Biol Chem 274(26):18149–18152

    Article  PubMed  CAS  Google Scholar 

  36. Bonthius DJ, Karacay B, Dai D, Pantazis NJ (2003) FGF-2, NGF and IGF-1, but not BDNF, utilize a nitric oxide pathway to signal neurotrophic and neuroprotective effects against alcohol toxicity in cerebellar granule cell cultures. Brain Res Dev Brain Res 140(1):15–28

    Article  PubMed  CAS  Google Scholar 

  37. Pu XY, Wang XH, Gao WC, Yang ZH, Li SL, Wang HP, Wu YL (2008) Insulin-like growth factor-1 restores erectile function in aged rats: modulation the integrity of smooth muscle and nitric oxide-cyclic guanosine monophosphate signaling activity. J Sex Med 5(6):1345–1354

    Article  PubMed  CAS  Google Scholar 

  38. Thum T, Fleissner F, Klink I, Tsikas D, Jakob M, Bauersachs J, Stichtenoth DO (2007) Growth hormone treatment improves markers of systemic nitric oxide bioavailability via insulin-like growth factor-I. J Clin Endocrinol Metab 92(11):4172–4179

    Article  PubMed  CAS  Google Scholar 

  39. Naruse K, Rask-Madsen C, Takahara N, Ha SW, Suzuma K, Way KJ, Jacobs JR, Clermont AC, Ueki K, Ohshiro Y, Zhang J, Goldfine AB, King GL (2006) Activation of vascular protein kinase C-beta inhibits Akt-dependent endothelial nitric oxide synthase function in obesity-associated insulin resistance. Diabetes 55(3):691–698

    Article  PubMed  CAS  Google Scholar 

  40. Bergandi L, Silvagno F, Russo I, Riganti C, Anfossi G, Aldieri E, Ghigo D, Trovati M, Bosia A (2003) Insulin stimulates glucose transport via nitric oxide/cyclic GMP pathway in human vascular smooth muscle cells. Arterioscler Thromb Vasc Biol 23(12):2215–2221

    Article  PubMed  CAS  Google Scholar 

  41. Konopatskaya O, Whatmore JL, Tooke JE, Shore AC (2003) Insulin and lysophosphatidylcholine synergistically stimulate NO-dependent cGMP production in human endothelial cells. Diabet Med 20(10):838–845

    Article  PubMed  CAS  Google Scholar 

  42. Witte K, Jacke K, Stahrenberg R, Arlt G, Reitenbach I, Schilling L, Lemmer B (2002) Dysfunction of soluble guanylyl cyclase in aorta and kidney of Goto–Kakizaki rats: influence of age and diabetic state. Nitric Oxide 6(1):85–95

    Article  PubMed  CAS  Google Scholar 

  43. Zanetti M, Barazzoni R, Stebel M, Roder E, Biolo G, Baralle FE, Cattin L, Guarnieri G (2005) Dysregulation of the endothelial nitric oxide synthase-soluble guanylate cyclase pathway is normalized by insulin in the aorta of diabetic rat. Atherosclerosis 181(1):69–73

    Article  PubMed  CAS  Google Scholar 

  44. Makarevich AV, Sirotkin AV, Chrenek P, Bulla J (2002) Effect of epidermal growth factor (EGF) on steroid and cyclic nucleotide secretion, proliferation and ERK-related MAP-kinase in cultured rabbit granulosa cells. Exp Clin Endocrinol Diabetes 110(3):124–129

    Article  PubMed  CAS  Google Scholar 

  45. Galand P, Rooryck J (1996) Mediation by epidermal growth factor of the estradiol-induced increase in cyclic guanosine 3′,5′-monophosphate content in the rat uterus. Endocrinology 137(5):1932–1937

    Article  PubMed  CAS  Google Scholar 

  46. Scheving LA, Scheving LE, Tsai TH, Vesely DL (1985) Epidermal growth factor enhances guanylate cyclase activity in vivo and in vitro. Endocrinology 116(1):332–336

    Article  PubMed  CAS  Google Scholar 

  47. Zhang Y, Islam M, Akhtar RA (2000) Effects of atrial natriuretic peptide and sodium nitroprusside on epidermal growth factor-stimulated wound repair in rabbit corneal epithelial cells. Curr Eye Res 21(3):748–756

    Article  PubMed  CAS  Google Scholar 

  48. Baldassano S, Bellanca AL, Serio R, Mule F (2012) Food intake in lean and obese mice after peripheral administration of glucagon-like peptide 2. J Endocrinol 213(3):277–284

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Dr Laura Barrio and Rafael Díaz for technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juan Miguel Ruiz-Albusac.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Velázquez, E., Blázquez, E. & Ruiz-Albusac, J.M. Glucagon-Like Peptide-2 (GLP-2) Modulates the cGMP Signalling Pathway by Regulating the Expression of the Soluble Guanylyl Cyclase Receptor Subunits in Cultured Rat Astrocytes. Mol Neurobiol 46, 242–250 (2012). https://doi.org/10.1007/s12035-012-8298-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-012-8298-1

Keywords

Navigation